НЕКОТОРЫЕ МЕТОДЫ ОЦЕНКИ ПРОГРЕССИРОВАНИЯ РЕНТГЕНОЛОГИЧЕСКИХ ПРОЯВЛЕНИЙ РЕВМАТОИДНОГО АРТРИТА

О. А. Кричевская, Д. В. Горячев, А. В. Смирнов, Ш. Ф. Эрдес ГУ Институт ревматологии РАМН, Москва

Ревматоидный артрит (РА) — аутоиммунное заболевание неизвестной этиологии, типичным признаком которого является персистирующий синовит, симметрично поражающий периферические суставы и приводящий к деструкции суставного хряща с эрозированием подлежащей костной ткани [6].

Наличие и степень деструктивного артрита традиционно определяются с помощью рентгенографии, которая представляет собой важный инструмент для диагностики РА, оценки прогрессирования заболевания и эффективности терапии. Уступая современным методам исследования (МРТ, УЗИ суставов) в некоторой информативности, рентгенография, тем не менее, обладает такими существенными преимуществами, как доступность, относительная дешевизна, способность документировать эволюцию заболевания, удобство использования её материалов в рандомизированных и слепых исследованиях. Несмотря на то, что результаты рентгенографии могут зависеть от техники и правильного позиционирования объекта съёмки, этот метод по-прежнему является «золотым стандартом» при изучении прогрессирования РА [19].

За последние 10 лет интенсивность разработки новых базисных противовоспалительных препаратов выросла более чем втрое по сравнению с предшествующими 70-ю годами, когда каждое десятилетие появлялся в среднем лишь один новый препарат. С 1998 г. в клиническую практику уже успели войти лефлуномид, а также инфликсимаб, этанерсепт и др. биологические агенты. Наличие ряда испытанных временем методов формализованной количественной оценки деструктивного процесса при РА делает рентгенографию незаменимой при анализе эффективности новых лекарственных средств.

В настоящее время требованием всех протоколов научных исследований при РА является соблюдение максимально унифицированных условий проведения рентгенограмм кистей и стоп. Так, для более точной оценки изменений необходимо снимать каждую кисть и стопу отдельно; для общей оценки поражения суставов можно снимать обе кисти или обе стопы на одной плёнке. Требования к расположению пациента при рентгенографии кисти:

Адрес: 115522 Москва, Каширское шоссе, 34a, ГУ Институт ревматологии РАМН

Тел/факс: 8-499-614-44-76

- расположить обследуемого в кресле рядом с рентгеновским столом, поверхность стола должна быть примерно на уровне подмышечной ямки, с руки и запястья необходимо снять украшения;
- локоть должен быть согнут примерно под углом 90°, предплечье полностью лежать на рентгеновском столе;
- расположить кисть в центре плёнки, предплечье параллельно продольной оси кассеты, запястье должно быть целиком включено;
- расположить руку с небольшим локтевым смещением так, чтобы указательный палец оказался на одной прямой с лучевой костью;
 - слегка развести пальцы;
- ладонь и запястье должны быть плотно прижаты к плёнке;
- расположить рентгеновскую плёнку так, чтобы пучок рентгеновских лучей был центрирован между вторым и третьим пястнофаланговыми суставами (ПяФС), центральный луч направить под углом в 90° к плоскости плёнки.

Предъявляются также технические требования к рентгенографии кисти: фокусное расстояние (FFD) $100\,$ см, размер плёнки $24-30\,$ см, амплитудное напряжение $50-55\,$ кВ, рекомендуемый ток рентгеновской трубки $5-10\,$ мАс, должны быть представлены кисти обеих рук.

Требования к проведению рентгенографии стопы:

- обследуемый должен снять носки или чулки;
- расположить обследуемого в положении лёжа на спине;
- согнуть колено так, чтобы ступня плоско располагалась на поверхности стола;
- продольная ось ступни должна быть параллельна продольной оси кассеты;
- не допускать отклонения колена в сторону, так как это вызовет отрыв медиальной стороны стопы от кассеты;
- отцентрировать рентгеновские лучи вертикально между между вторым и третьим плюснефаланговыми суставами (ПлФС), центральный луч должен быть отклонен на 5° от вертикали к плоскости плёнки (такой наклон трубки является самой предпочтительной для оценки трудноразличимых изменений).

Общие требования к рентгенологическому исследованию кистей и стоп:

- коллимировать (получить пучки параллельных лучей) в соответствии с размером плёнки;
- использовать маленькие свинцовые метки для правой/левой стороны;
 - защитить гонады пациента;
- выбрать такую экспозицию, чтобы создать черный фон на снимке;
- на снимке не должно быть белых полос, прожилок, вуали.

Современная история анализа рентгенологических проявлений РА началась 1949 г., когда О. Steinbrocker с соавт. создали рентгенологическую классификацию РА, используемую с некоторыми изменениями в клинической практике до сих пор [25, 34, 35]. Критерии Штейнброкера основаны не только на данных рентгенологического исследования, но и на клинических признаках [9, 10]. Суставами-«мишенями» при РА являются все синовиальные суставы, но в первую очередь суставы кистей и дистальных отделов стоп, поэтому именно эти области изучаются для определения стадии заболевания.

При I стадии РА деструктивный процесс отсутствует, к начальным рентгенологическим проявлениям заболевания относятся периартикулярное утолщение, уплотнение мягких тканей и околосуставной остеопороз (ОП).

II стадия включает в себя:

- рентгенологические признаки околосуставного ОП с незначительной деструкцией субхондральной кости или без неё, может быть небольшая деструкция хряща;
- отсутствие суставных деформаций, хотя может быть ограничен объём движений в суставе;
 - атрофию прилегающих мышц;
- возможность изменения внесуставных мягких тканей (узелки, тендовагинит).

В клинической практике при характеристике стадий РА используется тот же подход, но количество критериев уменьшено так, чтобы они в большей степени подчёркивали качественные различия между стадиями [10]. Российские ревматологи II стадию обычно подразделяют на стадии ПА и IIБ. Стадия IIA характеризуется появлением на фоне околосуставного ОП кистовидных просветлений костной ткани и сужения суставной щели (деградация хряща) в одном или нескольких суставах. При стадии IIБ, наряду с вышеуказанными признаками, выявляются единичные эрозии (от 1 до 5 или до 10 в различных модификациях). Как правило, первые эрозии появляются во 2-3-х ПяФС, в области шиловидного отростка локтевой кости, несколько позже - в проксимальных межфаланговых суставах кистей (ПМФС) и в суставах запястий [11]. В стопах наиболее ранние эрозии появляются на боковых и нижних поверхностях плюсневых головок в 5 ПлФС [12].

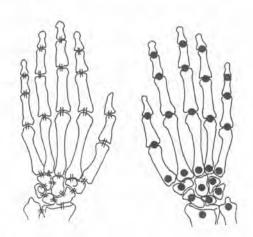
Для III стадии РА характерны:

- множественные эрозии (более 5 или более 10 в различных модификациях) наряду с околосуставным ОП, являющиеся основным признаком в клинической практике);
- деформация суставов, в частности подвывих, ульнарная девиация кистей или переразгибание, без фиброзного или костного анкилоза;
 - выраженная мышечная атрофия;
- возможность изменения внесуставных мягких тканей (узелки, тендовагинит).

А. А. Крель с соавт. предложили разделение этой стадии на стадию IIIА — множественный эрозивный артрит, и стадию IIIБ — то же и остеолиз [5].

IV стадия характеризуется появлением частичного или полного костного или фиброзного анкилоза на фоне наличия критериев III стадии.

В иностранной литературе иногда выделяют и нулевую стадию РА, включающую периартикулярное утолщение мягких тканей и амиотрофию межостных мышц при нормальной рентгенологической картине [25, 34, 35].


Классификация Штейнброкера оказалась весьма удачной для оценки выраженности деструктивного артрита при РА и нашла широкое применение в клинической практике в силу своей простоты и наглядности. Однако для точного динамического наблюдения за развитием заболевания её возможностей было недостаточно. С тех пор появилось несколько новых методик оценки прогрессирования РА, учитывающих изменения в суставах кистей, а в ряде случаев в суставах кистей и дистальных отделах стоп. Их можно условно разделить на две группы:

- «обобщенные» весь комплекс визуальных изменений в суставах оценивается по единой шкале (метод Ларсена и его модификации);
- «детальные» эрозии и сужения суставной щели в каждом суставе оцениваются по отдельным шкалам (метод Шарпа и его модификации) [26].

В 1971 г. J.T. Sharp с соавт. [31, 33] предложили метод определения выраженности деструктивных изменений при РА в суставах кистей (с лучезапястными суставами), основанный на балльной оценке костных изменений (эрозий) и степени поражения хрящей (сужения суставных щелей), По этой методике изучается 29 областей в каждой кисти для подсчёта эрозий и 27 областей для определения сужения суставной щели (рис. 1). Эрозии оцениваются в баллах от 0 до 5. Для подсчёта изучаемый сустав визуально делится на 4 части (рис. 2). Каждой отдельной эрозии присваивается один балл. Если эрозии сливаются и/или выходят за пределы квадранта, то подсчёт ведётся по площади поражения сустава: вовлечение в деструктивный процесс до 20% сустава – 1 балл, 20 -40% – 2 балла, 40 - 60% - 3 балла, 60 - 80% - 4 балла. Выраженная деструкция сустава (более 80%) обозначается 5 баллами. Таким образом, счёт эрозий может варьировать от 0 до 290 баллов. Сужение суставной щели оценивается от 0 до 4 баллов: 0 - сужения нет; 1 - асимметричное или незначительное сужение (менее 25 % от нормальной суставной щели), 2 сужение на 25 – 50% от нормы, 3 – сужение на 50 99% от нормы, 4 — анкилоз. Счёт сужения суставных шелей возможен от 0 до 216 баллов. Этот метод получил название оригинального метода Шарпа. Это достаточно точный метод, дающий возможность оценить выраженность и темп прогрессирования эрозивного артрита, однако требующий специальной подготовки исследователя и больших затрат времени [19]. Самый же главный недостаток оригинального метода Шарпа состоит в том, что не учитываются изменения в дистальных отделах стоп, хотя известно, что эрозии в ПлФС могут возникать раньше, чем в суставах кистей [5, 8]. В настоящее время оригинальный метод Шарпа практически не используется.

В 1981 г. А. А. Крель с соавт. [5] модифицировали метод Шарпа, включив суставы стоп в стандартизированный счёт рентгенологических изменений, что значительно повысило информативность и достоверность метода. Межфаланговые, ПяФС, пястнозапястные, ПлФС, суставные поверхности костей запястья, лучевой и локтевой костей (всего 68) исследуются на предмет наличия поверхностных эрозий. Любой эрозии независимо от размера присваивается 1 балл (максимальное число эрозий в каждой анализируемой области - 4), остеолиз обозначается 5 баллами, соответственно максимально возможное количество баллов - 340. Результат деления полученного числа баллов (Э) на 340 называется «счётом костных дефектов» (Сд) и характеризует выраженность деструктивного процесса. В результате деления Сд на число месяцев от начала заболевания до момента исследования (Т) получается показатель, характеризующий средний темп

Рисунок 1 ОРИГИНАЛЬНЫЙ МЕТОД ШАРПА [33]

- сужения межсуставных щелей- эрозии

прогрессирования эрозивного артрита, использующийся для ретроспективной оценки:

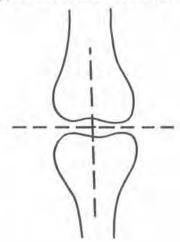
$$K_{\mathfrak{I}} = \frac{\mathfrak{I}}{340 \text{ T}}$$

Для проспективных исследований используется следующая формула:

$$K_9 = \frac{9_1}{(340 - n) T_1}$$

где Кэ — коэффициент прогрессирования эрозивного артрита

п — балльная оценка эрозий на момент начала исследования


Э₁ — бальная оценка эрозий на текущий момент

Т, - число месяцев от начала исследования В зависимости от величины Кэ по результатам ретроспективного исследования РА подразделяется на медленно прогрессирующий (Кэ<0,4), умерено прогрессирующий (0,4<Кэ<1) и быстро прогрессирующий (Кэ>1), что особенно важно при проведении апробаций лекарственных препаратов (подбор сопоставимых групп больных, дальнейший контроль). Оценка сужения суставных щелей производится в 64 областях кистей и стоп по оригинальной методике Шарпа. Максимально возможное количество баллов составляет 256. Определение темпа прогрессирования сужения суставных щелей осуществляется по аналогичным формулам. Таким образом, модифицированный А. А. Крелем с соавт. метод является более информативным, позволяет стандартизировать группы пациентов и объективно изучать влияние препаратов на эволюцию эрозивного артрита.

В 1983 г. Н. К. Genant [цит. по15], взяв за основу метод Шарпа, разработал свою методику оценки рентгенологических изменений в суставах кистей

Рисунок 2

ДЕЛЕНИЕ СУСТАВА НА КВАДРАТЫ

и стоп у больных РА. Эрозии считаются в 16 областях в каждой кисти и в б в каждой стопе, сужения суставных щелей - в 11 и 6 соответственно (табл.). Оценка данных изменений производится раздельно по шкалам от 0 до 4: 0 - норма, 1 - изменения сомнительные, 2 - изменения достоверны, но слабо выражены, 3 - умеренные, 4 - выраженные. Счёт эрозий варьирует от 0 до 176, сужений - от 0 до 136. Для сравнения используется набор стандартных рентгенограмм. Этот полуколичественный метод оказался недостаточно формализованным и не нашёл широкого применения в практике. В 1998г. H. K. Genant с соавт. модифицировали метод 1983 г. [14], предложив оценивать эрозии (шкала 0 - 3.5) и сужения суставных щелей (шкала 0 - 4, где 4 анкилоз или вывих) с точностью до половины балла (табл.). Счёт эрозий (максимально 98 баллов) и счёт сужений (максимально 104 балла) нормализуются по процентной шкале. Метод стал более точным, однако исключение из исследования суставов стоп привело к недооценке общей степени поражения суставов, особенно на ранней стадии РА.

В 1985 г., через 14 лет после опубликования первого собственного метода оценки выраженности деструктивных изменений в суставах при РА, Ј. Т. Sharp с соавт. снова вернулись к этой теме, на этот раз поставив перед собой задачу снизить трудоёмкость изучения рентгенограмм и подсчета эрозий не в ущерб точности метода [32, 33]. В основу работы были положены результаты исследования частоты вовлечения различных суставов кистей при РА, осуществлённого на основе американской базы данных ARAMIS (Arthritis, Rheumatism and Aging Medical Information System). С учётом полученных данных и представлений о технической сложности оценки некоторых суставов, исследователями было сформировано 14 альтернативных схем подсчёта. На основании сравнения результатов подсчета по этим схемам и по оригинальному методу Шарпа (1971) была выбрана наиболее удачная комбинация, состоящая из 17 областей для счёта эрозий и 18 областей для счёта сужений суставных щелей, которая при дальнейших испытаниях продемонстрировала высокую корреляцию с оригинальным методом (r = 0.981-0.997). После опубликования в 1985 г. она получила название стандартного метода Шарпа (табл.). Как и в оригинальном методе, эрозии оцениваются по 5-ти балльной, а сужения суставных щелей по 4-х балльной шкале, подвывихи суставов не учитываются. Таким образом, максимальный счёт эрозий составляет 170 баллов, сужений - 144 балла. В настоящее время стандартный метод Шарпа достаточно широко используется в клинических исследованиях, основным его недостатком является отсутствие анализа состояния суставов стоп.

В 1986 г. J. F. Fries с соавт. [цит. по15] разработали ещё одну модификацию оригинального метода Шарпа. Счёт эрозий производится одним из двух способов: простым суммированием всех эрозий в суставе или «взвешенным» подсчётом, когда каждой эрозии присваивается от 1 до 4 баллов в зависимости от её размера по сравнению с эталоном. Эрозии оцениваются в 9 областях (ПяФС, ПМФС, шиловидный отросток локтевой кости в каждой кисти). Счёт сужений суставных щелей осуществляется только в 3 областях (наиболее изменённый ПМФС, наиболее изменённый ПяФС, лучезапястный сустав в каждой кисти). Этот метод не оказался более чувствительным по сравнению с методом Шарпа и не нашёл распространения на практике.

В 1987 г. Ј. J. Кауе с соавт. [цит. по15; 19] соединили методы Sharp и Genant, подсчитывая эрозии и сужения щелей в 21 области кисти (все ПМФС, ПяФС и 11 суставов запястья); суставы дистальных отделов стоп не рассматривались. Эрозии оценивались по шкале 0, 2 — 4, сужения суставных щелей — 0, 2 — 5, аналогично шкале Genant с исключением сомнительных изменений (1 балл). Для сравнения рентгенограмм использовались эталоны, разработанные Н. К. Genant . В упрощенном методе Ј. Ј. Кауе эрозии и сужения суставных щелей (включая подвывихи) оцениваются по общей шкале 0, 2 — 4 (суммарный счёт возможен от 0 до 168 баллов). Для эффективного использования этот количественный метод требует значительного опыта исследователя.

Как было отмечено, основной недостаток метода Шарпа заключался в том, что не учитывалась выраженность деструктивных изменений в суставах дистальных отделов стоп, поэтому в 1989 г. D. van der Heijde соответствующим образом модифицировала стандартный метод Шарпа [18, 20]. Включив в анализ ПлФС и межфаланговые суставы 1-ых пальцев стоп, van der Heijde одновременно исключила из подсчёта эрозий трёхгранную и гороховидную кости, а из подсчёта сужений 3 области (лучелоктевой сустав, полулунно-трёхгранный сустав и межфаланговые суставы 1-ых пальцев кистей). Решение об исключении из анализа нескольких зон van der Heijde обосновывала тем, что эти зоны, как правило, плохо различимы на рентгеновских снимках, что ведёт к повышению степени субъективизма при их оценке. На наш взгляд, это заключение является недостаточно аргументированным, тем не менее метод D. van der Heijde/ Sharp, известный также как модифицированный метод Шарпа, нашел широкое применение в клинической практике, что даёт нам основание остановиться на нём более подробно. Эрозии считаются в 16 суставах каждой кисти и 6 суставах каждой стопы, сужения суставных щелей оцениваются в 15 и 6 областях соответственно (табл.). Эрозиям в кистях присваивается от 0 до 5 баллов: 0 - нет эрозий, 1 - одна отдельная эрозия или вовлечение в деструктивный процесс менее 21% поверхности сустава, 2 - две отдельные эрозии или вовлечение 21 - 40% поверхности сустава, 3 - три отдельных эрозии или вовлечение 41

Таблица.

СУСТАВЫ, РАССМАТРИВАЕМЫЕ РАЗЛИЧНЫМИ МЕТОДАМИ ОЦЕНКИ РЕНТГЕНОЛОГИЧЕСКОГО ПРОГРЕССИРОВАНИЯ РА

Van der Genant,

	Genant, 1983		Sharp, 1985		van der Hejde, 1989		Genant, 1998		Larsen, 1977	
	эрозии	сужения	эрозии	сужения	эрозии	сужения	эрозии	сужения	E = 51	
КОСТЬ	раздельно: шиловид- ный отросток и со сто- роны локтевой кости	лучеза- пястный сустав	+	лучезапястный сустав	+	лучезапястный сустав	+	лучезапястный сустав	как одна область	0
я кость	раздельно: шиловид- ный отросток, со сто- роны лучевой кости и с наружной поверхности		+	лучелоктевой сустав	+		+			
ая кость	+		+		+		+		-	
ая кость			+	полулунно-трёхгран- ный сустав	+					
ая кость			как одна область							
ная кость										
апеция дная кость			как одна область	многогранно- ладъевидный сустав	как одна область	многогранно- ладьевидный сустав				
ая кость				головчато-ладьевид- но-полулунный суст.		головчато-ладьевидный сустав		головчато-ладьевид- но-полулунный суст.		100
ная кость										
стные сус- ы			1-ый	3 - 5	1-ый	3 - 5	1-ый	3 - 5		
нговые сус- 1-5	+	+	+	+	+	+	+	+	+	
овый сустав	+	+	+	+	+		+	+	+	
ные межфа- уставы 2-5	+	+	+	+	+	+	+	+	+	
ежфаланго- авы 2-5									+	
аланговый ав	+	+			+	+			+	
фаланговые вы	+	+			+	+			+	

- 60% поверхности сустава, 4 - четыре эрозии или эрозирование 61 - 80% поверхности сустава, 5 - выраженная деструкция с вовлечением более 80% поверхности сустава (рис. 3). Таким образом, максимальный счёт эрозий в кистях составляет 160 баллов. В суставах стоп при подсчёте эрозий van der Heijde в качестве максимального балла использует 10 (по 5 баллов на каждую поверхность сустава), обосновывая это высокой частотой случаев полного разрушения головок плюсневых костей (5 баллов) при сохранении суставных поверхностей фаланг пальцев стоп. Максимальный счёт эрозий в суставах стоп - 120 баллов. При необходимости сравнения степени деструктивных изменений в кистях и стопах автор рекомендует использовать процентные шкалы. Например, если счёт эрозий в каком-либо суставе равен 2 баллом, то это составляет 40% для сустава кисти (2/5) и 20% для сустава стопы (2/10). Сужение суставных щелей оценивается от 0 до 4 баллов: 0 - нормальная суставная щель, 1 - асимметричное или сомнительное сужение, 2 - сужение менее 50% нормы, 3 - сужение более 50% нормы или подвывих, 4 - костный анкилоз или вывих. Счёт сужений суставных щелей в кистях варьирует от 0 до 120 баллов, в стопах - от 0 до 48 баллов. Максимальный общий счёт ("a total Sharp's score") представляет собой суммирование счёта эрозий и счёта сужений суставных щелей и составляет 448 баллов для одного пациента.

В 1999 г. van der Heijde с соавт. опубликовали упрощенную версию этого метода [17], получившего название SENS (Simple Erosion Narrowing Score). От описанного выше метода он отличается тем, что эрозии и сужения щелей (в тех же 16 суставах кистей и 6 суставах стоп для эрозий, 15 суставах кистей и 6 суставах стоп для сужений) оцениваются по простейшим шкалам – есть (1 балл) / нет (0 баллов), вне зависимости от количества, размера эрозий и степени сужения суставных щелей. Общий счёт эрозий и сужений щелей лежит в диапазоне от 0 до 86 баллов. Метод SENS является существенно менее трудоёмким по сравнению с предыдущими разработками. По данным S. Wassenberg [36], на изучение рентгенограмм по методу van der Heijde/ Sharp требуется в среднем 25 минут, тогда как по методу SENS лишь 7 минут [17]. Как показали статистические исследования у пациентов с длительностью РА менее 5 лет, этот метод по своим результатам сопоставим с модифицированным методом Шарпа. Авторы рекомендуют использовать SENS в больших эпидемиологических исследованиях.

Итак, из рассмотренных выше различных "детальных" методов рентгенологической оценки прогрессирования РА, отличающихся друг от друга, главным образом, количеством изучаемых суставов, в клинической практике используются стандартный метод Шарпа, метод Шарпа в модификации Креля с соавт. и метод van der Heijde/ Sharp. Среди методов, которые относятся к категории "обобщённых", следует выделить три: метод Ларсена в его втором варианте (1977), методы Скотта (1995) и Рау-Херборна (1995), представляющие собой модификации метода Ларсена.

Метод Ларсена, первоначально разработанный для оценки изменений в коленных суставах, состоит в сравнении рентгенограмм кистей и дистальных отделов стоп пациента со стандартными рентгенограммами для каждого оцениваемого сустава, характеризующими возможные при РА изменения. В варианте 1977 г. [цит. по15] автор выделил 6 степеней этих изменений: 0 - норма, 1 - слабовыраженные изменения (припухлость периартикулярных мягких тканей и/или околосуставной ОП), 2 - умеренные изменения (признаки, характерные для 1 степени и /или слабовыраженное сужение межсуставных щелей), 3 - 5 степени - деструктивные изменения по мере их нарастания (рис.4). Оцениваемые суставы приведены в табл., суставы запястья рассматриваются как одно целое с последующим увеличением балла в 5 раз. Максимальный счёт составляет 250 баллов. В соавторстве с К. Dale Ларсен несколько изменил метод [23], исключив из исследования дистальные межфаланговые суставы пальцев рук, и максимальный общий счёт для одного пациента составил 200 баллов. Метод Ларсена-Дейла, являясь более простым в применении по сравнению с методом Шарпа, однако уступает последнему в точности и не позволяет корректно определять темп прогрессирования эрозивного артрита.

В 1995 г. D.L. Scott с соавт. усовершенствовали метод Ларсена [30], пересмотрев определения степеней и разработав новый комплект эталонных снимков, не изменив количества изучаемых суставов. Степени 0 и 5 были сохранены в первоначальной формулировке; степень 1 — ОП и/или припухлость мягких тканей, если они являются основными признаками, или наличие 2 эрозий (кист) размером менее 1 мм в диаметре; степень 2 — 1 и более эрозий, размером превышающих 1 мм; степень 3 — эрозии на обеих поверхностях сустава значительного размера; степень 4 — значительные изменения, подвывих сустава. Усовершенствование метода повысило его чувствительность, которая всё же осталась ниже, чем у метода Шарпа.

В том же 1995 г. R. Rau и G. Herborn [28] предложили другую модификацию метода Ларсена (табл.). Они заменили качественные характеристики 2-5 степеней на количественные, связанные с площадью деструкции сустава: 2 степень — деструкция менее 25%, 3 степень — вовлечение 25 — 50 %, 4 степень — вовлечение 50 — 75%, 5 степень — эрозирование более 75% (суммарный счёт варьирует от 0 до 160). Для сравнения используются стандартные эталонные снимки. Внесённые изменения упростили использование метода, позволили получать более достоверные результаты, однако чувствитель-

ность метода всё же продолжает уступать методу Шарпа.

В настоящее время для оценки выраженности деструкции в суставах и учёта прогрессирования рентгенологических изменений у пациентов с PA EULAR рекомендует использовать модифицированный метод Шарпа (оценку может проводить один специалист). Метод Ларсена — Дейла применяется, если изменения оцениваются несколькими исследователями путем использования средних значений в качестве результата [4, 16].

Какое значение для врача-клинициста имеет скорость рентгенологической прогрессии у конкретного пациента? Выраженность деструкции в мелких суставах кистей и стоп считается наиболее объективным маркёром прогрессирования РА и/или недостаточной эффективности терапии, а появление эрозий в мелких суставах конечностей в первый год заболевания является предиктором неблагоприятного варианта развития болезни [13]. Связь между скоростью нарастания деструкции и выраженностью и стойкостью воспалительной активности РА показана во многих исследованиях [2, 13, 24, 37]. По данным Н. В. Чичасовой [13], у всех пациентов с постоянной активностью РА отмечалось более выраженное (по сравнению с вариантом течения РА с исходом в стадию ремиссии и рецидивирующим вариантом РА) прогрессирование деструктивного артрита, темп которого увеличивался с повышением степени активности. Автор отметила также достоверное нарастание коэффициента прогрессирования в группе больных с крайне неблагоприятным (тяжёлым) вариантом РА. В то же время Д. Е. Каратеев [3] выделяет 4 варианта течения РА: с низкой активностью и медленным прогрессированием деструктивных изменений в суставах (16% больных), с изначально высокой активностью и медленным прогрессированием (27%), с умеренной активностью и быстрым прогрессированием (34%), с высокой активностью и быстрым прогрессированием (23%). Прогрессирование считалось быстрым, если эрозии в суставах были обнаружены в течение первых 2-х лет от начала заболевания, либо III стадия РА сформировалась в течение пер-

ЛИТЕРАТУРА

- Беневоленская Л. И., Насонов Е. Л. Патогенез остеопороза. В кн.: Рук-во. по остеопорозу. М., Бином, 2003, 80-85.
- Бродецкая К. А. Влияние лефлуномида на активность и прогрессирование ревматоидного артрита. Дисс. к.м.н., М., 2004, 128-130, 141-150
- Каратеев Д. Е. Эволюция и прогноз ревматоидного артрита при многолетнем наблюдении. Дисс. д.м.н., М., 2003
- Клинические рекомендации. Ревматология. Под ред. Е. Л. Насонова. М., ГЭОТАР-Медиа,

вых 7 лет болезни; при отсутствии этих признаков прогрессирование расценивалось как медленное.

Необходимо отметить, что у конкретного больного динамика рентгенологических изменений представляет собой не линейный процесс, являющийся обычно усреднённым результатом группового наблюдения, а включает в себя эпизоды замедления и ускорения, связанные в том числе и с активностью заболевания, что необходимо учитывать при формировании групп пациентов в клинических исследованиях [22].

Безусловно, не только воспаление при РА, одним из главных медиаторов которого являются простагландины, влияет на выраженность и темп прогрессирования эрозивного артрита (что объясняет отсутствие эффекта нестероидных противовоспалительных препаратов на деструктивный процесс) [7]. Разрушение суставного хряща и субхондральной кости, как и само ревматоидное воспаление, являются цитокин-зависимым процессом, где важную роль играют такие "провоспалительные" цитокины, как фактор некроза опухоли альфа (ФНО-а) и интерлейкин 1 (ИЛ-1). В сравнительных исследованиях показано, что моноклональные антитела к ФНО-а более значимо уменьшают рентгенологическую прогрессию по сравнению с метотрексатом, несмотря на то, что активность РА снижается при терапии обоими препаратами [21]. В последнее время получены данные и об участии в патогенезе эрозивного артрита новых членов семейств лигандов и рецепторов ФНО, таких как RANKL (receptor activator of NF-kappa B ligand, лиганд рецептораактиватора ядерного фактора (B), RANK (receptor activator NF-(В), рецептор-активатор NF-(В), ОРG (остеопротегерин, "ложный" рецептор RANKL), влияющих на формирование, дифференцировку и активность остеокластов [1, 27, 29]. Результаты новейших исследований, углубляющие представления о механизмах развития деструктивного артрита, должны привести к синтезу и применению на практике новых "биологических" препаратов, в т.ч. моноклональных антител к RANKL. Анализ их эффективности будет осуществляться и с помощью рентгенологических методов оценки прогрессирования РА.

2005, 25-72

- Крель А. А., Болотин Е. В., Каневская М. З. и др. Объективизация проявлений ревматоидного артрита, характеризующих его эволюцию. Вопр. ревматизма, 1981, 3, 11-15.
- 6. Липски П.Е. Ревматоидный артрит. В кн.: Внутренние болезни. Ред. Харрисон Т.Р. М., Медицина, 1997, кн. 7, 419-432.
- Насонов Е. Л. Новые направления в лечении ревматоидного артрита. Фарматека, 2003, 5, 10-12.
- 8. Насонова В. А., Астапенко М. Г. Клиническая

- ревматология. М., Медицина, 1989, 274-277.
- Насонова В.А, Бунчук Н.В. Ревматоидный артрит. В кн.: Ревматические болезни. М., Медицина, 1997, 257-295
- Сигидин Я.А., Гусева Н.Г., Иванова М.М. Ревматоидный артрит. В кн.: Диффузные болезни соединительной ткани. М., Медицина, 2004, 129-133.
- Смирнов А. В. Поражения суставов кисти. Дифференциальная рентгенологическая диагностика поражения суставов кисти при ревматических заболеваниях. Consilium medicum, 2005, 7, 2, 76-83
- Смирнов А. В. Рентгенологическая диагностика изменений в костях и суставах стоп при ревматических заболеваниях. Consilium medicum, 2005, 7, 8, 608-613.
- Чичасова Н. В. Ревматоидный артрит: клинико-лабораторные и клинико-морфологические сопоставления, прогноз. Дисс. д.м.н., М., 2004, 99-110, 114-117, 126-129, 267-269
- Arbillaga H. O., Montgomery G. P., Cabarrus L. P. Internet hand x-rays: A comparison of joint space narrowing and erosion scores (Sharp/Genant) of plain versus digitized x-rays in rheumatoid arthritis patients. BMC Musculoskelet. Dis., 2002, 3, 13, www.biomedcentral.com/1471-2474/3/13
- Boini S., Guillemin F. Radiographic scoring methods as outcome measures in rheumatoid arthritis: properties and advantages. Ann. Rheum. Dis., 2001, 60, 817-827
- EULAR handbook of clinical assessment in rheumatoid arthritis.-Van Zuiden, 2001
- van der Heijde D., Dankert T., Nieman F. et al. Reliability and sensitivity to change of a simplification of the Sharp/van der Heijde radiological assessment in rheumatoid arthritis. Rheumatology, 1999, 38, 941-947.
- van der Heijde D.M.F.M. How to read radiographs according to the Sharp/van der Heijde method. J. Rheumatol., 1999, 26, 3, 743-745.
- 19. van der Heijde D.M.F.M. Radiographic imaging
 the «gold standard» for assessment of disease progression in RA. Rheumatology, 2000, 39, 9-16.
- van der Heijde D., Sharp J., Wassenberg S. Psoriatic arthritis imaging: a review of scoring methods. Ann. Rheum.Dis., 2005, 64, 61-64
- Klareskog L., van der Heijde D., Burmester G. et al.
 Therapeutic effect of the combination of etanercept and methotrexate compared with each treatment alone in patients with rheumatoid arthritis: double-blind randomized controlled trial. Lancet, 2004, 363, 675-681.
- Landewe R., van der Heijde D. Radiographic progression in rheumatoid arthritis. Clin. Exp. Rheumatol. on line, 2005, 23, suppl.39, S63-S68
- 23. Larsen A., Dale K., Eek M. Radiographic evaluation

- of rheumatoid arthritis and related conditions by reference films. Acta Radiol. Diagn., 1977, 18, 481-491
- van Leeuwen M.A., van Rijswijk M.H., Sluiter W.J. et al. Individual relationship between progression of radiological damage and the acute phase response in early rheumatoid arthritis. Towards development of a decision support system. J.Rheumatol., 1997, 24, 20-27
- Loreck D. Runtgendiagnostik der entzъndlichen rheumatischen Gelenkerkrankungen. Z. дгztl. Fortbild. 1987, 81, 417-427
- Ory P.A. Interpreting radiographic data in RA. Ann. Rheum.Dis., 2003, 62, 597-604.
- Pettit A.R., Walsh N.C., Manning C. et al. RANKL protein is expressed at the pannus-bone interface at sites of articular bone erosion in rheumatoid arthritis. Rheumatol., 2006, http://rheumatology. oxfordjournals.org/cgi/content/abstract/ke1045v1
- Rau R., Herborn G. A modified version of Larsen's scoring method to assess radiologic changes in rheumatoid arthritis. J.Rheumatol., 1995, 22, 1976-1982
- Romas E. Bone loss in inflammatory arthritis: mechanisms and therapeutic approaches with bisphosphonates. Best. Pract. Res. Clin. Rheumatol., 2005, 19 (6), 1065-1079.
- Scott D. L., Houssien D. A., Laasonen M. et al. Proposed modification to Larsen's scoring methods for hand and wrist radiographs. Br. J.Rheumatol., 1995, 34 (1), 56
- Sharp J. T.. Scoring Radiographs in Rheumatoid Arthritis: application to daily practice and clinical trials, www.medscape.com/viewarticle/416517_2
- Sharp J. T., Wolf F., Mitchell D. M. et al. The progression of erosion and joint space narrowing scores in rheumatoid arthritis during the first twenty-five years 0f disease. Arthr. Rheum., 1991, 34, 660-668
- Sharp J.T., Young D.Y., Bluhm G.B. et al. How many joints in the hand and wrist should be included in a score of radiologic abnormalities used to assess RA? Arthr. Rheum., 1985, 28 (12), 1326-1329.
- Steinbrocker O., Traeger G.H., Batterman R.C. Therapeutic criteria in rheumatoid arthritis. J. Am. Med. Assoc., 1949, 140, 659-662.
- 35. Treutler H., Hermann K., Kraft H. et al. Empfehlungen für ein runtgendiagnostisches Grundprogramm bei Erstdiagnostik der progressiv chronischen Polyarthritis (pcP). Dt. Gesundh.-Wesen, 1976, 31 (48), 2268.
- Wassenberg S., Herborn G., Larsen A. et al. Reliability, precision and time expense of four different radiographic scoring methods. Arthr. Rheum., 1998, suppl. 41, S104
- Welsing P.M., Landeve R.B., van Riel P.L. et al. The relationship between disease activity and radiologic progression in patients with rheumatoid arthritis: a longitudinal analysis. Arthr. Rheum., 2004, 50, 2082-2093