Preview

Rheumatology Science and Practice

Advanced search

Coronavirus disease 2019 (COVID-19) and immune-mediated inflammatory rheumatic diseases: at the crossroads of thromboinflammation and autoimmunity

https://doi.org/10.47360/1995-4484-2020-353-367

Abstract

Inflammation and coagulation are key basic mechanism of protection against all potentially pathogenic mechanical and biological factors targeting human organism from inner and outer environment. On the other hand, uncontrolled inflammation results in hypercoagulation, inhibition of anticoagulation and alteration of mechanisms responsible for resolution of inflammation, while production of “procoagulant” mediators (thrombin, tissue factor and others), activation of platelets and of vascular endothelial cells maintains inflammation. All factors taken together serve as the basis for a pathological process called thromboinflammation or immunothrombosis. Currently thromboinflammation is considered in the broad sense as a universal pathogenetic mechanism of numerous widespread acute and chronic conditions, including immune-mediated (autoimmune) inflammatory rheumatic diseases, oftentimes complicated by severe irreversible damage to vital organs. Thromboinflammation gained specific attention during СОVID-19 (coronavirus disease 2019) pandemic, caused by SARS-Cov-2 (severe acute respiratory syndrome Coronavirus-2). COVID-19 is considered currently as systemic thromboinflammation syndrome, manifesting via generalized thrombosis of arterial and venous macro- and microvasculature, termed as COVID-19-coagulopathy. The paper discusses common pathogenetic coagulopathy mechanisms in COVID-19 and immune-mediated (autoimmune) inflammatory rheumatic diseases (IMRDs), associated with overproduction of antiphospholipid antibodies, activation of the complement system, and dis-regulated synthesis of proinflammatory cytokines, etc. Delineating the autoimmune subtype of thromboinflammation, identification of genetic (i.e., genes encoding the complement system and others) and molecular-biologic biomarkers associated with higher occurrence of COVID-19-coagulopathy are the most relevant undertakings for the current practice. Gaining insights into mechanisms of thromboinflammation and converting them into potential pharmacotherapies of IMDs would facilitate and accelerate the drafting of effective therapeutic strategies for COVID-19. 

About the Authors

E. L. Nasonov
VA Nasonova Research Institute of Rheumatology; I.M. Sechenov First Moscow State Medical University, MOH (Sechenov University)
Russian Federation

Evgeny Nasonov

34А, Kashirskoye shose, Moscow 115522

8, Trubetskaya St., Build 2 Moscow 119991



T. V. Beketova
VA Nasonova Research Institute of Rheumatology
Russian Federation
34А, Kashirskoye shose, Moscow 115522


T. M. Reshetnyak
VA Nasonova Research Institute of Rheumatology; Russian Medical Academy of Continuing Prefessional Education, Ministry of Health of Russia
Russian Federation

34А, Kashirskoye shose, Moscow 115522 

2/1 Barrikadnaya St., Build 1, Moscow 125993



A. M. Lila
VA Nasonova Research Institute of Rheumatology
Russian Federation

34А, Kashirskoye shose, Moscow 115522 

2/1 Barrikadnaya St., Build 1, Moscow 125993



L. P. Ananieva
VA Nasonova Research Institute of Rheumatology
Russian Federation
34А, Kashirskoye shose, Moscow 115522


T. A. Lisitsyna
VA Nasonova Research Institute of Rheumatology
Russian Federation
34А, Kashirskoye shose, Moscow 115522


S. K. Soloviev
VA Nasonova Research Institute of Rheumatology
Russian Federation
34А, Kashirskoye shose, Moscow 115522


References

1. Bertin D, Brodovitch A, Beziane A, et al. Anti-cardiolipin IgG autoantibodies are an independent risk factor of COVID-19 severity [published online ahead of print, 2020 Jun 21]. Arthritis Rheumatol. 2020;10.1002/art.41409. doi:10.1002/art.41409

2. Song WC, FitzGerald GA. COVID-19, microangiopathy, hemostatic activation, and complement. J Clin Invest. 2020;130(8):3950-3953. doi:10.1172/JCI140183

3. Goeijenbier M, van Wissen M, van de Weg C, Jong E, Gerdes VE, et al. Viral infections and mechanisms of thrombosis and bleeding. J Med Virol. 2012; 84(10):1680-96. doi: 10.1002/jmv.23354

4. Previtali G, Seghezzi M, Moioli V, et al. The pathogenesis of thromboembolic disease in COVID-19 patients: could be catastrophic antiphospholipid syndrom? medRxiv 2020.04.30.20086397. doi: 10.1101/2020.04.30.20086397

5. Risitano AM, Mastellos DC, Huber-Lang M, et al. Complement as a target in COVID-19? [published correction appears in Nat Rev Immunol. 2020 Jul;20(7):448]. Nat Rev Immunol. 2020;20(6):343-344. doi:10.1038/s41577-020-0320-7

6. Jackson SP, Darbousset R, Schoenwaelder SM. Thromboinflammation: challenges of therapeutically targeting coagulation and other host defense mechanisms. Blood. 2019; 133(9):906-918. doi: 10.1182/blood-2018-11-882993 3. Karbach S, Lagrange J, Wenzel P. Thromboinflammation and Vascular Dysfunction. Hamostaseologie. 2019; 39(2):180-187. doi: 10.1055/s-0038-1676130

7. Connell NT, Battinelli EM, Connors JM. Coagulopathy of COVID-19 and antiphospholipid antibodies [published online ahead of print, 2020 May 7]. J Thromb Haemost. 2020; doi:10.1111/jth.14893

8. Palankar R, Greinacher A. Challenging the concept of immunothrombosis. Blood. 2019; 133(6):508-509. doi: 10.1182/blood2018-11-886267

9. Baines AC, Brodsky RA. Complementopathies. Blood Rev. 2017; 31(4): 213–223. doi: 10.1016/j.blre.2017.02.003

10. Devreese KMJ, Linskens EA, Benoit D, Peperstraete H. Antiphospholipid antibodies in patients with COVID-19: A relevant observation?. J Thromb Haemost. 2020;10.1111/ jth.14994. doi:10.1111/jth.14994

11. Frantzeskaki F, Armaganidis A, Orfanos SE. Immunothrombosis in Acute Respiratory Distress Syndrome: Cross Talks between Inflammation and Coagulation. Respiration. 2017; 93(3):212-225. doi: 10.1159/000453002

12. Wong EKS, Kavanagh D. Diseases of complement dysregulation—an overview. Semin Immunopathol. 2018; 40(1): 49–64. doi: 10.1007/s00281-017-0663-8

13. Zhang Y, Cao W, Jiang W, et al. Profile of natural anticoagulant, coagulant factor and anti-phospholipid antibody in critically ill COVID-19 patients. J Thromb Thrombolysis. 2020; 1-7. doi:10.1007/s11239-020-02182-9

14. Gao T, Hu M, Zhang X, et al. Highly pathogenic coronavirus N protein aggravates lung injury by MASP-2-mediated complement over-activation. medRxiv. 2020.03.29.20041962. doi: 10.1101/2020.03.29.20041962

15. Becatti M, Emmi G, Bettiol A, Silvestri E, Di Scala G, et al. Behçet’s syndrome as a tool to dissect the mechanisms of thrombo-inflammation: clinical and pathogenetic aspects. Clin Exp Immunol. 2019; 195(3): 322–333. doi: 10.1111/cei.13243

16. Amezcua-Guerra LM, Rojas-Velasco G, Brianza-Padilla M, et al. Presence of antiphospholipid antibodies in COVID-19: case series study. Ann Rheum Dis. 2020; doi:10.1136/annrheumdis-2020-218100

17. Magro C, Mulvey JJ, Berlin D, et al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: A report of five cases. Transl Res. 2020;220:1-13. doi:10.1016/j.trsl.2020.04.007

18. Emmi G, Becatti M, Bettiol A, Hatemi G, Prisco D, Fiorillo C. Behçet’s Syndrome as a Model of Thrombo-Inflammation: The Role of Neutrophils. Front Immunol. 2019; 10:1085. doi:10.3389/fimmu.2019.01085

19. Pineton de Chambrun M, Frere C, Miyara M, et al. High frequency of antiphospholipid antibodies in critically ill COVID19 patients: a link with hypercoagulability? J Intern Med. 2020;10.1111/joim.13126. doi:10.1111/joim.13126

20. Giani M, Seminati D, Lucchini A, Foti G, Pagni F. Exuberant Plasmocytosis in Bronchoalveolar Lavage Specimen of the First Patient Requiring Extracorporeal Membrane Oxygenation for SARS-CoV-2 in Europe. J Thorac Oncol. 2020;15(5):e65-e66. doi:10.1016/j.jtho.2020.03.008

21. Tamaki H, Khasnis A. Venous thromboembolism in systemic autoimmune diseases: A narrative review with emphasis on primary systemic vasculitides. Vasc Med. 2015; 20(4):369-76. doi: 10.1177/1358863X15573838

22. Zuo Yu, Estes SK, Gandhi AA, et al. Prothrombotic antiphospholipid antibodies in COVID-19. medRxiv 2020.06.15.20131607; doi: https://doi.org/10.1101/2020.06.15.20131607

23. Emmi G, Silvestri E, Squatrito D, et al. Thrombosis in vasculitis: from pathogenesis to treatment. Thromb J. 2015;13:15. Published 2015 Apr 16. doi:10.1186/s12959-015-0047-z

24. Oku K, Nakamura H, Kono M, et al. Complement and thrombosis in the antiphospholipid syndrome. Autoimmun Rev. 2016; 15(10):1001-1004. doi:10.1016/j.autrev.2016.07.020

25. Mendoza-Pinto C, García-Carrasco M, Cervera R. Role of Infectious Diseases in the Antiphospholipid Syndrome (Including Its Catastrophic Variant). Curr Rheumatol Rep. 2018;20(10):62. doi:10.1007/s11926-018-0773-x

26. Blom AM. The complement system as a potential therapeutic target in rheumatic disease. Nat Rev Rheumatol. 2017; 13(9):538- 547. doi: 10.1038/nrrheum.2017.125

27. Claudel SE, Tucker BM, Kleven DT, Pirkle JL Jr, Murea M. Narrative Review of Hypercoagulability in Small-Vessel Vasculitis. Kidney Int Rep. 2020;5(5):586-599. Published 2020 Jan 13. doi:10.1016/j.ekir.2019.12.018

28. Abdel-Wahab N, Talathi S, Lopez-Olivo MA, Suarez-Almazor ME. Risk of developing antiphospholipid antibodies following viral infection: a systematic review and meta-analysis. Lupus. 2018;27(4):572-583. doi:10.1177/0961203317731532

29. Kotzen ES, Roy S, Jain K. Antiphospholipid Syndrome Nephropathy and Other Thrombotic Microangiopathies Among Patients With Systemic Lupus Erythematosus. Adv Chronic Kidney Dis. 2019; 26(5):376-386. doi: 10.1053/j.ackd.2019.08.012

30. Nasonov EL, Reshetnyak TM, Alekberova ZS. Thrombotic microangiopathy in rheumatology: the relationship of thrombosis and autoimmunity. Terapevticheskiy Arkhiv= Therapeutic archive. 2020;92(5):4-14]. (In Russ.). doi: 10.26442/00403660.2020.05.000697

31. Pignatelli P, Ettorre E, Menichelli D, et al. Seronegative antiphospholipid syndrome: refining the value of «non-criteria» antibodies for diagnosis and clinical management. Haematologica. 2020;105(3):562-572. doi:10.3324/haematol.2019.221945

32. Насонов ЕЛ. Антифосфолипидный синдром. Москва: Литтерра; 2004. 424 с. [Nasonov EL. Antifosfolipidnyi sindrom (Antiphospholipid syndrome). Moscow: Litterra; 2004. 424 p. (In Russ.)]

33. Masias C, Vasu S, Cataland SR. None of the above: thrombotic microangiopathy beyond TTP and HUS. Blood. 2017; 129(21):2857-2863. doi: 10.1182/blood-2016-11-743104

34. Tsivgoulis G, Palaiodimou L, Katsanos AH, et al. Neurological manifestations and implications of COVID-19 pandemic. Ther Adv Neurol Disord. 2020;13. doi:10.1177/1756286420932036

35. Libby L, Loscalzo J, Ridker P, еt al. Inflammation, Immunity, and Infection in Atherothrombosis: JACC Review Topic of the Week. J Am Coll Cardiol. 2018; 72(17): 2071–2081. doi: 10.1016/j.jacc.2018.08.1043

36. Garcia D, Erkan D. Diagnosis and Management of the Antiphospholipid Syndrome. N Engl J Med. 2018; 378(21):2010- 2021. doi: 10.1056/NEJMra1705454.

37. Lai CC, Ko WC, Lee PI, Jean SS, Hsueh PR. Extra-respiratory manifestations of COVID-19. Int J Antimicrob Agents. 2020;56(2):106024. doi:10.1016/j.ijantimicag.2020.106024

38. Mitchell WB. Thromboinflammation in COVID-19 acute lung injury. Paediatric Respiratory Reviews (IF 2.615): 2020-06-11.doi: 10.1016/j.prrv.2020.06.004

39. Manalo IF, Smith MK, Cheeley J, Jacobs R. A dermatologic manifestation of COVID-19: Transient livedo reticularis. J Am Acad Dermatol. 2020;83(2):700. doi:10.1016/j.jaad.2020.04.018

40. Meroni PL, Borghi MO, Raschi E, Tedesco F. Pathogenesis of antiphospholipid syndrome: understanding the antibodies. Nat Rev Rheumatol. 2011; 7(6):330-339. doi:10.1038/nrrheum.2011.52

41. Ehrenfeld M, Tincani A, Andreoli L, et al. Covid-19 and autoimmunity. Autoimmun Rev. 2020 Jun 11: 102597. doi: 10.1016/j.autrev.2020.102597

42. Llamas-Velasco M, Muñoz-Hernández P, Lázaro-González J, et al. Thrombotic occlusive vasculopathy in a skin biopsy from a livedoid lesion of a patient with COVID-19 [published online ahead of print, 2020 May 14]. Br J Dermatol. 2020; doi:10.1111/bjd.19222

43. Nasonov EL. Coronavirus disease 2019 (COVID-19): a rheumatologist`s thoughts. Nauchno-Prakticheskaya Revmatologiya= Rheumatology Science and Practice. 2020; 58(2):123-132. (In Russ.).doi: 10.14412/1995-4484-2020-123-132

44. Espinosa G, Rodríguez-Pintó I, Gomez-Puerta JA, Pons-Estel G, Cervera R; Catastrophic Antiphospholipid Syndrome (CAPS) Registry Project Group (European Forum on Antiphospholipid Antibodies). Relapsing catastrophic antiphospholipid syndrome potential role of microangiopathic hemolytic anemia in disease relapses. Semin Arthritis Rheum. 2013;42(4):417-23. doi: 10.1016/j.semarthrit.2012.05.005

45. Liu T, Gu J, Wan L, et al. “Non-criteria” antiphospholipid antibodies add value to antiphospholipid syndrome diagnoses in a large Chinese cohort. Arthritis Res Ther. 2020;22(1):33. doi:10.1186/s13075-020-2131-4

46. Henry BM, Vikse J, Benoit S, Favaloro EJ, Lippi G. Hyperinflammation and derangement of renin-angiotensin-aldosterone system in COVID-19: A novel hypothesis for clinically suspected hypercoagulopathy and microvascular immunothrombosis. Clin Chim Acta. 2020; 507: 167–173. doi: 10.1016/j.cca.2020.04.027

47. Cervera R, Rodríguez-Pintó I, Espinosa G. The diagnosis and clinical management of the catastrophic antiphospholipid syndrome: A comprehensive review. J Autoimmun. 2018;92:1-11. doi: 10.1016/j.jaut.2018.05.007

48. Mekinian A, Bourrienne MC, Carbillon L, et al. Nonconventional antiphospholipid antibodies in patients with clinical obstetrical APS: Prevalence and treatment efficacy in pregnancies. Semin Arthritis Rheum.2016;46(2):232–237. doi: 10.1016/j.semarthrit.2016.05.006

49. Chaturvedi S, Braunstein EM, Yuan X, et al. Complement activity and complement regulatory gene mutations are associated with thrombosis in APS and CAPS. Blood. 2019;135(4):239-251. doi: 10.1182/blood.2019003863

50. Connors JM, Levy JH. Thromboinflammation and the hypercoagulability of COVID-19. J Thromb Haemost. 2020;18(7):1559- 1561. doi:10.1111/jth.14849

51. Oku K, Amengual O, Atsumi T. Antiphospholipid scoring: significance in diagnosis and prognosis. Lupus.2014; 23(12):1269–1272. doi: 10.1177/0961203314561284

52. Zhang Y, Xiao M, Zhang S, et al. Coagulopathy and Antiphospholipid Antibodies in Patients with Covid-19. N Engl J Med. 2020;382(17):e38. doi:10.1056/NEJMc2007575

53. Du F, Liu B, Zhang S. COVID-19: the role of excessive cytokine release and potential ACE2 down-regulation in promoting hypercoagulable state associated with severe illness [published online ahead of print, 2020 Jul 16]. J Thromb Thrombolysis. 2020;1-17. doi:10.1007/s11239-020-02224-2

54. Schouwers SME, Delanghe JR, Devreese KMJ. Lupus Anticoagulant (LAC) Testing in Patients With Inflammatory Status: Does C-reactive Protein Interfere With LAC Test Results? Thromb Res 2010;125(1):102-4. doi: 10.1016/j.thromres.2009.09.001

55. McGonagle D, O’Donnell JS, Sharif K, Emery P, Bridgewood C. Immune mechanisms of pulmonary intravascular coagulopathy in COVID-19 pneumonia. Lancet Rheumatol. 2020 May 7 doi: 10.1016/S2665-9913(20)30121-1

56. Hossri S, Shadi M, Hamarsha Z, Schneider R, El-Sayegh D. Clinically significant anticardiolipin antibodies associated with COVID-19 [published online ahead of print, 2020 May 29]. J Crit Care. 2020;59:32-34. doi:10.1016/j.jcrc.2020.05.017

57. Barnes BJ, Adrover JM, Baxter-Stoltzfus A, et al. Targeting potential drivers of COVID-19: Neutrophil extracellular traps. J Exp Med. 2020; 217(6):e20200652. doi: 10.1084/jem.20200652

58. Sung J, Anjum S. Coronavirus Disease 2019 (COVID-19) Infection Associated With Antiphospholipid Antibodies and Four-Extremity Deep Vein thrombosis in a Previously Healthy Female. Cureus. 2020;12(6):e8408. Published 2020 Jun 2. doi:10.7759/cureus.8408

59. Merrill JT, Erkan D, Winakur J, James JA. Emerging evidence of a COVID-19 thrombotic syndrome has treatment implications. Nat Rev Rheumatol. 2020;1-9. doi:10.1038/s41584-020-0474-5

60. Bravo-Barrera J. Kourilovitch M. Galarza-Maldonado C. Neutrophil Extracellular Traps, Antiphospholipid Antibodies and Treatment. Antibodies (Basel). 2017; 6: 4. doi: 10.3390/antib6010004

61. Ciceri F, Beretta L, Scandroglio AM, et al. Microvascular COVID-19 lung vessels obstructive thromboinflammatory syndrome (MicroCLOTS): an atypical acute respiratory distress syndrome working hypothesis. Crit Care Resusc. 2020; 22:95–97

62. Sieiro Santos C, Nogal Arias C, Moriano Morales C, Ballesteros Pomar M, Diez Alvarez E, Perez Sandoval T. Antiphospholipid antibodies in patient with acute lower member ischemia and pulmonary thromboembolism as a result of infection by SARSCoV2. Clin Rheumatol. 2020;39(7):2105-2106. doi:10.1007/s10067-020-05194-1

63. Zuo Y, Yalavarthi S, Shi H, et al. Neutrophil extracellular traps in COVID-19. JCI Insight. 2020;5(11):e138999. Published 2020 Jun 4. doi:10.1172/jci.insight.138999

64. Beyrouti R, Adams ME, Benjamin L, et al. Characteristics of ischaemic stroke associated with COVID-19. J Neurol Neurosurg Psychiatry. 2020;91(8):889-891. doi:10.1136/jnnp-2020-323586

65. Iba T, Levy JH, Levi M, Connors JM, Thachil J. Coagulopathy of Coronavirus Disease 2019. Crit Care Med. 2020 May 26. doi: 10.1097/CCM.0000000000004458

66. Zuo Y, Zuo M, Yalavarthi S, et al. Neutrophil extracellular traps and thrombosis in COVID-19. medRxiv 2020.04. doi: 10.1101/2020.04.30.20086736

67. Becker RC. COVID-19 update: Covid-19-associated coagulopathy. J Thromb Thrombolysis. 2020 May 15: 1–14. doi: 10.1007/s11239-020-02134-.

68. Escher R, Breakey N, Lämmle B. Severe COVID-19 infection associated with endothelial activation. Thromb Res. 2020;190:62. doi:10.1016/j.thromres.2020.04.014

69. Yalavarthi S, Gould TJ, Rao AN, et al. Release of neutrophil extracellular traps by neutrophils stimulated with antiphospholipid antibodies: a newly identified mechanism of thrombosis in the antiphospholipid syndrome. Arthritis Rheumatol. 2015; 67(11):2990-3003. doi:10.1002/art.39247

70. Xiao M, Zhang Y, Zhang S, et al. Brief Report: Anti-phospholipid antibodies in critically ill patients with Coronavirus Disease 2019 (COVID-19). Arthritis Rheumatol. 2020; doi:10.1002/art.41425

71. Joly RS, Siguret V, Veyradier A. Understanding pathophysiology of hemostasis disorders in critically ill patients with COVID-19. Intensive Care Med. 2020 May 15 : 1–4. doi: 10.1007/s00134-020-06088-1

72. Meng H, Yalavarthi S, Kanthi Y, et al. In Vivo Role of Neutrophil Extracellular Traps in Antiphospholipid Antibody-Mediated Venous Thrombosis. Arthritis Rheumatol. 2017;69(3):655-667. doi:10.1002/art.39938

73. Harzallah I, Debliquis A, Drénou B. Lupus anticoagulant is frequent in patients with Covid-19. J Thromb Haemost. 2020;18(8):2064-2065. doi:10.1111/jth.14867

74. Tian W, Jiang W, Yao J, et al. Predictors of mortality in hospitalized COVID-19 patients: A systematic review and meta-analysis. J Med Virol. 2020 May 22:10.1002/jmv.26050. doi: 10.1002/jmv.26050

75. Vojdani A, Kharrazian D. Potential antigenic cross-reactivity between SARS-CoV-2 and human tissue with a possible link to an increase in autoimmune diseases. Clin Immunol. 2020;217:108480. doi:10.1016/j.clim.2020.108480

76. Bertin D, Brodovitch A, Beziane A, et al. Anti-cardiolipin IgG autoantibodies are an independent risk factor of COVID-19 severity [published online ahead of print, 2020 Jun 21]. Arthritis Rheumatol. 2020;10.1002/art.41409. doi:10.1002/art.41409

77. Lippi G, Plebani M, Henry BM. Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A meta-analysis. Clin Chim Acta. 2020;506:145-148. doi: 10.1016/j.cca.2020.03.022

78. Smatti MK, Cyprian FS, Nasrallah GK, Al Thani AA, Almishal RO, Yassine HM. Viruses and Autoimmunity: A Review on the Potential Interaction and Molecular Mechanisms. Viruses. 2019; 11(8):762. doi:10.3390/v11080762

79. Klok FA, Kruip MJHA, van der Meer NJM, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res. 2020; 191: 145–147.doi: 10.1016/j.thromres.2020.04.013

80. Previtali G, Seghezzi M, Moioli V, et al. The pathogenesis of thromboembolic disease in COVID-19 patients: could be catastrophic antiphospholipid syndrom? medRxiv 2020.04.30.20086397. doi: 10.1101/2020.04.30.20086397

81. Zheng M, Gao Y, Wang G, et al. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell Mol Immunol. 2020; 17(5):533-5. doi: 10.1038/s41423-020-0402-2

82. Connell NT, Battinelli EM, Connors JM. Coagulopathy of COVID-19 and antiphospholipid antibodies [published online ahead of print, 2020 May 7]. J Thromb Haemost. 2020; doi:10.1111/jth.14893

83. Tang N, Li D, Wang X, et al. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost 2020; 18:844–847. doi: 10.1111/jth.14768

84. Zheng HY, Zhang M, Yang CX, et al. Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients. Cell Mol Immunol. 2020;17(5):541-543. doi: 10.1038/s41423-020-0401-3

85. Devreese KMJ, Linskens EA, Benoit D, Peperstraete H. Antiphospholipid antibodies in patients with COVID-19: A relevant observation?. J Thromb Haemost. 2020;10.1111/ jth.14994. doi:10.1111/jth.14994

86. Han H, Yang L, Liu R, et al. Prominent changes in blood coagulation of patients with SARS-CoV-2 infection. Clin Chem Lab Med. 2020;58(7):1116-1120. doi:10.1515/cclm-2020-0188

87. Pender MP. CD8+ T-Cell Deficiency, Epstein-Barr Virus Infection, Vitamin D Deficiency, and Steps to Autoimmunity: A Unifying Hypothesis. Autoimmune Dis. 2012: 189096. doi: 10.1155/2012/189096

88. Ackermann M, Verleden SE, Kuehnel M, et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid19. N Engl J Med. 2020;383(2):120-128. doi:10.1056/NEJMoa2015432

89. Zhang Y, Cao W, Jiang W, et al. Profile of natural anticoagulant, coagulant factor and anti-phospholipid antibody in critically ill COVID-19 patients. J Thromb Thrombolysis. 2020; 1-7. doi:10.1007/s11239-020-02182-9

90. Liu M, Gao Y, Zhang Y, Shi S, Chen Y, Tian J. The association between severe or dead COVID-19 and autoimmune diseases: A systematic review and meta-analysis. J Infect. 2020;81(3):e93- e95. doi:10.1016/j.jinf.2020.05.065

91. Teuwen LA, Geldhof V, Pasut A, Carmeliet P. COVID-19: the vasculature unleashed [published correction appears in Nat Rev Immunol. 2020 Jun 4]. Nat Rev Immunol. 2020; 20(7):389-391. doi:10.1038/s41577-020-0343-0

92. Amezcua-Guerra LM, Rojas-Velasco G, Brianza-Padilla M, et al. Presence of antiphospholipid antibodies in COVID-19: case series study. Ann Rheum Dis. 2020; doi:10.1136/annrheumdis-2020-218100

93. Wei YY, Wang RR, Zhang DW, et al. Risk factors for severe COVID-19: Evidence from 167 hospitalized patients in Anhui, China. J Infect. 2020;81(1):e89-e92. doi:10.1016/j.jinf.2020.04.010

94. Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020; 395(10234): 1417– 1418. doi: 10.1016/S0140-6736(20)30937-5

95. Pineton de Chambrun M, Frere C, Miyara M, et al. High frequency of antiphospholipid antibodies in critically ill COVID19 patients: a link with hypercoagulability? J Intern Med. 2020;10.1111/joim.13126. doi:10.1111/joim.13126

96. Du RH, Liu LM, Yin W, et al. Hospitalization and Critical Care of 109 Decedents with COVID-19 Pneumonia in Wuhan, China. Ann Am Thorac Soc. 2020;17(7):839-846. doi:10.1513/AnnalsATS.202003-225OC

97. Goshua G, Pine AB, Meizlish ML, et al. Endotheliopathy in COVID-19-associated coagulopathy: evidence from a single-centre, cross-sectional study. Lancet Haematol. 2020; 7(8):e575-e582. doi:10.1016/S2352-3026(20)30216-7

98. Zuo Yu, Estes SK, Gandhi AA, et al. Prothrombotic antiphospholipid antibodies in COVID-19. medRxiv 2020.06.15.20131607; doi: https://doi.org/10.1101/2020.06.15.20131607

99. Argenziano MG, Bruce SL, Slater CL. Characterization and Clinical Course of 1000 Patients with COVID-19 in New York: retrospective case series. medRxiv. 2020;2020 04.20.20072116

100. Mendoza-Pinto C, García-Carrasco M, Cervera R. Role of Infectious Diseases in the Antiphospholipid Syndrome (Including Its Catastrophic Variant). Curr Rheumatol Rep. 2018;20(10):62. doi:10.1007/s11926-018-0773-x

101. Jose RJ, Manuel A. COVID-19 cytokine storm: the interplay between inflammation and coagulation. Lancet Respir Med. 2020; 8(6):e46-e47. doi:10.1016/S2213-2600(20)30216-2

102. Chen T, Wu D, Chen H, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study [published correction appears in BMJ. 2020 Mar 31;368:m1295]. BMJ. 2020;368:m1091. Published 2020 Mar 26. doi:10.1136/bmj.m1091

103. Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020; 395(10229):1033-1034. doi:10.1016/S0140-6736(20)30628-0

104. Abdel-Wahab N, Talathi S, Lopez-Olivo MA, Suarez-Almazor ME. Risk of developing antiphospholipid antibodies following viral infection: a systematic review and meta-analysis. Lupus. 2018;27(4):572-583. doi:10.1177/0961203317731532

105. Wang L, He W, Yu X. Coronavirus disease 2019 in elderly patients: Characteristics and prognostic factors based on 4-week follow-up. J Infect. 2020;80(6):639-645. doi: 10.1016/j.jinf.2020.03.019

106. Pignatelli P, Ettorre E, Menichelli D, et al. Seronegative antiphospholipid syndrome: refining the value of «non-criteria» antibodies for diagnosis and clinical management. Haematologica. 2020;105(3):562-572. doi:10.3324/haematol.2019.221945

107. Pedersen SF, Ho YC. SARS-CoV-2: a storm is raging. J Clin Invest. 2020; 130(5):2202-2205. doi:10.1172/JCI137647

108. Zulfiqar AA, Lorenzo-Villalba N, Hassler P, Andres E. Immune thrombocytopenic purpura in a patient with Covid-19. N. Engl. J Med. 2020, 382, e43. doi: 10.1056/NEJMc2010472

109. Henderson LA, Canna SW, Schulert GS, et al. On the Alert for Cytokine Storm: Immunopathology in COVID-19. Arthritis Rheumatol. 2020; 72(7):1059-1063. doi:10.1002/art.41285

110. Tsivgoulis G, Palaiodimou L, Katsanos AH, et al. Neurological manifestations and implications of COVID-19 pandemic. Ther Adv Neurol Disord. 2020;13. doi:10.1177/1756286420932036

111. Albiol N, Awol R, Martino R. Autoimmune thrombotic thrombocytopenic putpura (TTP) associated with COVID-19. Ann Hematol. 2020, 28 May, htts://doi.org/10.1007/s00277-020-04097-0

112. Moore JB, June CH. Cytokine release syndrome in severe COVID-19. Science. 2020;368(6490):473-474. doi:10.1126/science.abb8925

113. Lai CC, Ko WC, Lee PI, Jean SS, Hsueh PR. Extra-respiratory manifestations of COVID-19. Int J Antimicrob Agents. 2020;56(2):106024. doi:10.1016/j.ijantimicag.2020.106024

114. Toscano G, Palmerini F, Ravaglia S, et al. Guillain-Barré Syndrome Associated with SARS-CoV-2. N Engl J Med. 2020;382(26):2574-2576. doi:10.1056/NEJMc2009191

115. Behrens EM, Koretzky GA. Review: Cytokine storm syndrome: looking toward the precision medicine era. Arthritis Rheum. 2017; 69(6):1135-43. doi: 10.1002/art.40071

116. Manalo IF, Smith MK, Cheeley J, Jacobs R. A dermatologic manifestation of COVID-19: Transient livedo reticularis. J Am Acad Dermatol. 2020;83(2):700. doi:10.1016/j.jaad.2020.04.018

117. Dalakas MC. Guillain-Barré syndrome: The first documented COVID-19-triggered autoimmune neurologic disease: More to come with myositis in the offing. Neurol Neuroimmunol Neuroinflamm. 2020;7(5):e781. doi: 10.1212/NXI.0000000000000781

118. England JT, Abdulla A, Biggs CM, et al. Weathering the COVID19 storm: Lessons from hematologic cytokine syndromes [published online ahead of print, 2020 May 15]. Blood Rev. 2020;100707. doi:10.1016/j.blre.2020.100707

119. Llamas-Velasco M, Muñoz-Hernández P, Lázaro-González J, et al. Thrombotic occlusive vasculopathy in a skin biopsy from a livedoid lesion of a patient with COVID-19 [published online ahead of print, 2020 May 14]. Br J Dermatol. 2020; doi:10.1111/bjd.19222

120. Lazarian G, Quinquenel A, Bellal M, et al. Autoimmune haemolytic anaemia associated with COVID-19 infection. Br J Haematol. 2020;190(1):29-31. doi:10.1111/bjh.16794

121. Vabret N, Britton GJ, Gruber C, et al. Immunology of COVID19: Current State of the Science. Immunity. 2020;52(6):910-941. doi:10.1016/j.immuni.2020.05.002

122. Beydon M, Chevalier K, Al Tabaa O, et al. Myositis as a manifestation of SARS-CoV-2. Ann Rheum Dis. 2020. doi:10.1136/annrheumdis-2020-217573.

123. Liu T, Gu J, Wan L, et al. “Non-criteria” antiphospholipid antibodies add value to antiphospholipid syndrome diagnoses in a large Chinese cohort. Arthritis Res Ther. 2020;22(1):33. doi:10.1186/s13075-020-2131-4

124. Rosário C, Zandman-Goddard G, Meyron-Holtz EG, D’Cruz DP, Shoenfeld Y. The hyperferritinemic syndrome: macrophage activation syndrome, Still’s disease, septic shock and catastrophic antiphospholipid syndrome. BMC Med. 2013; 11:185. doi: 10.1186/1741-7015-11-185

125. Mekinian A, Bourrienne MC, Carbillon L, et al. Nonconventional antiphospholipid antibodies in patients with clinical obstetrical APS: Prevalence and treatment efficacy in pregnancies. Semin Arthritis Rheum.2016;46(2):232–237. doi: 10.1016/j.semarthrit.2016.05.006

126. Allez M, Denis B, Bouaziz J-D, et al. Covid-19 related IgA vasculitis. Arthritis Rheum 2020. doi:10.1002/ART.41428

127. Colafrancesco S, Alessandri C, Conti F, Priori R. COVID-19 gone bad: A new character in the spectrum of the hyperferritinemic syndrome?. Autoimmun Rev. 2020;19(7):102573. doi:10.1016/j.autrev.2020.102573

128. Oku K, Amengual O, Atsumi T. Antiphospholipid scoring: significance in diagnosis and prognosis. Lupus.2014; 23(12):1269–1272. doi: 10.1177/0961203314561284

129. Rowley AH. Understanding SARS-CoV-2-related multisystem inflammatory syndrome in children. Nat Rev Immunol. 2020;20(8):453-454. doi:10.1038/s41577-020-0367-5

130. Fogarty H, Townsend L, Ni Cheallaigh C, et al. COVID19 coagulopathy in Caucasian patients. Br J Haematol. 2020;189(6):1044- 1049. doi:10.1111/bjh.16749

131. Schouwers SME, Delanghe JR, Devreese KMJ. Lupus Anticoagulant (LAC) Testing in Patients With Inflammatory Status: Does C-reactive Protein Interfere With LAC Test Results? Thromb Res 2010;125(1):102-4. doi: 10.1016/j.thromres.2009.09.001

132. Galeotti C, Bayry J. Autoimmune and inflammatory diseases following COVID-19. Nat Rev Rheumatol. 2020;16(8):413-414. doi:10.1038/s41584-020-0448-7

133. Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020; 46(4)):586–590. doi: 10.1007/s00134-020-05985-9

134. Gagiannis D, Steinestel J, Hackenbroch C, et al. COVID-19- induced acute respiratory failure: an exacerbation of organ-specific autoimmunity? medRxiv 2020.04.27.20077180; doi: https://doi.org/10.1101/2020.04.27.20077180

135. Barnes BJ, Adrover JM, Baxter-Stoltzfus A, et al. Targeting potential drivers of COVID-19: Neutrophil extracellular traps. J Exp Med. 2020; 217(6):e20200652. doi: 10.1084/jem.20200652

136. Gheblawi M, Wang K, Viveiros A, et al. Angiotensin-Converting Enzyme 2: SARS-CoV-2 Receptor and Regulator of the ReninAngiotensin System: Celebrating the 20th Anniversary of the Discovery of ACE2. Circ Res. 2020; 126(10):1456-1474. doi: 10.1161/CIRCRESAHA.120.317015

137. Didier K, Bolko L, Giusti D, et al. Autoantibodies Associated With Connective Tissue Diseases: What Meaning for Clinicians? Front Immunol. 2018;9:541. doi: 10.3389/fimmu.2018.00541

138. Bravo-Barrera J. Kourilovitch M. Galarza-Maldonado C. Neutrophil Extracellular Traps, Antiphospholipid Antibodies and Treatment. Antibodies (Basel). 2017; 6: 4. doi: 10.3390/antib6010004

139. Zheng Z, Peng F, Xu B, et al. Risk factors of critical & mortal COVID-19 cases: A systematic literature review and meta-analysis. J Infect. 2020 Apr 23:S0163-4453(20)30234-6. doi: 10.1016/j.jinf.2020.04.021

140. Zuo Y, Yalavarthi S, Shi H, et al. Neutrophil extracellular traps in COVID-19. JCI Insight. 2020;5(11):e138999. Published 2020 Jun 4. doi:10.1172/jci.insight.138999

141. Gazzaruso C, Carlo Stella N, Mariani G, et al. High prevalence of antinuclear antibodies and lupus anticoagulant in patients hospitalized for SARS-CoV2 pneumonia. Clin Rheumatol. 2020;39(7):2095-2097. doi:10.1007/s10067-020-05180-7

142. Catanzaro M, Fagiani F, Racchi M, et al. Immune response in COVID-19: addressing a pharmacological challenge by targeting pathways triggered by SARS-CoV-2. Signal Transduct Target Ther. 2020; 5: 84. doi: 10.1038/s41392-020-0191-1

143. Zuo Y, Zuo M, Yalavarthi S, et al. Neutrophil extracellular traps and thrombosis in COVID-19. medRxiv 2020.04. doi: 10.1101/2020.04.30.20086736

144. Zhou Y, Han T, Chen J, et al. Clinical and Autoimmune Characteristics of Severe and Critical Cases of COVID-19. Clin Transl Sci. 2020; doi:10.1111/cts.12805

145. Nasonov EL, Lila AM. Inhibition of interleukin 6 in immune inflammatory rheumatic disease: achivements, prospects, and hopes. NauchnoPrakticheskaya Revmatologiya= Rheumatology Science and Practice. 2017;55(6):590-599. (In Russ.). doi: 10.14412/1995-4484-2017-590-599

146. Yalavarthi S, Gould TJ, Rao AN, et al. Release of neutrophil extracellular traps by neutrophils stimulated with antiphospholipid antibodies: a newly identified mechanism of thrombosis in the antiphospholipid syndrome. Arthritis Rheumatol. 2015; 67(11):2990-3003. doi:10.1002/art.39247

147. Savushkina N.M., Galushko EA, Demidova NV, Gordeev AV. Angiotensins and rheumatoid arthritis. Nauchno-Prakticheskaya Revmatologiya= Rheumatology Science and Practice. 2018; 56(6):753-759. (In Russ.). doi:10.14412/1995-4484-2018-753-759

148. Atzeni F, Gerardi MC, Barilaro G, et al. Interstitial lung disease in systemic autoimmune rheumatic diseases: a comprehensive review. Expert Rev Clin Immunol. 2018;14(1):69-82. doi: 10.1080/1744666X.2018.1411190

149. Meng H, Yalavarthi S, Kanthi Y, et al. In Vivo Role of Neutrophil Extracellular Traps in Antiphospholipid Antibody-Mediated Venous Thrombosis. Arthritis Rheumatol. 2017;69(3):655-667. doi:10.1002/art.39938

150. Ranjbar R, Shafiee M, Hesari A, et al. The potential therapeutic use of renin-angiotensin system inhibitors in the treatment of inflammatory diseases. J Cell Physiol. 2019; 234(3):2277-2295. doi: 10.1002/jcp.27205

151. Mira-Avendano I, Abril A, Burger CD, et al. Interstitial Lung Disease and Other Pulmonary Manifestations in Connective Tissue Diseases. Mayo Clin Proc. 2019; 94(2):309-325. doi:10.1016/j.mayocp.2018.09.002

152. Vojdani A, Kharrazian D. Potential antigenic cross-reactivity between SARS-CoV-2 and human tissue with a possible link to an increase in autoimmune diseases. Clin Immunol. 2020;217:108480. doi:10.1016/j.clim.2020.108480

153. Akulkina LA, Brovko MY, Sholomova VI, Yanakayeva AS, Moiseev SV. Interstitial pneumonia with autoimmune features (IPAP): a multidisciplinary diagnosis in pulmonology and rheumatology. Klinicheskaya farmakologiya I terapiya= Clinical Pharmacology and Therapy Journal. 2018;18 (27):5-10 (in Russ)

154. Noris M, Benigni A, Remuzzi G. The case of complement activation in COVID-19 multiorgan impact. Kidney Int. 2020;98(2):314-322. doi:10.1016/j.kint.2020.05.013

155. Smatti MK, Cyprian FS, Nasrallah GK, Al Thani AA, Almishal RO, Yassine HM. Viruses and Autoimmunity: A Review on the Potential Interaction and Molecular Mechanisms. Viruses. 2019; 11(8):762. doi:10.3390/v11080762

156. Graney BA, Fischer A. Interstitial Pneumonia with Autoimmune Features. Ann Am Thorac Soc. 2019; 16(5): 525–533. doi: 10.1513/AnnalsATS.201808-565CME.

157. Campbell CM, Kahwash R. Will Complement Inhibition Be the New Target in Treating COVID-19-Related Systemic Thrombosis?. Circulation. 2020;141(22):1739-1741. doi:10.1161/CIRCULATIONAHA.120.047419

158. Zheng M, Gao Y, Wang G, et al. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell Mol Immunol. 2020; 17(5):533-5. doi: 10.1038/s41423-020-0402-2

159. Riemekasten G, Cabral-Marques O. Antibodies against angiotensin II type 1 receptor (AT1R) and endothelin receptor type A (ETAR) in systemic sclerosis (SSc)-response. Autoimmun Rev. 2016; 15(9):935. doi: 10.1016/j.autrev.2016.04.004

160. Zheng HY, Zhang M, Yang CX, et al. Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients. Cell Mol Immunol. 2020;17(5):541-543. doi: 10.1038/s41423-020-0401-3

161. Song WC, FitzGerald GA. COVID-19, microangiopathy, hemostatic activation, and complement. J Clin Invest. 2020;130(8):3950-3953. doi:10.1172/JCI140183

162. Becker MO, Kill A, Kutsche M, et al. Vascular Receptor Autoantibodies in Pulmonary Arterial Hypertension Associated with Systemic Sclerosis. Amer J Resp Crit Care Med 2014; 190(7), 808–817. 10.1164/rccm.201403-0442OC

163. Risitano AM, Mastellos DC, Huber-Lang M, et al. Complement as a target in COVID-19? [published correction appears in Nat Rev Immunol. 2020 Jul;20(7):448]. Nat Rev Immunol. 2020;20(6):343-344. doi:10.1038/s41577-020-0320-7

164. Pender MP. CD8+ T-Cell Deficiency, Epstein-Barr Virus Infection, Vitamin D Deficiency, and Steps to Autoimmunity: A Unifying Hypothesis. Autoimmune Dis. 2012: 189096. doi: 10.1155/2012/189096

165. Avouac J, Riemekasten G, Meune C, et al. Autoantibodies against Endothelin 1 Type A Receptor Are Strong Predictors of Digital Ulcers in Systemic Sclerosis. J Rheum 2014; 42(10), 1801–1807. doi: 10.3899/jrheum.150061

166. Baines AC, Brodsky RA. Complementopathies. Blood Rev. 2017; 31(4): 213–223. doi: 10.1016/j.blre.2017.02.003

167. Liu M, Gao Y, Zhang Y, Shi S, Chen Y, Tian J. The association between severe or dead COVID-19 and autoimmune diseases: A systematic review and meta-analysis. J Infect. 2020;81(3):e93- e95. doi:10.1016/j.jinf.2020.05.065

168. Kill A, Tabeling C, Undeutsch R, et al. Autoantibodies to angiotensin and endothelin receptors in systemic sclerosis induce cellular and systemic events associated with disease pathogenesis. Arthritis Res Ther 2014; 16(1), R29. doi: 10.1186/ar4457

169. Wong EKS, Kavanagh D. Diseases of complement dysregulation—an overview. Semin Immunopathol. 2018; 40(1): 49–64. doi: 10.1007/s00281-017-0663-8

170. İlgen U, Yayla ME, Düzgün N. Anti-angiotensin II type 1 receptor autoantibodies (AT1R-AAs) in patients with systemic sclerosis: lack of association with disease manifestations. Rheumatol Int. 2017; 37(4):593-598. doi: 10.1007/s00296-016- 3639-4

171. Gao T, Hu M, Zhang X, et al. Highly pathogenic coronavirus N protein aggravates lung injury by MASP-2-mediated complement over-activation. medRxiv. 2020.03.29.20041962. doi: 10.1101/2020.03.29.20041962

172. Wei YY, Wang RR, Zhang DW, et al. Risk factors for severe COVID-19: Evidence from 167 hospitalized patients in Anhui, China. J Infect. 2020;81(1):e89-e92. doi:10.1016/j.jinf.2020.04.010

173. Bikdeli B, Madhavan MV, Jimenez D, et al. COVID-19 and Thrombotic or Thromboembolic Disease: Implications for Prevention, Antithrombotic Therapy, and Follow-Up: JACC State-of-the-Art Review. J Am Coll Cardiol. 2020;75(23):2950- 2973. doi: 10.1016/j.jacc.2020.04.031

174. Du RH, Liu LM, Yin W, et al. Hospitalization and Critical Care of 109 Decedents with COVID-19 Pneumonia in Wuhan, China. Ann Am Thorac Soc. 2020;17(7):839-846. doi:10.1513/AnnalsATS.202003-225OC

175. Magro C, Mulvey JJ, Berlin D, et al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: A report of five cases. Transl Res. 2020;220:1-13. doi:10.1016/j.trsl.2020.04.007

176. Unlu O, Erkan D. Catastrophic Antiphospholipid Syndrome: Candidate Therapies for a Potentially Lethal Disease. Annu Rev Med. 2017;68:287-296. doi: 10.1146/annurev-med-042915-102529

177. Argenziano MG, Bruce SL, Slater CL. Characterization and Clinical Course of 1000 Patients with COVID-19 in New York: retrospective case series. medRxiv. 2020;2020 04.20.20072116

178. Giani M, Seminati D, Lucchini A, Foti G, Pagni F. Exuberant Plasmocytosis in Bronchoalveolar Lavage Specimen of the First Patient Requiring Extracorporeal Membrane Oxygenation for SARS-CoV-2 in Europe. J Thorac Oncol. 2020;15(5):e65-e66. doi:10.1016/j.jtho.2020.03.008

179. Tektonidou MG, Andreoli L, Limper M, Tincani A, Ward MM. Management of thrombotic and obstetric antiphospholipid syndrome: a systematic literature review informing the EULAR recommendations for the management of antiphospholipid syndrome in adults. RMD Open. 2019;5(1):e000924. doi: 10.1136/rmdopen-2019-000924

180. Chen T, Wu D, Chen H, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study [published correction appears in BMJ. 2020 Mar 31;368:m1295]. BMJ. 2020;368:m1091. Published 2020 Mar 26. doi:10.1136/bmj.m1091

181. Shi C, Wang C, Wang H, et al. The potential of low molecular weight heparin to mitigate cytokine storm in severe COVID-19 patients: a retrospective clinical study. medRxiv. 2020.03.28.20046144; doi: https://doi.org/10.1101/2020.03.28.20046144

182. Oku K, Nakamura H, Kono M, et al. Complement and thrombosis in the antiphospholipid syndrome. Autoimmun Rev. 2016; 15(10):1001-1004. doi:10.1016/j.autrev.2016.07.020

183. Wang L, He W, Yu X. Coronavirus disease 2019 in elderly patients: Characteristics and prognostic factors based on 4-week follow-up. J Infect. 2020;80(6):639-645. doi: 10.1016/j.jinf.2020.03.019

184. Blom AM. The complement system as a potential therapeutic target in rheumatic disease. Nat Rev Rheumatol. 2017; 13(9):538- 547. doi: 10.1038/nrrheum.2017.125

185. Wang J, Hajizadeh N, Moore EE, et al. Tissue plasminogen activator (tPA) treatment for COVID-19 associated acute respiratory distress syndrome (ARDS): A case series. J Thromb Haemost. 2020;18(7):1752-1755. doi:10.1111/jth.14828

186. Zulfiqar AA, Lorenzo-Villalba N, Hassler P, Andres E. Immune thrombocytopenic purpura in a patient with Covid-19. N. Engl. J Med. 2020, 382, e43. doi: 10.1056/NEJMc2010472

187. Kotzen ES, Roy S, Jain K. Antiphospholipid Syndrome Nephropathy and Other Thrombotic Microangiopathies Among Patients With Systemic Lupus Erythematosus. Adv Chronic Kidney Dis. 2019; 26(5):376-386. doi: 10.1053/j.ackd.2019.08.012

188. Schrezenmeier E, Dörner T. Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology. Nat Rev Rheumatol. 2020;16(3):155-66. doi: 10.1038/s41584-020-0372-x

189. Albiol N, Awol R, Martino R. Autoimmune thrombotic thrombocytopenic putpura (TTP) associated with COVID-19. Ann Hematol. 2020, 28 May, htts://doi.org/10.1007/s00277-020-04097-0

190. Meyerowitz EA, Vannier AGL, Friesen MGN, et al. Rethinking the role of hydroxychloroquine in the treatment of COVID-19. FASEB J. 2020; 34(5):6027-6037. doi: 10.1096/fj.202000919

191. Насонов ЕЛ. Антифосфолипидный синдром. Москва: Литтерра; 2004. 424 с. [Nasonov EL. Antifosfolipidnyi sindrom (Antiphospholipid syndrome). Moscow: Litterra; 2004. 424 p. (In Russ.)]

192. Toscano G, Palmerini F, Ravaglia S, et al. Guillain-Barré Syndrome Associated with SARS-CoV-2. N Engl J Med. 2020;382(26):2574-2576. doi:10.1056/NEJMc2009191

193. Sarma P, Kaur H, Kumar H, et al. Virological and clinical cure in COVID-19 patients treated with hydroxychloroquine: A systematic review and meta-analysis. J Med Virol. 2020; 92(7):776-785. doi: 10.1002/jmv.25898

194. Garcia D, Erkan D. Diagnosis and Management of the Antiphospholipid Syndrome. N Engl J Med. 2018; 378(21):2010- 2021. doi: 10.1056/NEJMra1705454.

195. Dalakas MC. Guillain-Barré syndrome: The first documented COVID-19-triggered autoimmune neurologic disease: More to come with myositis in the offing. Neurol Neuroimmunol Neuroinflamm. 2020;7(5):e781. doi: 10.1212/NXI.0000000000000781

196. Yu B, Li C, Chen P, et al. Low dose of hydroxychloroquine reduces fatality of critically ill patients with COVID-19. Sci China Life Sci. 2020 May 15:1-7. doi: 10.1007/s11427-020-1732-2

197. Meroni PL, Borghi MO, Raschi E, Tedesco F. Pathogenesis of antiphospholipid syndrome: understanding the antibodies. Nat Rev Rheumatol. 2011; 7(6):330-339. doi:10.1038/nrrheum.2011.52

198. Lazarian G, Quinquenel A, Bellal M, et al. Autoimmune haemolytic anaemia associated with COVID-19 infection. Br J Haematol. 2020;190(1):29-31. doi:10.1111/bjh.16794

199. Membrillo de Novales FJ, Ramírez-Olivencia G, Estébanez M, Early Hydroxychloroquine Is Associated with an Increase of Survival in COVID-19 Patients: An Observational Study. 2020, 2020050057. doi: 10.20944/preprints202005.0057.v1

200. Espinosa G, Rodríguez-Pintó I, Gomez-Puerta JA, Pons-Estel G, Cervera R; Catastrophic Antiphospholipid Syndrome (CAPS) Registry Project Group (European Forum on Antiphospholipid Antibodies). Relapsing catastrophic antiphospholipid syndrome potential role of microangiopathic hemolytic anemia in disease relapses. Semin Arthritis Rheum. 2013;42(4):417-23. doi: 10.1016/j.semarthrit.2012.05.005

201. Beydon M, Chevalier K, Al Tabaa O, et al. Myositis as a manifestation of SARS-CoV-2. Ann Rheum Dis. 2020. doi:10.1136/annrheumdis-2020-217573.

202. Espinola RG, Pierangeli SS, Gharavi AE, Harris EN, Ghara AE. Hydroxychloroquine reverses platelet activation induced by human IgG antiphospholipid antibodies. Thromb Haemost. 2002; 87: 518–522

203. Cervera R, Rodríguez-Pintó I, Espinosa G. The diagnosis and clinical management of the catastrophic antiphospholipid syndrome: A comprehensive review. J Autoimmun. 2018;92:1-11. doi: 10.1016/j.jaut.2018.05.007

204. Allez M, Denis B, Bouaziz J-D, et al. Covid-19 related IgA vasculitis. Arthritis Rheum 2020. doi:10.1002/ART.41428

205. Chaturvedi S, Braunstein EM, Yuan X, et al. Complement activity and complement regulatory gene mutations are associated with thrombosis in APS and CAPS. Blood. 2019;135(4):239-251. doi: 10.1182/blood.2019003863

206. Rand JH, Wu X-X, Quinn AS, et al. Hydroxychloroquine protects the annexin A5 anticoagulant shield from disruption by antiphospholipid antibodies: evidence for a novel effect for an old antimalarial drug. Blood. 2010; 115: 2292–2299. 10.1182/blood-2009-04-213520

207. Rowley AH. Understanding SARS-CoV-2-related multisystem inflammatory syndrome in children. Nat Rev Immunol. 2020;20(8):453-454. doi:10.1038/s41577-020-0367-5

208. Urbanski G, Caillon A, Poli C, et al. Hydroxychloroquine partially prevents endothelial dysfunction induced by anti-beta-2-GPI antibodies in an in vivo mouse model of antiphospholipid syndrome. PLoS One. 2018; 13(11): e0206814. doi: 10.1371/journal.pone.0206814

209. Zhang Y, Xiao M, Zhang S, et al. Coagulopathy and Antiphospholipid Antibodies in Patients with Covid-19. N Engl J Med. 2020;382(17):e38. doi:10.1056/NEJMc2007575

210. Galeotti C, Bayry J. Autoimmune and inflammatory diseases following COVID-19. Nat Rev Rheumatol. 2020;16(8):413-414. doi:10.1038/s41584-020-0448-7

211. Miranda S, Billoir P, Damian L, et al. Hydroxychloroquine reverses the prothrombotic state in a mouse model of antiphospholipid syndrome: Role of reduced inflammation and endothelial dysfunction. PLoS One. 2019; 14(3): e0212614. doi: 10.1371/ journal.pone.0212614

212. Hossri S, Shadi M, Hamarsha Z, Schneider R, El-Sayegh D. Clinically significant anticardiolipin antibodies associated with COVID-19 [published online ahead of print, 2020 May 29]. J Crit Care. 2020;59:32-34. doi:10.1016/j.jcrc.2020.05.017

213. Gagiannis D, Steinestel J, Hackenbroch C, et al. COVID-19- induced acute respiratory failure: an exacerbation of organ-specific autoimmunity? medRxiv 2020.04.27.20077180; doi: https://doi.org/10.1101/2020.04.27.20077180

214. Schmidt-Tanguy A, Voswinkel J, Henrion D, et al. Antithrombotic effects of hydroxychloroquine in primary antiphospholipid syndrome patients. J Thromb Haemost. 2013;11: 1927–1929. doi: 10.1111/jth.12363

215. Sung J, Anjum S. Coronavirus Disease 2019 (COVID-19) Infection Associated With Antiphospholipid Antibodies and Four-Extremity Deep Vein thrombosis in a Previously Healthy Female. Cureus. 2020;12(6):e8408. Published 2020 Jun 2. doi:10.7759/cureus.8408

216. Didier K, Bolko L, Giusti D, et al. Autoantibodies Associated With Connective Tissue Diseases: What Meaning for Clinicians? Front Immunol. 2018;9:541. doi: 10.3389/fimmu.2018.00541

217. Schreiber K, Breen K, Parmar K, Rand JH, Wu XX, Hunt BJ. The effect of hydroxychloroquine on haemostasis, complement, inflammation and angiogenesis in patients with antiphospholipid antibodies. Rheumatology (Oxford). 2018;57(1):120-124. doi:10.1093/rheumatology/kex378

218. Sieiro Santos C, Nogal Arias C, Moriano Morales C, Ballesteros Pomar M, Diez Alvarez E, Perez Sandoval T. Antiphospholipid antibodies in patient with acute lower member ischemia and pulmonary thromboembolism as a result of infection by SARSCoV2. Clin Rheumatol. 2020;39(7):2105-2106. doi:10.1007/s10067-020-05194-1

219. Gazzaruso C, Carlo Stella N, Mariani G, et al. High prevalence of antinuclear antibodies and lupus anticoagulant in patients hospitalized for SARS-CoV2 pneumonia. Clin Rheumatol. 2020;39(7):2095-2097. doi:10.1007/s10067-020-05180-7

220. Beyrouti R, Adams ME, Benjamin L, et al. Characteristics of ischaemic stroke associated with COVID-19. J Neurol Neurosurg Psychiatry. 2020;91(8):889-891. doi:10.1136/jnnp-2020-323586

221. Ruiz-Irastorza G, Ramos-Casals M, Brito-Zeron P, Khamashta MA. Clinical efficacy and side effects of antimalarials in systemic lupus erythematosus: a systematic review. Ann Rheum Dis. 2010;69(1):20-8. doi: 10.1136/ard.2008.101766

222. Zhou Y, Han T, Chen J, et al. Clinical and Autoimmune Characteristics of Severe and Critical Cases of COVID-19. Clin Transl Sci. 2020; doi:10.1111/cts.12805

223. Fanouriakis A, Kostopoulou M, Alunno A, et al. 2019 update of the EULAR recommendations for the management of systemic lupus erythematosus. Clinical efficacy and side effects of antimalarials in systemic lupus erythematosus: a systematic review. Ann Rheum Dis. 2019;78(6):736-745. doi: 10.1136/annrheumdis-2019-215089

224. Escher R, Breakey N, Lämmle B. Severe COVID-19 infection associated with endothelial activation. Thromb Res. 2020;190:62. doi:10.1016/j.thromres.2020.04.014

225. Atzeni F, Gerardi MC, Barilaro G, et al. Interstitial lung disease in systemic autoimmune rheumatic diseases: a comprehensive review. Expert Rev Clin Immunol. 2018;14(1):69-82. doi: 10.1080/1744666X.2018.1411190

226. Xiao M, Zhang Y, Zhang S, et al. Brief Report: Anti-phospholipid antibodies in critically ill patients with Coronavirus Disease 2019 (COVID-19). Arthritis Rheumatol. 2020; doi:10.1002/art.41425

227. Infante M, Ricordi C, Fabbri A. Antihyperglycemic Properties of Hydroxychloroquine in Patients With Diabetes: Risks and Benefits at the Time of COVID-19 Pandemic. J Diabetes 2020 May 13;10.1111/1753-0407.13053. doi: 10.1111/1753-0407.13053

228. Mira-Avendano I, Abril A, Burger CD, et al. Interstitial Lung Disease and Other Pulmonary Manifestations in Connective Tissue Diseases. Mayo Clin Proc. 2019; 94(2):309-325. doi:10.1016/j.mayocp.2018.09.002

229. Russell CD, Millar JE, Baillie JK. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet. 2020;395:473-475. doi: 10.1016/S0140-6736(20)30317-2

230. Harzallah I, Debliquis A, Drénou B. Lupus anticoagulant is frequent in patients with Covid-19. J Thromb Haemost. 2020;18(8):2064-2065. doi:10.1111/jth.14867

231. Akulkina LA, Brovko MY, Sholomova VI, Yanakayeva AS, Moiseev SV. Interstitial pneumonia with autoimmune features (IPAP): a multidisciplinary diagnosis in pulmonology and rheumatology. Klinicheskaya farmakologiya I terapiya= Clinical Pharmacology and Therapy Journal. 2018;18 (27):5-10 (in Russ)

232. Veronese N, Demurtas J, Yang L, et al. Corticosteroids in Coronavirus Disease 2019 Pneumonia: A Systematic Review of the Literature. Front Med (Lausanne). 2020 Apr 24;7:170. doi: 10.3389/fmed.2020.00170

233. Bertin D, Brodovitch A, Beziane A, et al. Anti-cardiolipin IgG autoantibodies are an independent risk factor of COVID-19 severity [published online ahead of print, 2020 Jun 21]. Arthritis Rheumatol. 2020;10.1002/art.41409. doi:10.1002/art.41409

234. Graney BA, Fischer A. Interstitial Pneumonia with Autoimmune Features. Ann Am Thorac Soc. 2019; 16(5): 525–533. doi: 10.1513/AnnalsATS.201808-565CME.

235. Strehl C, Ehlers L, Gaber T, Buttgereit F. Glucocorticoids-allrounders tackling the versatile players of the immune system. Front Immunol. 2019;10:1744. doi: 10.3389/fimmu.2019.01744

236. Previtali G, Seghezzi M, Moioli V, et al. The pathogenesis of thromboembolic disease in COVID-19 patients: could be catastrophic antiphospholipid syndrom? medRxiv 2020.04.30.20086397. doi: 10.1101/2020.04.30.20086397

237. Riemekasten G, Cabral-Marques O. Antibodies against angiotensin II type 1 receptor (AT1R) and endothelin receptor type A (ETAR) in systemic sclerosis (SSc)-response. Autoimmun Rev. 2016; 15(9):935. doi: 10.1016/j.autrev.2016.04.004

238. Hardy RS, Raza K, Cooper MS. Therapeutic glucocorticoids: mechanisms of actions in rheumatic diseases. Nat Rev Rheumatol. 2020;16(3):133-144. doi:10.1038/s41584-020-0371-y

239. Connell NT, Battinelli EM, Connors JM. Coagulopathy of COVID-19 and antiphospholipid antibodies [published online ahead of print, 2020 May 7]. J Thromb Haemost. 2020; doi:10.1111/jth.14893

240. Becker MO, Kill A, Kutsche M, et al. Vascular Receptor Autoantibodies in Pulmonary Arterial Hypertension Associated with Systemic Sclerosis. Amer J Resp Crit Care Med 2014; 190(7), 808–817. 10.1164/rccm.201403-0442OC

241. Devreese KMJ, Linskens EA, Benoit D, Peperstraete H. Antiphospholipid antibodies in patients with COVID-19: A relevant observation?. J Thromb Haemost. 2020;10.1111/ jth.14994. doi:10.1111/jth.14994

242. Cain DW, Cidlowski JA. Immune regulation by glucocorticoids. Nat Rev Immunol. 2017; 17(4):233-247. doi: 10.1038/nri.2017.1

243. Avouac J, Riemekasten G, Meune C, et al. Autoantibodies against Endothelin 1 Type A Receptor Are Strong Predictors of Digital Ulcers in Systemic Sclerosis. J Rheum 2014; 42(10), 1801–1807. doi: 10.3899/jrheum.150061

244. Oray M, Abu Samra K, Ebrahimiadib N, et al. Long-term side effects of glucocorticoids. Expert Opin Drug Saf. 2016;15(4):457- 65. doi: 10.1517/14740338.2016.1140743

245. Zhang Y, Cao W, Jiang W, et al. Profile of natural anticoagulant, coagulant factor and anti-phospholipid antibody in critically ill COVID-19 patients. J Thromb Thrombolysis. 2020; 1-7. doi:10.1007/s11239-020-02182-9

246. Kill A, Tabeling C, Undeutsch R, et al. Autoantibodies to angiotensin and endothelin receptors in systemic sclerosis induce cellular and systemic events associated with disease pathogenesis. Arthritis Res Ther 2014; 16(1), R29. doi: 10.1186/ar4457

247. Amezcua-Guerra LM, Rojas-Velasco G, Brianza-Padilla M, et al. Presence of antiphospholipid antibodies in COVID-19: case series study. Ann Rheum Dis. 2020; doi:10.1136/annrheumdis-2020-218100

248. WHO. Clinical management of severe acute respiratory infection when novel coronavirus [nCoV] infection is suspected. https://www.who.int/publications-detail/clinical-management-of-severe-acute-respiratory-infection-when-novelcoronavirus-[ncov]-infection-is-suspected (accessed 09.02.2020)

249. İlgen U, Yayla ME, Düzgün N. Anti-angiotensin II type 1 receptor autoantibodies (AT1R-AAs) in patients with systemic sclerosis: lack of association with disease manifestations. Rheumatol Int. 2017; 37(4):593-598. doi: 10.1007/s00296-016- 3639-4

250. Wu C, Chen X, Cai Y, et al. Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern Med. 2020; 180(7):1-11. doi:10.1001/jamainternmed.2020.0994

251. Pineton de Chambrun M, Frere C, Miyara M, et al. High frequency of antiphospholipid antibodies in critically ill COVID19 patients: a link with hypercoagulability? J Intern Med. 2020;10.1111/joim.13126. doi:10.1111/joim.13126

252. Bikdeli B, Madhavan MV, Jimenez D, et al. COVID-19 and Thrombotic or Thromboembolic Disease: Implications for Prevention, Antithrombotic Therapy, and Follow-Up: JACC State-of-the-Art Review. J Am Coll Cardiol. 2020;75(23):2950- 2973. doi: 10.1016/j.jacc.2020.04.031

253. Zhou W, Liu Y, Tian D, et al. Potential benefits of precise corticosteroids therapy for severe 2019-nCoV pneumonia. Signal Transduct Target Ther. 2020; 5(1):18. doi:10.1038/s41392-020-0127-9

254. Zuo Yu, Estes SK, Gandhi AA, et al. Prothrombotic antiphospholipid antibodies in COVID-19. medRxiv 2020.06.15.20131607; doi: https://doi.org/10.1101/2020.06.15.20131607

255. Unlu O, Erkan D. Catastrophic Antiphospholipid Syndrome: Candidate Therapies for a Potentially Lethal Disease. Annu Rev Med. 2017;68:287-296. doi: 10.1146/annurev-med-042915-102529

256. Wang Y, Jiang W, He Q, et al. A retrospective cohort study of methylprednisolone therapy in severe patients with COVID-19 pneumonia. Signal Transduct Target Ther. 2020; 5(1):57. doi: 10.1038/s41392-020-0158-2

257. Mendoza-Pinto C, García-Carrasco M, Cervera R. Role of Infectious Diseases in the Antiphospholipid Syndrome (Including Its Catastrophic Variant). Curr Rheumatol Rep. 2018;20(10):62. doi:10.1007/s11926-018-0773-x

258. Tektonidou MG, Andreoli L, Limper M, Tincani A, Ward MM. Management of thrombotic and obstetric antiphospholipid syndrome: a systematic literature review informing the EULAR recommendations for the management of antiphospholipid syndrome in adults. RMD Open. 2019;5(1):e000924. doi: 10.1136/rmdopen-2019-000924

259. Abdel-Wahab N, Talathi S, Lopez-Olivo MA, Suarez-Almazor ME. Risk of developing antiphospholipid antibodies following viral infection: a systematic review and meta-analysis. Lupus. 2018;27(4):572-583. doi:10.1177/0961203317731532

260. RECOVERY Collaborative Group, Horby P, Lim WS, et al. Dexamethasone in Hospitalized Patients with Covid-19 - Preliminary Report [published online ahead of print, 2020 Jul 17]. N Engl J Med. 2020; 10.1056/NEJMoa2021436. doi:10.1056/NEJMoa2021436

261. Shi C, Wang C, Wang H, et al. The potential of low molecular weight heparin to mitigate cytokine storm in severe COVID-19 patients: a retrospective clinical study. medRxiv. 2020.03.28.20046144; doi: https://doi.org/10.1101/2020.03.28.20046144

262. Perez EE, Orange JS, Bonilla F, et al. Update on the use of immunoglobulin in human disease: a review of evidence. J Allergy Clin Immun. 2017; 139:S1-46. doi: 10.1016/j.jaci.2016.09.023

263. Pignatelli P, Ettorre E, Menichelli D, et al. Seronegative antiphospholipid syndrome: refining the value of «non-criteria» antibodies for diagnosis and clinical management. Haematologica. 2020;105(3):562-572. doi:10.3324/haematol.2019.221945

264. Wang J, Hajizadeh N, Moore EE, et al. Tissue plasminogen activator (tPA) treatment for COVID-19 associated acute respiratory distress syndrome (ARDS): A case series. J Thromb Haemost. 2020;18(7):1752-1755. doi:10.1111/jth.14828

265. Tenti S, Cheleschi S, Guidelli GM, Galeazzi M, Fioravanti A. Intravenous immunoglobulins and antiphospholipid syndrome: How, when and why? A review of the literature. Autoimmun Rev. 2016; 15(3):226-35. doi: 10.1016/j.autrev.2015.11.009

266. Tsivgoulis G, Palaiodimou L, Katsanos AH, et al. Neurological manifestations and implications of COVID-19 pandemic. Ther Adv Neurol Disord. 2020;13. doi:10.1177/1756286420932036

267. Schrezenmeier E, Dörner T. Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology. Nat Rev Rheumatol. 2020;16(3):155-66. doi: 10.1038/s41584-020-0372-x

268. Prete M, Favoino E, Catacchio G, Racanelli V, Perosa F. SARSCoV-2 infection complicated by inflammatory syndrome. Could high-dose human immunoglobulin for intravenous use (IVIG) be beneficial?. Autoimmun Rev. 2020;19(7):102559. doi:10.1016/j.autrev.2020.102559

269. Lai CC, Ko WC, Lee PI, Jean SS, Hsueh PR. Extra-respiratory manifestations of COVID-19. Int J Antimicrob Agents. 2020;56(2):106024. doi:10.1016/j.ijantimicag.2020.106024

270. Meyerowitz EA, Vannier AGL, Friesen MGN, et al. Rethinking the role of hydroxychloroquine in the treatment of COVID-19. FASEB J. 2020; 34(5):6027-6037. doi: 10.1096/fj.202000919

271. Manalo IF, Smith MK, Cheeley J, Jacobs R. A dermatologic manifestation of COVID-19: Transient livedo reticularis. J Am Acad Dermatol. 2020;83(2):700. doi:10.1016/j.jaad.2020.04.018

272. Xie Y, Cao S, Dong H, et al. Effect of regular intravenous immunoglobulin therapy on prognosis of severe pneumonia in patients with COVID-19. J Infect. 2020; 81(2):318-356. doi:10.1016/j.jinf.2020.03.044

273. Sarma P, Kaur H, Kumar H, et al. Virological and clinical cure in COVID-19 patients treated with hydroxychloroquine: A systematic review and meta-analysis. J Med Virol. 2020; 92(7):776-785. doi: 10.1002/jmv.25898

274. Llamas-Velasco M, Muñoz-Hernández P, Lázaro-González J, et al. Thrombotic occlusive vasculopathy in a skin biopsy from a livedoid lesion of a patient with COVID-19 [published online ahead of print, 2020 May 14]. Br J Dermatol. 2020; doi:10.1111/bjd.19222

275. Cao W, Liu X, Bai T, et al. High-Dose Intravenous Immunoglobulin as a Therapeutic Option for Deteriorating Patients With Coronavirus Disease 2019. Open Forum Infect Dis. 2020; 7(3):ofaa102. doi:10.1093/ofid/ofaa102

276. Yu B, Li C, Chen P, et al. Low dose of hydroxychloroquine reduces fatality of critically ill patients with COVID-19. Sci China Life Sci. 2020 May 15:1-7. doi: 10.1007/s11427-020-1732-2

277. Diez J-M, Romero C, Gajardo R. Currently available intravenous immunoglobulin (Gamunex®-C and Flebogamma® DIF) contains antibodies reacting against SARS-CoV-2 antigens. bioRxiv. 2020 Apr 07:029017. doi: 10.1101/2020.04.07.029017

278. Liu T, Gu J, Wan L, et al. “Non-criteria” antiphospholipid antibodies add value to antiphospholipid syndrome diagnoses in a large Chinese cohort. Arthritis Res Ther. 2020;22(1):33. doi:10.1186/s13075-020-2131-4

279. Membrillo de Novales FJ, Ramírez-Olivencia G, Estébanez M, Early Hydroxychloroquine Is Associated with an Increase of Survival in COVID-19 Patients: An Observational Study. 2020, 2020050057. doi: 10.20944/preprints202005.0057.v1

280. Mekinian A, Bourrienne MC, Carbillon L, et al. Nonconventional antiphospholipid antibodies in patients with clinical obstetrical APS: Prevalence and treatment efficacy in pregnancies. Semin Arthritis Rheum.2016;46(2):232–237. doi: 10.1016/j.semarthrit.2016.05.006

281. Rojas M, Rodríguez Y, Monsalve DM, et al. Convalescent plasma in Covid-19: Possible mechanisms of action. Autoimmun Rev. 2020; 19(7):102554. doi:10.1016/j.autrev.2020.102554

282. Espinola RG, Pierangeli SS, Gharavi AE, Harris EN, Ghara AE. Hydroxychloroquine reverses platelet activation induced by human IgG antiphospholipid antibodies. Thromb Haemost. 2002; 87: 518–522

283. Oku K, Amengual O, Atsumi T. Antiphospholipid scoring: significance in diagnosis and prognosis. Lupus.2014; 23(12):1269–1272. doi: 10.1177/0961203314561284

284. Nasonov E.L. Immunopathology and immunopharmacotherapy of coronavirus disease (COVID-19): focus on interleukin 6. NauchnoPrakticheskaya Revmatologiya= Rheumatology Science and Practice. 2020; 58(3):245-261. (In Russ.). doi:10.14412/1995-4484-2020-245-261

285. Rand JH, Wu X-X, Quinn AS, et al. Hydroxychloroquine protects the annexin A5 anticoagulant shield from disruption by antiphospholipid antibodies: evidence for a novel effect for an old antimalarial drug. Blood. 2010; 115: 2292–2299. 10.1182/blood-2009-04-213520

286. Russell B, Moss C, George G, et al. Associations between immune-suppressive and stimulating drugs and novel COVID19-a systematic review of current evidence. Ecancermedicalscience. 2020; 14:1022. Published 2020 Mar 27. doi:10.3332/ecancer.2020.1022

287. Schouwers SME, Delanghe JR, Devreese KMJ. Lupus Anticoagulant (LAC) Testing in Patients With Inflammatory Status: Does C-reactive Protein Interfere With LAC Test Results? Thromb Res 2010;125(1):102-4. doi: 10.1016/j.thromres.2009.09.001

288. Urbanski G, Caillon A, Poli C, et al. Hydroxychloroquine partially prevents endothelial dysfunction induced by anti-beta-2-GPI antibodies in an in vivo mouse model of antiphospholipid syndrome. PLoS One. 2018; 13(11): e0206814. doi: 10.1371/journal.pone.0206814

289. Diurno F, Numis FG, Porta G, et al. Eculizumab treatment in patients with COVID-19: preliminary results from real life ASL Napoli 2 Nord experience. Eur Rev Med Pharmacol Sci. 2020; 24(7):4040-7. doi: 10.26355/eurrev_202004_20875

290. Barnes BJ, Adrover JM, Baxter-Stoltzfus A, et al. Targeting potential drivers of COVID-19: Neutrophil extracellular traps. J Exp Med. 2020; 217(6):e20200652. doi: 10.1084/jem.20200652

291. Miranda S, Billoir P, Damian L, et al. Hydroxychloroquine reverses the prothrombotic state in a mouse model of antiphospholipid syndrome: Role of reduced inflammation and endothelial dysfunction. PLoS One. 2019; 14(3): e0212614. doi: 10.1371/ journal.pone.0212614

292. Bravo-Barrera J. Kourilovitch M. Galarza-Maldonado C. Neutrophil Extracellular Traps, Antiphospholipid Antibodies and Treatment. Antibodies (Basel). 2017; 6: 4. doi: 10.3390/antib6010004

293. Mastaglio S, Ruggeri A, Risitano AM, et al. The first case of COVID-19 treated with the complement C3 inhibitor AMY-101. Clin Immunol. 2020; 215:108450. doi:10.1016/j.clim.2020.108450

294. Schmidt-Tanguy A, Voswinkel J, Henrion D, et al. Antithrombotic effects of hydroxychloroquine in primary antiphospholipid syndrome patients. J Thromb Haemost. 2013;11: 1927–1929. doi: 10.1111/jth.12363

295. Zuo Y, Yalavarthi S, Shi H, et al. Neutrophil extracellular traps in COVID-19. JCI Insight. 2020;5(11):e138999. Published 2020 Jun 4. doi:10.1172/jci.insight.138999

296. Schreiber K, Breen K, Parmar K, Rand JH, Wu XX, Hunt BJ. The effect of hydroxychloroquine on haemostasis, complement, inflammation and angiogenesis in patients with antiphospholipid antibodies. Rheumatology (Oxford). 2018;57(1):120-124. doi:10.1093/rheumatology/kex378

297. Bekker P, Dairaghi D, Seitz L, et al. Characterization of pharmacologic and pharmacokinetic properties of CCX168, a potent and selective orally administered complement 5a receptor inhibitor, based on preclinical evaluation and randomized Phase 1 clinical study. PLoS One. 2016; 11:e0164646. doi: 10.1371/journal.pone.0164646

298. Zuo Y, Zuo M, Yalavarthi S, et al. Neutrophil extracellular traps and thrombosis in COVID-19. medRxiv 2020.04. doi: 10.1101/2020.04.30.20086736

299. Jayne DRW, Bruchfeld AN, Harper L, et al; CLEAR Study Group. Randomized Trial of C5a Receptor Inhibitor Avacopan in ANCA-Associated Vasculitis. J Am Soc Nephrol. 2017; 28(9):2756-67. doi: 10.1681/ASN.2016111179

300. Ruiz-Irastorza G, Ramos-Casals M, Brito-Zeron P, Khamashta MA. Clinical efficacy and side effects of antimalarials in systemic lupus erythematosus: a systematic review. Ann Rheum Dis. 2010;69(1):20-8. doi: 10.1136/ard.2008.101766

301. Yalavarthi S, Gould TJ, Rao AN, et al. Release of neutrophil extracellular traps by neutrophils stimulated with antiphospholipid antibodies: a newly identified mechanism of thrombosis in the antiphospholipid syndrome. Arthritis Rheumatol. 2015; 67(11):2990-3003. doi:10.1002/art.39247

302. Fanouriakis A, Kostopoulou M, Alunno A, et al. 2019 update of the EULAR recommendations for the management of systemic lupus erythematosus. Clinical efficacy and side effects of antimalarials in systemic lupus erythematosus: a systematic review. Ann Rheum Dis. 2019;78(6):736-745. doi: 10.1136/annrheumdis-2019-215089

303. Kello N, Khoury LE, Marder G, Furie R, Zapantis E, Horowitz DL. Secondary thrombotic microangiopathy in systemic lupus erythematosus and antiphospholipid syndrome, the role of complement and use of eculizumab: Case series and review of literature. Semin Arthritis Rheum. 2019; 49(1):74-83. doi: 10.1016/j.semarthrit.2018.11.005

304. Meng H, Yalavarthi S, Kanthi Y, et al. In Vivo Role of Neutrophil Extracellular Traps in Antiphospholipid Antibody-Mediated Venous Thrombosis. Arthritis Rheumatol. 2017;69(3):655-667. doi:10.1002/art.39938

305. Levi M. Tocilizumab for severe COVID-19: A promising intervention affecting inflammation and coagulation. Eur J Intern Med. 2020; 76: 21–22. doi: 10.1016/j.ejim.2020.05.018

306. Infante M, Ricordi C, Fabbri A. Antihyperglycemic Properties of Hydroxychloroquine in Patients With Diabetes: Risks and Benefits at the Time of COVID-19 Pandemic. J Diabetes 2020 May 13;10.1111/1753-0407.13053. doi: 10.1111/1753-0407.13053

307. Vojdani A, Kharrazian D. Potential antigenic cross-reactivity between SARS-CoV-2 and human tissue with a possible link to an increase in autoimmune diseases. Clin Immunol. 2020;217:108480. doi:10.1016/j.clim.2020.108480

308. Russell CD, Millar JE, Baillie JK. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet. 2020;395:473-475. doi: 10.1016/S0140-6736(20)30317-2

309. Senchenkova EY, Russell J, Yildirim A, Granger DN, Gavins FN. A novel role of T cells and IL-6 in angiotensin-II induced microvascular dysfunction. Hypertension 2020; 73(4):829-838. doi:10.1161/HYPERTENSIONAHA.118.12286

310. Smatti MK, Cyprian FS, Nasrallah GK, Al Thani AA, Almishal RO, Yassine HM. Viruses and Autoimmunity: A Review on the Potential Interaction and Molecular Mechanisms. Viruses. 2019; 11(8):762. doi:10.3390/v11080762

311. Cavalli G, De Luca G, Campochiaro C, et al. Interleukin-1 blockade with high-dose anakinra in patients with COVID-19, acute respiratory distress syndrome, and hyperinflammation: a retrospective cohort study. Lancet Rheumatol. 2020; 2(6):e325-e331. doi: 10.1016/S2665-9913(20)30127-2

312. Veronese N, Demurtas J, Yang L, et al. Corticosteroids in Coronavirus Disease 2019 Pneumonia: A Systematic Review of the Literature. Front Med (Lausanne). 2020 Apr 24;7:170. doi: 10.3389/fmed.2020.00170

313. Zheng M, Gao Y, Wang G, et al. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell Mol Immunol. 2020; 17(5):533-5. doi: 10.1038/s41423-020-0402-2

314. Dimopoulos G, de Mast Q, Markou N, et al. Favorable Anakinra Responses in Severe Covid-19 Patients with Secondary Hemophagocytic Lymphohistiocytosis. Cell Host Microbe. 2020; 28(1):117-123.e1. doi:10.1016/j.chom.2020.05.007

315. Zheng HY, Zhang M, Yang CX, et al. Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients. Cell Mol Immunol. 2020;17(5):541-543. doi: 10.1038/s41423-020-0401-3

316. Strehl C, Ehlers L, Gaber T, Buttgereit F. Glucocorticoids-allrounders tackling the versatile players of the immune system. Front Immunol. 2019;10:1744. doi: 10.3389/fimmu.2019.01744

317. Navarro-Millán I, Sattui SE, Lakhanpal A, Zisa D, Siegel CH, Crow MK. Use of Anakinra to Prevent Mechanical Ventilation in Severe COVID-19: A Case Series. Arthritis Rheumatol. 2020; doi:10.1002/art.41422

318. Pender MP. CD8+ T-Cell Deficiency, Epstein-Barr Virus Infection, Vitamin D Deficiency, and Steps to Autoimmunity: A Unifying Hypothesis. Autoimmune Dis. 2012: 189096. doi: 10.1155/2012/189096

319. Hardy RS, Raza K, Cooper MS. Therapeutic glucocorticoids: mechanisms of actions in rheumatic diseases. Nat Rev Rheumatol. 2020;16(3):133-144. doi:10.1038/s41584-020-0371-y

320. Ucciferri C, Auricchio A, Di Nicola M, et al. Canakinumab in a subgroup of patients with COVID-19. Lancet Rheumatol. 2020; 2 (8):e452-e454. doi: 10.1016/S2665-9913(20)30167-3

321. Cain DW, Cidlowski JA. Immune regulation by glucocorticoids. Nat Rev Immunol. 2017; 17(4):233-247. doi: 10.1038/nri.2017.1

322. Liu M, Gao Y, Zhang Y, Shi S, Chen Y, Tian J. The association between severe or dead COVID-19 and autoimmune diseases: A systematic review and meta-analysis. J Infect. 2020;81(3):e93- e95. doi:10.1016/j.jinf.2020.05.065

323. Ridker PM, Everett BM, Thuren T, et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N Engl J Med. 2017; 377(12):1119-1131. doi:10.1056/NEJMoa1707914

324. Wei YY, Wang RR, Zhang DW, et al. Risk factors for severe COVID-19: Evidence from 167 hospitalized patients in Anhui, China. J Infect. 2020;81(1):e89-e92. doi:10.1016/j.jinf.2020.04.010

325. Oray M, Abu Samra K, Ebrahimiadib N, et al. Long-term side effects of glucocorticoids. Expert Opin Drug Saf. 2016;15(4):457- 65. doi: 10.1517/14740338.2016.1140743

326. Nasonov EL, Popkova TV. Anti-inflammatory therapy for atherosclerosis: contribution to and lessons of rheumatology. NauchnoPrakticheskaya Revmatologiya= Rheumatology Science and Practice. 2017; 55(5):465-473. (In Russ.). doi:10.14412/1995-4484-2017-465-473

327. WHO. Clinical management of severe acute respiratory infection when novel coronavirus [nCoV] infection is suspected. https://www.who.int/publications-detail/clinical-management-of-severe-acute-respiratory-infection-when-novelcoronavirus-[ncov]-infection-is-suspected (accessed 09.02.2020)

328. Du RH, Liu LM, Yin W, et al. Hospitalization and Critical Care of 109 Decedents with COVID-19 Pneumonia in Wuhan, China. Ann Am Thorac Soc. 2020;17(7):839-846. doi:10.1513/AnnalsATS.202003-225OC

329. Ridker PM, Libby P, MacFadyen JG, et al. Modulation of the interleukin-6 signalling pathway and incidence rates of atherosclerotic events and all-cause mortality: analyses from the Canakinumab Anti-Inflammatory Thrombosis Outcomes Study (CANTOS). Eur Heart J. 2018;39(38):3499-3507. doi: 10.1093/eurheartj/ehy310

330. Wu C, Chen X, Cai Y, et al. Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern Med. 2020; 180(7):1-11. doi:10.1001/jamainternmed.2020.0994

331. Argenziano MG, Bruce SL, Slater CL. Characterization and Clinical Course of 1000 Patients with COVID-19 in New York: retrospective case series. medRxiv. 2020;2020 04.20.20072116

332. Burzynski LC, Humphry M, Pyrillou K, et al. The Coagulation and Immune Systems Are Directly Linked through the Activation of Interleukin-1α by Thrombin. Immunity. 2019; 50(4):1033- 1042.e6. doi: 10.1016/j.immuni.2019.03.003

333. Zhou W, Liu Y, Tian D, et al. Potential benefits of precise corticosteroids therapy for severe 2019-nCoV pneumonia. Signal Transduct Target Ther. 2020; 5(1):18. doi:10.1038/s41392-020-0127-9

334. Nasonov EL, Beketova TV, Ananyeva LP, Vasilyev VI, Solovyev SK, Avdeeva AS. Prospects for anti-B-cell therapy in immune-inflammatory rheumatic diseases. NauchnoPrakticheskaya Revmatologiya= Rheumatology Science and Practice. 2019; 57:1-40. (In Russ.). doi: 10.14412/1995-4484-2019-3-40.

335. Chen T, Wu D, Chen H, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study [published correction appears in BMJ. 2020 Mar 31;368:m1295]. BMJ. 2020;368:m1091. Published 2020 Mar 26. doi:10.1136/bmj.m1091

336. Wang Y, Jiang W, He Q, et al. A retrospective cohort study of methylprednisolone therapy in severe patients with COVID-19 pneumonia. Signal Transduct Target Ther. 2020; 5(1):57. doi: 10.1038/s41392-020-0158-2

337. Wang L, He W, Yu X. Coronavirus disease 2019 in elderly patients: Characteristics and prognostic factors based on 4-week follow-up. J Infect. 2020;80(6):639-645. doi: 10.1016/j.jinf.2020.03.019

338. Woodruff M, Ramonell R, Cashman K, et al. Critically ill SARSCoV-2 patients display lupus-like hallmarks of extrafollicular B cell activation. medRxiv 2020.04.29.20083717. doi: 10.1101/2020.04.29.20083717

339. RECOVERY Collaborative Group, Horby P, Lim WS, et al. Dexamethasone in Hospitalized Patients with Covid-19 - Preliminary Report [published online ahead of print, 2020 Jul 17]. N Engl J Med. 2020; 10.1056/NEJMoa2021436. doi:10.1056/NEJMoa2021436

340. Quinti I, Lougaris V, Milito C, et al. A possible role for B cells in COVID-19? Lesson from patients with agammaglobulinemia. J Allergy Clin Immunol. 2020; 146(1):211-213.e4. doi:10.1016/j.jaci.2020.04.013

341. Zulfiqar AA, Lorenzo-Villalba N, Hassler P, Andres E. Immune thrombocytopenic purpura in a patient with Covid-19. N. Engl. J Med. 2020, 382, e43. doi: 10.1056/NEJMc2010472

342. Perez EE, Orange JS, Bonilla F, et al. Update on the use of immunoglobulin in human disease: a review of evidence. J Allergy Clin Immun. 2017; 139:S1-46. doi: 10.1016/j.jaci.2016.09.023

343. Pecoraro A, Crescenzi L, Galdiero MR, et al. Immunosuppressive therapy with rituximab in common variable immunodeficiency. Clin Mol Allergy. 2019; 17:9. doi:10.1186/s12948-019-0113-3

344. Albiol N, Awol R, Martino R. Autoimmune thrombotic thrombocytopenic putpura (TTP) associated with COVID-19. Ann Hematol. 2020, 28 May, htts://doi.org/10.1007/s00277-020-04097-0

345. Tenti S, Cheleschi S, Guidelli GM, Galeazzi M, Fioravanti A. Intravenous immunoglobulins and antiphospholipid syndrome: How, when and why? A review of the literature. Autoimmun Rev. 2016; 15(3):226-35. doi: 10.1016/j.autrev.2015.11.009

346. George PM, Wells AU, Jenkins RG. Pulmonary fibrosis and COVID-19: the potential role for antifibrotic therapy. Lancet Respir Med. 2020; 8(8):807-815. doi:10.1016/S2213-2600(20)30225-3

347. Toscano G, Palmerini F, Ravaglia S, et al. Guillain-Barré Syndrome Associated with SARS-CoV-2. N Engl J Med. 2020;382(26):2574-2576. doi:10.1056/NEJMc2009191

348. Prete M, Favoino E, Catacchio G, Racanelli V, Perosa F. SARSCoV-2 infection complicated by inflammatory syndrome. Could high-dose human immunoglobulin for intravenous use (IVIG) be beneficial?. Autoimmun Rev. 2020;19(7):102559. doi:10.1016/j.autrev.2020.102559

349. Spagnolo P, Balestro E, Aliberti S, et al. Pulmonary fibrosis secondary to COVID-19: a call to arms? Lancet Respir Med. 2020; 8(8):750-752. doi:10.1016/S2213-2600(20)30222-8

350. Dalakas MC. Guillain-Barré syndrome: The first documented COVID-19-triggered autoimmune neurologic disease: More to come with myositis in the offing. Neurol Neuroimmunol Neuroinflamm. 2020;7(5):e781. doi: 10.1212/NXI.0000000000000781

351. Xie Y, Cao S, Dong H, et al. Effect of regular intravenous immunoglobulin therapy on prognosis of severe pneumonia in patients with COVID-19. J Infect. 2020; 81(2):318-356. doi:10.1016/j.jinf.2020.03.044

352. Duarte AC, Cordeiro A, Fernandes BM, et al. Rituximab in connective tissue disease-associated interstitial lung disease. Clin Rheumatol. 2019; 38(7):2001-2009. doi: 10.1007/s10067-019-04557-7

353. Lazarian G, Quinquenel A, Bellal M, et al. Autoimmune haemolytic anaemia associated with COVID-19 infection. Br J Haematol. 2020;190(1):29-31. doi:10.1111/bjh.16794

354. Cao W, Liu X, Bai T, et al. High-Dose Intravenous Immunoglobulin as a Therapeutic Option for Deteriorating Patients With Coronavirus Disease 2019. Open Forum Infect Dis. 2020; 7(3):ofaa102. doi:10.1093/ofid/ofaa102

355. Beydon M, Chevalier K, Al Tabaa O, et al. Myositis as a manifestation of SARS-CoV-2. Ann Rheum Dis. 2020. doi:10.1136/annrheumdis-2020-217573.

356. Turgutkaya A, Yavaşoğlu İ, Bolaman Z. Application of plasmapheresis for Covid-19 patients [published online ahead of print, 2020 Jun 8]. Ther Apher Dial. 2020; doi:10.1111/1744-9987.13536

357. Diez J-M, Romero C, Gajardo R. Currently available intravenous immunoglobulin (Gamunex®-C and Flebogamma® DIF) contains antibodies reacting against SARS-CoV-2 antigens. bioRxiv. 2020 Apr 07:029017. doi: 10.1101/2020.04.07.029017

358. Allez M, Denis B, Bouaziz J-D, et al. Covid-19 related IgA vasculitis. Arthritis Rheum 2020. doi:10.1002/ART.41428

359. Rojas M, Rodríguez Y, Monsalve DM, et al. Convalescent plasma in Covid-19: Possible mechanisms of action. Autoimmun Rev. 2020; 19(7):102554. doi:10.1016/j.autrev.2020.102554

360. Rowley AH. Understanding SARS-CoV-2-related multisystem inflammatory syndrome in children. Nat Rev Immunol. 2020;20(8):453-454. doi:10.1038/s41577-020-0367-5

361. Nasonov E.L. Immunopathology and immunopharmacotherapy of coronavirus disease (COVID-19): focus on interleukin 6. NauchnoPrakticheskaya Revmatologiya= Rheumatology Science and Practice. 2020; 58(3):245-261. (In Russ.). doi:10.14412/1995-4484-2020-245-261

362. Galeotti C, Bayry J. Autoimmune and inflammatory diseases following COVID-19. Nat Rev Rheumatol. 2020;16(8):413-414. doi:10.1038/s41584-020-0448-7

363. Russell B, Moss C, George G, et al. Associations between immune-suppressive and stimulating drugs and novel COVID19-a systematic review of current evidence. Ecancermedicalscience. 2020; 14:1022. Published 2020 Mar 27. doi:10.3332/ecancer.2020.1022

364. Gagiannis D, Steinestel J, Hackenbroch C, et al. COVID-19- induced acute respiratory failure: an exacerbation of organ-specific autoimmunity? medRxiv 2020.04.27.20077180; doi: https://doi.org/10.1101/2020.04.27.20077180

365. Diurno F, Numis FG, Porta G, et al. Eculizumab treatment in patients with COVID-19: preliminary results from real life ASL Napoli 2 Nord experience. Eur Rev Med Pharmacol Sci. 2020; 24(7):4040-7. doi: 10.26355/eurrev_202004_20875

366. Didier K, Bolko L, Giusti D, et al. Autoantibodies Associated With Connective Tissue Diseases: What Meaning for Clinicians? Front Immunol. 2018;9:541. doi: 10.3389/fimmu.2018.00541

367. Mastaglio S, Ruggeri A, Risitano AM, et al. The first case of COVID-19 treated with the complement C3 inhibitor AMY-101. Clin Immunol. 2020; 215:108450. doi:10.1016/j.clim.2020.108450

368. Gazzaruso C, Carlo Stella N, Mariani G, et al. High prevalence of antinuclear antibodies and lupus anticoagulant in patients hospitalized for SARS-CoV2 pneumonia. Clin Rheumatol. 2020;39(7):2095-2097. doi:10.1007/s10067-020-05180-7

369. Bekker P, Dairaghi D, Seitz L, et al. Characterization of pharmacologic and pharmacokinetic properties of CCX168, a potent and selective orally administered complement 5a receptor inhibitor, based on preclinical evaluation and randomized Phase 1 clinical study. PLoS One. 2016; 11:e0164646. doi: 10.1371/journal.pone.0164646

370. Zhou Y, Han T, Chen J, et al. Clinical and Autoimmune Characteristics of Severe and Critical Cases of COVID-19. Clin Transl Sci. 2020; doi:10.1111/cts.12805

371. Jayne DRW, Bruchfeld AN, Harper L, et al; CLEAR Study Group. Randomized Trial of C5a Receptor Inhibitor Avacopan in ANCA-Associated Vasculitis. J Am Soc Nephrol. 2017; 28(9):2756-67. doi: 10.1681/ASN.2016111179

372. Atzeni F, Gerardi MC, Barilaro G, et al. Interstitial lung disease in systemic autoimmune rheumatic diseases: a comprehensive review. Expert Rev Clin Immunol. 2018;14(1):69-82. doi: 10.1080/1744666X.2018.1411190

373. Kello N, Khoury LE, Marder G, Furie R, Zapantis E, Horowitz DL. Secondary thrombotic microangiopathy in systemic lupus erythematosus and antiphospholipid syndrome, the role of complement and use of eculizumab: Case series and review of literature. Semin Arthritis Rheum. 2019; 49(1):74-83. doi: 10.1016/j.semarthrit.2018.11.005

374. Mira-Avendano I, Abril A, Burger CD, et al. Interstitial Lung Disease and Other Pulmonary Manifestations in Connective Tissue Diseases. Mayo Clin Proc. 2019; 94(2):309-325. doi:10.1016/j.mayocp.2018.09.002

375. Levi M. Tocilizumab for severe COVID-19: A promising intervention affecting inflammation and coagulation. Eur J Intern Med. 2020; 76: 21–22. doi: 10.1016/j.ejim.2020.05.018

376. Akulkina LA, Brovko MY, Sholomova VI, Yanakayeva AS, Moiseev SV. Interstitial pneumonia with autoimmune features (IPAP): a multidisciplinary diagnosis in pulmonology and rheumatology. Klinicheskaya farmakologiya I terapiya= Clinical Pharmacology and Therapy Journal. 2018;18 (27):5-10 (in Russ)

377. Senchenkova EY, Russell J, Yildirim A, Granger DN, Gavins FN. A novel role of T cells and IL-6 in angiotensin-II induced microvascular dysfunction. Hypertension 2020; 73(4):829-838. doi:10.1161/HYPERTENSIONAHA.118.12286

378. Graney BA, Fischer A. Interstitial Pneumonia with Autoimmune Features. Ann Am Thorac Soc. 2019; 16(5): 525–533. doi: 10.1513/AnnalsATS.201808-565CME.

379. Cavalli G, De Luca G, Campochiaro C, et al. Interleukin-1 blockade with high-dose anakinra in patients with COVID-19, acute respiratory distress syndrome, and hyperinflammation: a retrospective cohort study. Lancet Rheumatol. 2020; 2(6):e325-e331. doi: 10.1016/S2665-9913(20)30127-2

380. Riemekasten G, Cabral-Marques O. Antibodies against angiotensin II type 1 receptor (AT1R) and endothelin receptor type A (ETAR) in systemic sclerosis (SSc)-response. Autoimmun Rev. 2016; 15(9):935. doi: 10.1016/j.autrev.2016.04.004

381. Dimopoulos G, de Mast Q, Markou N, et al. Favorable Anakinra Responses in Severe Covid-19 Patients with Secondary Hemophagocytic Lymphohistiocytosis. Cell Host Microbe. 2020; 28(1):117-123.e1. doi:10.1016/j.chom.2020.05.007

382. Becker MO, Kill A, Kutsche M, et al. Vascular Receptor Autoantibodies in Pulmonary Arterial Hypertension Associated with Systemic Sclerosis. Amer J Resp Crit Care Med 2014; 190(7), 808–817. 10.1164/rccm.201403-0442OC

383. Navarro-Millán I, Sattui SE, Lakhanpal A, Zisa D, Siegel CH, Crow MK. Use of Anakinra to Prevent Mechanical Ventilation in Severe COVID-19: A Case Series. Arthritis Rheumatol. 2020; doi:10.1002/art.41422

384. Avouac J, Riemekasten G, Meune C, et al. Autoantibodies against Endothelin 1 Type A Receptor Are Strong Predictors of Digital Ulcers in Systemic Sclerosis. J Rheum 2014; 42(10), 1801–1807. doi: 10.3899/jrheum.150061

385. Ucciferri C, Auricchio A, Di Nicola M, et al. Canakinumab in a subgroup of patients with COVID-19. Lancet Rheumatol. 2020; 2 (8):e452-e454. doi: 10.1016/S2665-9913(20)30167-3

386. Kill A, Tabeling C, Undeutsch R, et al. Autoantibodies to angiotensin and endothelin receptors in systemic sclerosis induce cellular and systemic events associated with disease pathogenesis. Arthritis Res Ther 2014; 16(1), R29. doi: 10.1186/ar4457

387. Ridker PM, Everett BM, Thuren T, et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N Engl J Med. 2017; 377(12):1119-1131. doi:10.1056/NEJMoa1707914

388. İlgen U, Yayla ME, Düzgün N. Anti-angiotensin II type 1 receptor autoantibodies (AT1R-AAs) in patients with systemic sclerosis: lack of association with disease manifestations. Rheumatol Int. 2017; 37(4):593-598. doi: 10.1007/s00296-016- 3639-4

389. Nasonov EL, Popkova TV. Anti-inflammatory therapy for atherosclerosis: contribution to and lessons of rheumatology. NauchnoPrakticheskaya Revmatologiya= Rheumatology Science and Practice. 2017; 55(5):465-473. (In Russ.). doi:10.14412/1995-4484-2017-465-473

390. Bikdeli B, Madhavan MV, Jimenez D, et al. COVID-19 and Thrombotic or Thromboembolic Disease: Implications for Prevention, Antithrombotic Therapy, and Follow-Up: JACC State-of-the-Art Review. J Am Coll Cardiol. 2020;75(23):2950- 2973. doi: 10.1016/j.jacc.2020.04.031

391. Ridker PM, Libby P, MacFadyen JG, et al. Modulation of the interleukin-6 signalling pathway and incidence rates of atherosclerotic events and all-cause mortality: analyses from the Canakinumab Anti-Inflammatory Thrombosis Outcomes Study (CANTOS). Eur Heart J. 2018;39(38):3499-3507. doi: 10.1093/eurheartj/ehy310

392. Unlu O, Erkan D. Catastrophic Antiphospholipid Syndrome: Candidate Therapies for a Potentially Lethal Disease. Annu Rev Med. 2017;68:287-296. doi: 10.1146/annurev-med-042915-102529

393. Burzynski LC, Humphry M, Pyrillou K, et al. The Coagulation and Immune Systems Are Directly Linked through the Activation of Interleukin-1α by Thrombin. Immunity. 2019; 50(4):1033- 1042.e6. doi: 10.1016/j.immuni.2019.03.003

394. Tektonidou MG, Andreoli L, Limper M, Tincani A, Ward MM. Management of thrombotic and obstetric antiphospholipid syndrome: a systematic literature review informing the EULAR recommendations for the management of antiphospholipid syndrome in adults. RMD Open. 2019;5(1):e000924. doi: 10.1136/rmdopen-2019-000924

395. Nasonov EL, Beketova TV, Ananyeva LP, Vasilyev VI, Solovyev SK, Avdeeva AS. Prospects for anti-B-cell therapy in immune-inflammatory rheumatic diseases. NauchnoPrakticheskaya Revmatologiya= Rheumatology Science and Practice. 2019; 57:1-40. (In Russ.). doi: 10.14412/1995-4484-2019-3-40.

396. Shi C, Wang C, Wang H, et al. The potential of low molecular weight heparin to mitigate cytokine storm in severe COVID-19 patients: a retrospective clinical study. medRxiv. 2020.03.28.20046144; doi: https://doi.org/10.1101/2020.03.28.20046144

397. Woodruff M, Ramonell R, Cashman K, et al. Critically ill SARSCoV-2 patients display lupus-like hallmarks of extrafollicular B cell activation. medRxiv 2020.04.29.20083717. doi: 10.1101/2020.04.29.20083717

398. Wang J, Hajizadeh N, Moore EE, et al. Tissue plasminogen activator (tPA) treatment for COVID-19 associated acute respiratory distress syndrome (ARDS): A case series. J Thromb Haemost. 2020;18(7):1752-1755. doi:10.1111/jth.14828

399. Quinti I, Lougaris V, Milito C, et al. A possible role for B cells in COVID-19? Lesson from patients with agammaglobulinemia. J Allergy Clin Immunol. 2020; 146(1):211-213.e4. doi:10.1016/j.jaci.2020.04.013

400. Schrezenmeier E, Dörner T. Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology. Nat Rev Rheumatol. 2020;16(3):155-66. doi: 10.1038/s41584-020-0372-x

401. Pecoraro A, Crescenzi L, Galdiero MR, et al. Immunosuppressive therapy with rituximab in common variable immunodeficiency. Clin Mol Allergy. 2019; 17:9. doi:10.1186/s12948-019-0113-3

402. Meyerowitz EA, Vannier AGL, Friesen MGN, et al. Rethinking the role of hydroxychloroquine in the treatment of COVID-19. FASEB J. 2020; 34(5):6027-6037. doi: 10.1096/fj.202000919

403. George PM, Wells AU, Jenkins RG. Pulmonary fibrosis and COVID-19: the potential role for antifibrotic therapy. Lancet Respir Med. 2020; 8(8):807-815. doi:10.1016/S2213-2600(20)30225-3

404. Sarma P, Kaur H, Kumar H, et al. Virological and clinical cure in COVID-19 patients treated with hydroxychloroquine: A systematic review and meta-analysis. J Med Virol. 2020; 92(7):776-785. doi: 10.1002/jmv.25898

405. Spagnolo P, Balestro E, Aliberti S, et al. Pulmonary fibrosis secondary to COVID-19: a call to arms? Lancet Respir Med. 2020; 8(8):750-752. doi:10.1016/S2213-2600(20)30222-8

406. Yu B, Li C, Chen P, et al. Low dose of hydroxychloroquine reduces fatality of critically ill patients with COVID-19. Sci China Life Sci. 2020 May 15:1-7. doi: 10.1007/s11427-020-1732-2

407. Duarte AC, Cordeiro A, Fernandes BM, et al. Rituximab in connective tissue disease-associated interstitial lung disease. Clin Rheumatol. 2019; 38(7):2001-2009. doi: 10.1007/s10067-019-04557-7

408. Membrillo de Novales FJ, Ramírez-Olivencia G, Estébanez M, Early Hydroxychloroquine Is Associated with an Increase of Survival in COVID-19 Patients: An Observational Study. 2020, 2020050057. doi: 10.20944/preprints202005.0057.v1

409. Turgutkaya A, Yavaşoğlu İ, Bolaman Z. Application of plasmapheresis for Covid-19 patients [published online ahead of print, 2020 Jun 8]. Ther Apher Dial. 2020; doi:10.1111/1744-9987.13536

410. Espinola RG, Pierangeli SS, Gharavi AE, Harris EN, Ghara AE. Hydroxychloroquine reverses platelet activation induced by human IgG antiphospholipid antibodies. Thromb Haemost. 2002; 87: 518–522

411. Rand JH, Wu X-X, Quinn AS, et al. Hydroxychloroquine protects the annexin A5 anticoagulant shield from disruption by antiphospholipid antibodies: evidence for a novel effect for an old antimalarial drug. Blood. 2010; 115: 2292–2299. 10.1182/blood-2009-04-213520

412. Urbanski G, Caillon A, Poli C, et al. Hydroxychloroquine partially prevents endothelial dysfunction induced by anti-beta-2-GPI antibodies in an in vivo mouse model of antiphospholipid syndrome. PLoS One. 2018; 13(11): e0206814. doi: 10.1371/journal.pone.0206814

413. Miranda S, Billoir P, Damian L, et al. Hydroxychloroquine reverses the prothrombotic state in a mouse model of antiphospholipid syndrome: Role of reduced inflammation and endothelial dysfunction. PLoS One. 2019; 14(3): e0212614. doi: 10.1371/ journal.pone.0212614

414. Schmidt-Tanguy A, Voswinkel J, Henrion D, et al. Antithrombotic effects of hydroxychloroquine in primary antiphospholipid syndrome patients. J Thromb Haemost. 2013;11: 1927–1929. doi: 10.1111/jth.12363

415. Schreiber K, Breen K, Parmar K, Rand JH, Wu XX, Hunt BJ. The effect of hydroxychloroquine on haemostasis, complement, inflammation and angiogenesis in patients with antiphospholipid antibodies. Rheumatology (Oxford). 2018;57(1):120-124. doi:10.1093/rheumatology/kex378

416. Ruiz-Irastorza G, Ramos-Casals M, Brito-Zeron P, Khamashta MA. Clinical efficacy and side effects of antimalarials in systemic lupus erythematosus: a systematic review. Ann Rheum Dis. 2010;69(1):20-8. doi: 10.1136/ard.2008.101766

417. Fanouriakis A, Kostopoulou M, Alunno A, et al. 2019 update of the EULAR recommendations for the management of systemic lupus erythematosus. Clinical efficacy and side effects of antimalarials in systemic lupus erythematosus: a systematic review. Ann Rheum Dis. 2019;78(6):736-745. doi: 10.1136/annrheumdis-2019-215089

418. Infante M, Ricordi C, Fabbri A. Antihyperglycemic Properties of Hydroxychloroquine in Patients With Diabetes: Risks and Benefits at the Time of COVID-19 Pandemic. J Diabetes 2020 May 13;10.1111/1753-0407.13053. doi: 10.1111/1753-0407.13053

419. Russell CD, Millar JE, Baillie JK. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet. 2020;395:473-475. doi: 10.1016/S0140-6736(20)30317-2

420. Veronese N, Demurtas J, Yang L, et al. Corticosteroids in Coronavirus Disease 2019 Pneumonia: A Systematic Review of the Literature. Front Med (Lausanne). 2020 Apr 24;7:170. doi: 10.3389/fmed.2020.00170

421. Strehl C, Ehlers L, Gaber T, Buttgereit F. Glucocorticoids-allrounders tackling the versatile players of the immune system. Front Immunol. 2019;10:1744. doi: 10.3389/fimmu.2019.01744

422. Hardy RS, Raza K, Cooper MS. Therapeutic glucocorticoids: mechanisms of actions in rheumatic diseases. Nat Rev Rheumatol. 2020;16(3):133-144. doi:10.1038/s41584-020-0371-y

423. Cain DW, Cidlowski JA. Immune regulation by glucocorticoids. Nat Rev Immunol. 2017; 17(4):233-247. doi: 10.1038/nri.2017.1

424. Oray M, Abu Samra K, Ebrahimiadib N, et al. Long-term side effects of glucocorticoids. Expert Opin Drug Saf. 2016;15(4):457- 65. doi: 10.1517/14740338.2016.1140743

425. WHO. Clinical management of severe acute respiratory infection when novel coronavirus [nCoV] infection is suspected. https://www.who.int/publications-detail/clinical-management-of-severe-acute-respiratory-infection-when-novelcoronavirus-[ncov]-infection-is-suspected (accessed 09.02.2020)

426. Wu C, Chen X, Cai Y, et al. Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern Med. 2020; 180(7):1-11. doi:10.1001/jamainternmed.2020.0994

427. Zhou W, Liu Y, Tian D, et al. Potential benefits of precise corticosteroids therapy for severe 2019-nCoV pneumonia. Signal Transduct Target Ther. 2020; 5(1):18. doi:10.1038/s41392-020-0127-9

428. Wang Y, Jiang W, He Q, et al. A retrospective cohort study of methylprednisolone therapy in severe patients with COVID-19 pneumonia. Signal Transduct Target Ther. 2020; 5(1):57. doi: 10.1038/s41392-020-0158-2

429. RECOVERY Collaborative Group, Horby P, Lim WS, et al. Dexamethasone in Hospitalized Patients with Covid-19 - Preliminary Report [published online ahead of print, 2020 Jul 17]. N Engl J Med. 2020; 10.1056/NEJMoa2021436. doi:10.1056/NEJMoa2021436

430. Perez EE, Orange JS, Bonilla F, et al. Update on the use of immunoglobulin in human disease: a review of evidence. J Allergy Clin Immun. 2017; 139:S1-46. doi: 10.1016/j.jaci.2016.09.023

431. Tenti S, Cheleschi S, Guidelli GM, Galeazzi M, Fioravanti A. Intravenous immunoglobulins and antiphospholipid syndrome: How, when and why? A review of the literature. Autoimmun Rev. 2016; 15(3):226-35. doi: 10.1016/j.autrev.2015.11.009

432. Prete M, Favoino E, Catacchio G, Racanelli V, Perosa F. SARSCoV-2 infection complicated by inflammatory syndrome. Could high-dose human immunoglobulin for intravenous use (IVIG) be beneficial?. Autoimmun Rev. 2020;19(7):102559. doi:10.1016/j.autrev.2020.102559

433. Xie Y, Cao S, Dong H, et al. Effect of regular intravenous immunoglobulin therapy on prognosis of severe pneumonia in patients with COVID-19. J Infect. 2020; 81(2):318-356. doi:10.1016/j.jinf.2020.03.044

434. Cao W, Liu X, Bai T, et al. High-Dose Intravenous Immunoglobulin as a Therapeutic Option for Deteriorating Patients With Coronavirus Disease 2019. Open Forum Infect Dis. 2020; 7(3):ofaa102. doi:10.1093/ofid/ofaa102

435. Diez J-M, Romero C, Gajardo R. Currently available intravenous immunoglobulin (Gamunex®-C and Flebogamma® DIF) contains antibodies reacting against SARS-CoV-2 antigens. bioRxiv. 2020 Apr 07:029017. doi: 10.1101/2020.04.07.029017

436. Rojas M, Rodríguez Y, Monsalve DM, et al. Convalescent plasma in Covid-19: Possible mechanisms of action. Autoimmun Rev. 2020; 19(7):102554. doi:10.1016/j.autrev.2020.102554

437. Nasonov E.L. Immunopathology and immunopharmacotherapy of coronavirus disease (COVID-19): focus on interleukin 6. NauchnoPrakticheskaya Revmatologiya= Rheumatology Science and Practice. 2020; 58(3):245-261. (In Russ.). doi:10.14412/1995-4484-2020-245-261

438. Russell B, Moss C, George G, et al. Associations between immune-suppressive and stimulating drugs and novel COVID19-a systematic review of current evidence. Ecancermedicalscience. 2020; 14:1022. Published 2020 Mar 27. doi:10.3332/ecancer.2020.1022

439. Diurno F, Numis FG, Porta G, et al. Eculizumab treatment in patients with COVID-19: preliminary results from real life ASL Napoli 2 Nord experience. Eur Rev Med Pharmacol Sci. 2020; 24(7):4040-7. doi: 10.26355/eurrev_202004_20875

440. Mastaglio S, Ruggeri A, Risitano AM, et al. The first case of COVID-19 treated with the complement C3 inhibitor AMY-101. Clin Immunol. 2020; 215:108450. doi:10.1016/j.clim.2020.108450

441. Bekker P, Dairaghi D, Seitz L, et al. Characterization of pharmacologic and pharmacokinetic properties of CCX168, a potent and selective orally administered complement 5a receptor inhibitor, based on preclinical evaluation and randomized Phase 1 clinical study. PLoS One. 2016; 11:e0164646. doi: 10.1371/journal.pone.0164646

442. Jayne DRW, Bruchfeld AN, Harper L, et al; CLEAR Study Group. Randomized Trial of C5a Receptor Inhibitor Avacopan in ANCA-Associated Vasculitis. J Am Soc Nephrol. 2017; 28(9):2756-67. doi: 10.1681/ASN.2016111179

443. Kello N, Khoury LE, Marder G, Furie R, Zapantis E, Horowitz DL. Secondary thrombotic microangiopathy in systemic lupus erythematosus and antiphospholipid syndrome, the role of complement and use of eculizumab: Case series and review of literature. Semin Arthritis Rheum. 2019; 49(1):74-83. doi: 10.1016/j.semarthrit.2018.11.005

444. Levi M. Tocilizumab for severe COVID-19: A promising intervention affecting inflammation and coagulation. Eur J Intern Med. 2020; 76: 21–22. doi: 10.1016/j.ejim.2020.05.018

445. Senchenkova EY, Russell J, Yildirim A, Granger DN, Gavins FN. A novel role of T cells and IL-6 in angiotensin-II induced microvascular dysfunction. Hypertension 2020; 73(4):829-838. doi:10.1161/HYPERTENSIONAHA.118.12286

446. Cavalli G, De Luca G, Campochiaro C, et al. Interleukin-1 blockade with high-dose anakinra in patients with COVID-19, acute respiratory distress syndrome, and hyperinflammation: a retrospective cohort study. Lancet Rheumatol. 2020; 2(6):e325-e331. doi: 10.1016/S2665-9913(20)30127-2

447. Dimopoulos G, de Mast Q, Markou N, et al. Favorable Anakinra Responses in Severe Covid-19 Patients with Secondary Hemophagocytic Lymphohistiocytosis. Cell Host Microbe. 2020; 28(1):117-123.e1. doi:10.1016/j.chom.2020.05.007

448. Navarro-Millán I, Sattui SE, Lakhanpal A, Zisa D, Siegel CH, Crow MK. Use of Anakinra to Prevent Mechanical Ventilation in Severe COVID-19: A Case Series. Arthritis Rheumatol. 2020; doi:10.1002/art.41422

449. Ucciferri C, Auricchio A, Di Nicola M, et al. Canakinumab in a subgroup of patients with COVID-19. Lancet Rheumatol. 2020; 2 (8):e452-e454. doi: 10.1016/S2665-9913(20)30167-3

450. Ridker PM, Everett BM, Thuren T, et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N Engl J Med. 2017; 377(12):1119-1131. doi:10.1056/NEJMoa1707914

451. Nasonov EL, Popkova TV. Anti-inflammatory therapy for atherosclerosis: contribution to and lessons of rheumatology. NauchnoPrakticheskaya Revmatologiya= Rheumatology Science and Practice. 2017; 55(5):465-473. (In Russ.). doi:10.14412/1995-4484-2017-465-473

452. Ridker PM, Libby P, MacFadyen JG, et al. Modulation of the interleukin-6 signalling pathway and incidence rates of atherosclerotic events and all-cause mortality: analyses from the Canakinumab Anti-Inflammatory Thrombosis Outcomes Study (CANTOS). Eur Heart J. 2018;39(38):3499-3507. doi: 10.1093/eurheartj/ehy310

453. Burzynski LC, Humphry M, Pyrillou K, et al. The Coagulation and Immune Systems Are Directly Linked through the Activation of Interleukin-1α by Thrombin. Immunity. 2019; 50(4):1033- 1042.e6. doi: 10.1016/j.immuni.2019.03.003

454. Nasonov EL, Beketova TV, Ananyeva LP, Vasilyev VI, Solovyev SK, Avdeeva AS. Prospects for anti-B-cell therapy in immune-inflammatory rheumatic diseases. NauchnoPrakticheskaya Revmatologiya= Rheumatology Science and Practice. 2019; 57:1-40. (In Russ.). doi: 10.14412/1995-4484-2019-3-40.

455. Woodruff M, Ramonell R, Cashman K, et al. Critically ill SARSCoV-2 patients display lupus-like hallmarks of extrafollicular B cell activation. medRxiv 2020.04.29.20083717. doi: 10.1101/2020.04.29.20083717

456. Quinti I, Lougaris V, Milito C, et al. A possible role for B cells in COVID-19? Lesson from patients with agammaglobulinemia. J Allergy Clin Immunol. 2020; 146(1):211-213.e4. doi:10.1016/j.jaci.2020.04.013

457. Pecoraro A, Crescenzi L, Galdiero MR, et al. Immunosuppressive therapy with rituximab in common variable immunodeficiency. Clin Mol Allergy. 2019; 17:9. doi:10.1186/s12948-019-0113-3

458. George PM, Wells AU, Jenkins RG. Pulmonary fibrosis and COVID-19: the potential role for antifibrotic therapy. Lancet Respir Med. 2020; 8(8):807-815. doi:10.1016/S2213-2600(20)30225-3

459. Spagnolo P, Balestro E, Aliberti S, et al. Pulmonary fibrosis secondary to COVID-19: a call to arms? Lancet Respir Med. 2020; 8(8):750-752. doi:10.1016/S2213-2600(20)30222-8

460. Duarte AC, Cordeiro A, Fernandes BM, et al. Rituximab in connective tissue disease-associated interstitial lung disease. Clin Rheumatol. 2019; 38(7):2001-2009. doi: 10.1007/s10067-019-04557-7

461. Turgutkaya A, Yavaşoğlu İ, Bolaman Z. Application of plasmapheresis for Covid-19 patients [published online ahead of print, 2020 Jun 8]. Ther Apher Dial. 2020; doi:10.1111/1744-9987.13536


Review

For citations:


Nasonov E.L., Beketova T.V., Reshetnyak T.M., Lila A.M., Ananieva L.P., Lisitsyna T.A., Soloviev S.K. Coronavirus disease 2019 (COVID-19) and immune-mediated inflammatory rheumatic diseases: at the crossroads of thromboinflammation and autoimmunity. Rheumatology Science and Practice. 2020;58(4):353-367. (In Russ.) https://doi.org/10.47360/1995-4484-2020-353-367

Views: 3055


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1995-4484 (Print)
ISSN 1995-4492 (Online)