Preview

Научно-практическая ревматология

Расширенный поиск

Коронавирусная болезнь 2019 (COVID-19) у детей: уроки педиатрической ревматологии

https://doi.org/10.47360/1995-4484-2020-469-479

Полный текст:

Аннотация

Клиническая картина и исходы коронавирусной болезни 2019 (coronavirus disease – COVID-19) зависят от многих факторов, одним из которых является возраст пациента. Одним из тяжелых жизнеугрожающих проявлений у взрослых является острый респираторный дистресс-синдром (ОРДС), в ряде случаев сопровождающийся развитием полиорганной недостаточности. В течение первых месяцев пандемии COVID-19 сложилось мнение, что у детей это заболевание, как правило, протекает в легкой форме и не приводит к летальному исходу. Однако по мере накопления новых сведений стала очевидной возможность тяжелого течения COVID-19 у детей, приводящего к развитию патологии, получившей название «мультисистемный воспалительный синдром» (Multisystem inflammatory syndrome in children – MIS-C). В статье обсуждаются эпидемиологические, клинические и лабораторные характеристики MIS-C, подходы к дифференциальной диагностике с другими воспалительными заболеваниями у детей, предполагаемые механизмы иммунопатогенеза и перспективы фармакотерапии.

Об авторах

М. И. Каледа
ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой»
Россия

Каледа Мария Игоревна

115522, Москва, Каширское шоссе, 34а



И. П. Никишина
ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой»
Россия
115522, Москва, Каширское шоссе, 34а


Е. С. Федоров
ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой»
Россия
115522, Москва, Каширское шоссе, 34а


Е. Л. Насонов
ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой»; ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Министерства здравоохранения Российской Федерации (Сеченовский Университет)
Россия
115522, Москва, Каширское шоссе, 34а
119991, Москва, ул. Трубецкая, 8, стр. 2


Список литературы

1. Wiersinga W.J., Rhodes A., Cheng A.C., Peacock S.J., Prescott H.C. Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19): A Review. JAMA. 2020;324(8):782–793. DOI: 10.1001/jama.2020.12839

2. Jiang L., Tang K., Levin M., et al. COVID-19 and multisystem inflammatory syndrome in children and adolescents. Lancet Infect Dis. 2020:S1473-3099(20)30651-4. DOI: 10.1016/S1473-3099(20)30651-4

3. Насонов Е.Л. Коронавирусная болезнь 2019 (COVID-19): размышления ревматолога. Научно-практическая ревматология. 2020;58(2):123–132. DOI: 10.14412/1995-4484-2020-123-132

4. Методические рекомендации: особенности клинических проявлений и лечения заболевания, вызванного новой коронавирусной инфекцией (COVID-19) у детей. Версия 2 от 03.07.2020. URL: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/050/914/original/03062020_дети_COVID-19_v2.pdf

5. Steinman J.B., Lum F.M., Pui-Kay Ho P., Kaminski N., Steinman L. Reduced development of COVID-19 in children reveals molecular checkpoints gating pathogenesis illuminating potential therapeutics. Proc Nat Acad Sci, 202012358. DOI: 10.1073/pnas.2012358117

6. Fialkowski A., Gernez Y., Arya P., Weinacht K.G., Kinane T.B., Yonker L.M. Insight into the pediatric and adult dichotomy of COVID-19: Age-related differences in the immune response to SARS-CoV-2 infection. Pediatr Pulmonol. 2020. DOI: 10.1002/ppul.24981

7. WHO. Multisystem inflammatory syndrome in children and adolescents with COVID-19. URL: https://www.who.int/publications/i/item/multisystem-inflammatory-syndrome-in-children-and-adolescents-with-covid-19 (Date accessed: 2020).

8. Centers for Disease Control and Prevention. Multisystem inflammatory syndrome. URL: https://www.cdc.gov/mis-c/hcp/ (Date accessed: 2020).

9. The Royal College of Paediatrics and Child Health. Guidancepaediatric multisystem inflammatory syndrome temporally associated with COVID-19 (PIMS). URL: https://www.rcpch.ac.uk/resources/guidance-paediatric-multisystem-inflammatory-syndrome-temporally-associated-covid-19-pims (Date accessed: 2020).

10. Nakra N.A., Blumberg D.A., Herrera-Guerra A., Lakshminrusimha S. Multi-System Inflammatory Syndrome in Children (MIS-C) Following SARS-CoV-2 Infection: Review of Clinical Presentation, Hypothetical Pathogenesis, and Proposed Management. Children (Basel). 2020;7(7):69. DOI: 10.3390/children7070069. PMID: 32630212. PMCID: PMC7401880

11. Koné-Paut I., Cimaz R. Is it Kawasaki shock syndrome, Kawasaki-like disease or pediatric inflammatory multisystem disease? The importance of semantic in the era of COVID-19 pandemic. RMD Open. 2020;6(2):e001333. DOI: 10.1136/rmdopen-2020-001333

12. Loke Y.H., Berul C.I., Harahsheh A.S. Multisystem inflammatory syndrome in children: Is there a linkage to Kawasaki disease? Trends Cardiovasc Med. 2020;30(7):389–396. DOI: 10.1016/j.tcm.2020.07.004

13. Henderson L.A., Cron R.Q. Macrophage Activation Syndrome and Secondary Hemophagocytic Lymphohistiocytosis in Childhood Inflammatory Disorders: Diagnosis and Management. Paediatr Drugs. 2020;22(1):29–44.

14. Dufort E.M., Koumans E.H., Chow E.J., et al. Multisystem Inflammatory Syndrome in Children in New York State. N Engl J Med. 2020;383:347–358. DOI: 10.1056/NEJMoa2021756

15. Levin M. Childhood Multisystem Inflammatory Syndrome A New Challenge in the Pandemic. N Engl J Med. 2020;383(4):393–395. DOI: 10.1056/NEJMe2023158

16. Cheung E.W., Zachariah P., Gorelik M., et al. Multisystem Inflammatory Syndrome Related to COVID-19 in Previously Healthy Children and Adolescents in New York City. JAMA. 2020;e2010374. DOI: 10.1001/jama.2020.10374

17. Feldstein L.R., Rose E.B., Horwitz S.M., et al. Multisystem Inflammatory Syndrome in U.S. Children and Adolescents. N Engl J Med. 2020;383(4):334–346. DOI: 10.1056/NEJMoa2021680

18. Ahmed M., Advani S., Moreira A., et al. Multisystem inflammatory syndrome in children: A systematic review [published online ahead of print, 2020]. EClinicalMedicine. 2020;100527. DOI: 10.1016/j.eclinm.2020.100527

19. Radia T., Williams N., Agrawal P., Harman K., Weale J., et al. Multi-system inflammatory syndrome in children & adolescents (MIS-C): A systematic review of clinical features and presentation. Paediatr Respir Rev. 2020:S1526-0542(20)30117-2. DOI: 10.1016/j.prrv.2020.08.001.

20. Abrams J.Y., Godfred-Cato S.E., Oster M.E., et al. Multisystem Inflammatory Syndrome in Children (MIS-C) Associated with SARS-CoV-2: A Systematic Review. J Pediatr. 2020;S00223476(20)30985-9. DOI: 10.1016/j.jpeds.2020.08.003

21. Hoste L., Van Paemel R., Haerynck F. Multisystem inflammatory syndrome in children related to COVID-19: A systematic review medRxiv. 2020.08.17.20173641. DOI: 10.1101/2020.08.17.20173641

22. Aronoff S.C., Hall A., Del Vecchio M.T. The Natural History of Severe Acute Respiratory Syndrome Coronavirus 2–Related Multisystem Inflammatory Syndrome in Children: A Systematic Review. J Pediatric Infec Dis Soc, 2020, piaa112. DOI: 10.1093/jpids/piaa112

23. Godfred-Cato S., Bryant B., Leung J., et al. COVID-19Associated Multisystem Inflammatory Syndrome in Children United States, March-July 2020. MMWR Morb Mortal Wkly Rep. 2020;69(32):1074–1080. Published 2020. DOI: 10.15585/mmwr.mm6932e2

24. Rowley A.H. Multisystem Inflammatory Syndrome in Children and Kawasaki Disease: Two Different Illnesses with Overlapping Clinical Features. J Pediatr. 2020;224:129–132. DOI: 10.1016/j.jpeds.2020.06.057

25. McCrindle B.W., Rowley A.H., Newburger J.W., et al. Diagnosis, Treatment, and Long-Term Management of Kawasaki Disease: A Scientific Statement for Health Professionals From the American Heart Association. Circulation. 2017;135(17):e927-e999. DOI: 10.1161/CIR.0000000000000484. Erratum in: Circulation. 2019;140(5):e181–e184.

26. Elakabawi K., Lin J., Jiao F., Guo N., Yuan Z. Kawasaki Disease: Global Burden and Genetic Background. Cardiol Res. 2020;11(1):9–14. DOI: 10.14740/cr993

27. Jhaveri S., Ahluwalia N., Kaushik S., et al. Longitudinal Echocardiographic Assessment of Coronary Arteries and Left Ventricular Function following Multisystem Inflammatory Syndrome in Children. J Pediatr. 2020;S0022-3476(20)30984-7. DOI: 10.1016/j.jpeds.2020.08.002

28. Muniz J.C., Dummer K., Gauvreau K., Colan S.D., Fulton D.R., Newburger J.W. Coronary artery dimensions in febrile children without Kawasaki disease. Circ Cardiovasc Imaging. 2013 Mar 1;6(2):239–244. DOI: 10.1161/CIRCIMAGING.112.000159

29. Fox S.E., Lameira F.S., Rinker E.B., Vander Heide R.S. Cardiac Endotheliitis and Multisystem Inflammatory Syndrome After COVID-19. Ann Intern Med. 2020:L20-0882. DOI: 10.7326/L20-0882

30. Fox S.E., Akmatbekov A., Harbert J.L., Li G., Quincy Brown J., Vander Heide R.S. Pulmonary and cardiac pathology in African American patients with COVID-19: an autopsy series from New Orleans. Lancet Respir Med. 2020;8(7):681–686. DOI: 10.1016/S2213-2600(20)30243-5

31. Dolhnikoff M., Ferreira Ferranti J., de Almeida Monteiro R.A., et al. SARS-CoV-2 in cardiac tissue of a child with COVID-19related multisystem inflammatory syndrome. Lancet Child Adolesc Health. 2020;4(10):790–794. DOI: 10.1016/S23524642(20)30257-1. Erratum in: Lancet Child Adolesc Health. 2020;4(10):e39.

32. Verdoni L., Mazza A., Gervasoni A., et al. An outbreak of severe Kawasaki-like disease at the Italian epicentre of the SARS-CoV-2 epidemic: an observational cohort study. Lancet. 2020. Epub ahead of print. DOI: 10.1016/S0140-6736(20)31103-X

33. Rowley A.H., Shulman S.T., Arditi M. Immune pathogenesis of COVID-19-related Multisystem Inflammatory Syndrome in Children (MIS-C). J Clin Invest. 2020. DOI: 10.1172/JCI143840

34. Rowley A.H. Understanding SARS-CoV-2-related multisystem inflammatory syndrome in children. Nat Rev Immunol. 2020(8):453–454. DOI: 10.1038/s41577-020-0367-5

35. Henderson L.A., Canna S.W., Schulert G.S., et al. On the alert for cytokine storm: Immunopathology in COVID-19. Arthritis Rheum. 2020. DOI: 10.1002/art.41285

36. Nasonov E., Samsonov M. The role of Interleukin 6 inhibitors in therapy of severe COVID-19. Biomed Pharmacother. 2020;131:110698. DOI: 10.1016/j.biopha.2020.110698

37. Carter S.J., Tattersall R.S., Ramanan A.V. Macrophage activation syndrome in adults: recent advances in pathophysiology, diagnosis and treatment. Rheumatology (Oxford). 2019;58(1):5–17. DOI: 10.1093/rheumatology/key006

38. Behrens E.M., Koretzky G.A. Review: Cytokine storm syndrome: looking toward the precision medicine era. Arthritis Rheum. 2017;69(6):1135–1143. DOI: 10.1002/art.40071

39. Насонов Е.Л., Бекетова Т.В., Решетняк Т.М., Лила А.М., Ананьева Л.П., Лисицина Т.А., Соловьев С.К. Коронавирусная болезнь 2019 (COVID-19) и иммуновоспалительные ревматические заболевания: на перекрестке проблем тромбовоспаления и аутоиммунитета. Научнопрактическая ревматология. 2020;58(4):353–367. DOI: 10.47360/1995-4484-2020-353-367

40. Merrill J.T., Erkan D., Winakur J., James J.A. Emerging evidence of a COVID-19 thrombotic syndrome has treatment implications. Nat Rev Rheumatol. 2020;16(10):581–589. DOI: 10.1038/s41584-020-0474-5

41. Ramos-Casals M., Brito-Zeron P., Lopez-Guillermo A., et al. Adult haemophagocytic syndrome. Lancet. 2014;383:1503–1516. DOI: 10.1016/S0140-6736(13)61048-X

42. Junior H.S., Sakano T.M.S., Rodrigues R.M., et al. Multisystem inflammatory syndrome associated with COVID-19 from the pediatric emergency physician’s point of view. J Pediatr (Rio J). 2020;S0021-7557(20)30203-5. DOI: 10.1016/j.jped.2020.08.004

43. Wang Z., Wang Y., Huang W., et al. Hemophagocytic Lymphohistiocytosis Is Not Only a Childhood Disease: A MultiCenter Study of 613 Cases from Chinese HLH Workgroup. Blood 2014;124(21):4146. DOI: 10.1182/blood.V124.21.4146.4146

44. Halyabar O., Chang M.H., Schoettler M.L., et al. Calm in the midst of cytokine storm: a collaborative approach to the diagnosis and treatment of hemophagocytic lymphohistiocytosis and macrophage activation syndrome. Pediatr Rheumatol Online J. 2019;17(1):7. DOI: 10.1186/s12969-019-0309-6

45. Tanner T., Wahezi D.M. Hyperinflammation and the utility of immunomodulatory medications in children with COVID-19. Paediatr Respir Rev. 2020;35:81–87. DOI: 10.1016/j.prrv.2020.07.003

46. Perez-Toledo M., Faustini S.E., Jossi S.E., et al. Serology confirms SARS-CoV-2 infection in PCR-negative children presenting with Paediatric Inflammatory Multi-System Syndrome. medRxiv. 2020:2020.06.05.20123117. DOI: 10.1101/2020.06.05.20123117

47. Anderson E.M., Diorio C., Goodwin E.C., et al. SARS-CoV-2 antibody responses in children with MIS-C and mild and severe COVID-19. medRxiv. 2020;2020.08.17.20176552. Published 2020. DOI: 10.1101/2020.08.17.20176552

48. Weisberg S.P., Connors T., Zhu Y., et al. Antibody responses to SARS-CoV2 are distinct in children with MIS-C compared to adults with COVID-19. medRxiv 2020.07.12.20151068. DOI: 10.1101/2020.07.12.20151068

49. Sette A., Crotty S. Pre-existing immunity to SARS-CoV-2: the knowns and unknowns. Nat Rev Immunol. 2020;20(8):457–458. DOI: 10.1038/s41577-020-0389-z. Erratum in: Nat Rev Immunol. 2020 Oct;20(10):644.

50. Cheng M.H., Zhang S., Porritt R.A., Arditi M., Baha I. An insertion unique to SARS-CoV-2 exhibits superantigenic character strengthened by recent mutations. bioRxiv 2020.05.21.109272. DOI: 10.1101/2020.05.21.109272

51. Rostad C.A., Chahroudi A., Mantus G., et al. Quantitative SARS-CoV-2 Serology in Children With Multisystem Inflammatory Syndrome (MIS-C). Pediatrics. 2020:e2020018242. DOI: 10.1542/peds.2020-018242

52. Lee W.S., Wheatley A.K., Kent S.J., et al. Antibody-dependent enhancement and SARS-CoV-2 vaccines and therapies. Nat Microbiol. 2020;5:1185–1191. DOI: 10.1038/s41564-020-00789-5

53. Gruber C., Patel R., Trachman R., et al. Mapping Systemic Inflammation and Antibody Responses in Multisystem Inflammatory Syndrome in Children (MIS-C). Preprint. medRxiv. 2020;2020.07.04.20142752. DOI: 10.1101/2020.07.04.20142752

54. Hoepel W., Chen H.-J., Allahverdiyeva S., et al. Anti-SARSCoV-2 IgG from severely ill COVID-19 patients promotes macrophage hyper-inflammatory responses. bioRxiv 2020.07.13.190140. DOI: 10.1101/2020.07.13.190140

55. Carter M.J., Fish M., Jennings A., et al. Peripheral immunophenotypes in children with multisystem inflammatory syndrome associated with SARS-CoV-2 infection. Nat Med 2020. DOI: 10.1038/s41591-020-1054-6

56. Mangalmurti N., Hunter C.A. Cytokine Storms: Understanding COVID-19. Immunity. 2020;53(1):19–25. DOI: 10.1016/j.immuni.2020.06.017

57. Consiglio C.R., Cotugno N., Sardh F., et al. The Immunology of Multisystem Inflammatory Syndrome in Children with COVID-19. Cell. 2020:S0092-8674(20)31157-0. DOI: 10.1016/j.cell.2020.09.016

58. Lee P.Y., Day-Lewis M., Henderson L.A., et al. Distinct clinical and immunological features of SARS-COV-2-induced multisystem inflammatory syndrome in children. J Clin Invest. 2020:141113. DOI: 10.1172/JCI141113

59. Diorio C., Henrickson S.E., Vella L.A., et al. Multisystem inflammatory syndrome in children and COVID-19 are distinct presentations of SARS-CoV-2. J Clin Invest. 2020:140970. DOI: 10.1172/JCI140970

60. Harwood R., Allin B., Jones C.E., et al.; PIMS-TS National Consensus Management Study Group. A national consensus management pathway for paediatric inflammatory multisystem syndrome temporally associated with COVID-19 (PIMS-TS): results of a national Delphi process. Lancet Child Adolesc Health. 2020:S2352-4642(20)30304-7. DOI: 10.1016/S23524642(20)30304-7

61. Henderson L.A., Canna S.W., Friedman K.G., et al. American College of Rheumatology Clinical Guidance for Pediatric Patients with Multisystem Inflammatory Syndrome in Children (MIS-C) Associated with SARS-CoV-2 and Hyperinflammation in COVID-19. Version 1. Arthritis Rheumatol. 2020:10.1002/ art.41454. DOI: 10.1002/art.41454

62. Elias M.D., McCrindle B.W., Larios G., et al. Management of Multisystem Inflammatory Syndrome in Children Associated with COVID-19: A Survey from the International Kawasaki Disease Registry. CJC Open. 2020 Sep 11. DOI: 10.1016/j.cjco.2020.09.004

63. European Centre for Disease Prevention and Control. ECDC; Stockholm: 2020. Paediatric inflammatory multisystem syndrome and SARS-CoV-2 infection in children. URL: https://www.ecdc.europa.eu/sites/default/files/documents/covid-19-risk-assessment-paediatric-inflammatory-multisystem-syndrome-15-May-2020.pdf (Date accessed: 7.07.2020).

64. Grimaud M., Starck J., Levy M., et al. Acute myocarditis and multisystem inflammatory emerging disease following SARSCoV-2 infection in critically ill children. Ann Intensive Care. 2020;10(1):69. DOI: 10.1186/s13613-020-00690-8

65. Toubiana J., Poirault C., Corsia A., et al. Kawasaki-like multisystem inflammatory syndrome in children during the covid-19 pandemic in Paris, France: prospective observational study. BMJ. 2020;369:m2094. DOI: 10.1136/bmj.m2094

66. Chiotos K., Bassiri H., Behrens E.M., et al. Multisystem Inflammatory Syndrome in Children During the Coronavirus 2019 Pandemic: A Case Series. J Pediatric Infect Dis Soc. 2020;9(3):393–398. DOI: 10.1093/jpids/piaa069

67. Riphagen S., Gomez X., Gonzalez-Martinez C., et al. Hyperinflammatory shock in children during COVID-19 pandemic. Lancet. 2020;395(10237):1607–1608. DOI: 10.1016/S0140-6736(20)31094-1

68. Belhadjer Z., Méot M., Bajolle F., et al. Acute heart failure in multisystem inflammatory syndrome in children (MIS-C) in the context of global SARS-CoV-2 pandemic. Circulation. 2020. DOI: 10.1161/CIRCULATIONAHA.120.048360

69. Cheung E.W., Zachariah P., Gorelik M., et al. Multisystem Inflammatory Syndrome Related to COVID-19 in Previously Healthy Children and Adolescents in New York City. JAMA. 2020;324(3):294–296. DOI: 10.1001/jama.2020.10374

70. Whittaker E., Bamford A., Kenny J., et al.; PIMS-TS Study Group and EUCLIDS and PERFORM Consortia. Clinical Characteristics of 58 Children With a Pediatric Inflammatory Multisystem Syndrome Temporally Associated With SARS-CoV-2. JAMA. 2020;324(3):259–269. DOI: 10.1001/jama.2020.10369

71. Miller J., Cantor A., Zachariah P., et al. Gastrointestinal Symptoms as a Major Presentation Component of a Novel Multisystem Inflammatory Syndrome in Children That Is Related to Coronavirus Disease 2019: A Single Center Experience of 44 Cases. Gastroenterology. 2020:S0016-5085(20)34753-3. DOI: 10.1053/j.gastro.2020.05.079

72. Feldstein L.R., Rose E.B., Horwitz S.M., et al. Multisystem Inflammatory Syndrome in U.S. Children and Adolescents. N Engl J Med. 2020;383(4):334–346. DOI: 10.1056/NEJMoa2021680

73. Capone C.A., Subramony A., Sweberg T., et al. Characteristics, Cardiac Involvement, and Outcomes of Multisystem Inflammatory Syndrome of Childhood Associated with severe acute respiratory syndrome coronavirus 2 Infection. J Pediatr. 2020;224:141–145. DOI: 10.1016/j.jpeds.2020.06.044

74. Lo M.S., Newburger J.W. Role of intravenous immunoglobulin in the treatment of Kawasaki disease. Int J Rheum Dis. 2018;21(1):64–69. DOI: 10.1111/1756-185X.13220

75. Wong P.H., White K.M. Impact of Immunoglobulin Therapy in Pediatric Disease: a Review of Immune Mechanisms. Clin Rev Allergy Immunol. 2016;51(3):303–314. DOI: 10.1007/s12016-015-8499-2

76. Perez E.E., Orange J.S., Bonilla F., et al. Update on the use of immunoglobulin in human disease: a review of evidence. J Allergy Clin Immun. 2017;139:S1–46. DOI: 10.1016/j.jaci.2016.09.023

77. Prete M., Favoino E., Catacchio G., Racanelli V., Perosa F. SARS-CoV-2 infection complicated by inflammatory syndrome. Could high-dose human immunoglobulin for intravenous use (IVIG) be beneficial? Autoimmun Rev. 2020;19(7):102559. DOI: 10.1016/j.autrev.2020.102559

78. Xie Y., Cao S., Dong H., et al. Effect of regular intravenous immunoglobulin therapy on prognosis of severe pneumonia in patients with COVID-19. J Infect. 2020;81(2):318–356. DOI: 10.1016/j.jinf.2020.03.044

79. Cao W., Liu X., Bai T., et al. High-Dose Intravenous Immunoglobulin as a Therapeutic Option for Deteriorating Patients With Coronavirus Disease 2019. Open Forum Infect Dis. 2020;7(3):ofaa102. DOI: 10.1093/ofid/ofaa102

80. Diez J.-M., Romero C., Gajardo R. Currently available intravenous immunoglobulin (Gamunex®-C and Flebogamma® DIF) contains antibodies reacting against SARS-CoV-2 antigens. bioRxiv. 2020:029017. DOI: 10.1101/2020.04.07.029017

81. Rojas M., Rodríguez Y., Monsalve D.M., et al. Convalescent plasma in Covid-19: Possible mechanisms of action. Autoimmun Rev. 2020;19(7):102554. DOI: 10.1016/j.autrev.2020.102554

82. Hardy R.S., Raza K., Cooper M.S. Therapeutic glucocorticoids: mechanisms of actions in rheumatic diseases. Nat Rev Rheumatol. 2020;16(3):133–144. DOI: 10.1038/s41584-020-0371-y

83. Strehl C., Ehlers L., Gaber T., Buttgereit F. Glucocorticoids-allrounders tackling the versatile players of the immune system. Front Immunol. 2019;10:1744. DOI: 10.3389/fimmu.2019.01744

84. Cain D.W., Cidlowski J.A. Immune regulation by glucocorticoids. Nat Rev Immunol. 2017;17(4):233–247. DOI: 10.1038/nri.2017.1

85. RECOVERY Collaborative Group, Horby P., Lim W.S., et al. Dexamethasone in Hospitalized Patients with Covid-19 Preliminary Report. N Engl J Med. 2020;10.1056/NEJMoa2021436. DOI: 10.1056/NEJMoa2021436

86. Vastert S.J., Jamilloux Y., Quartier P., et al. Anakinra in children and adults with Still’s disease. Rheumatology (Oxford). 2019;58(Suppl 6):vi9–vi22. DOI: 10.1093/rheumatology/kez350

87. Toplak N., Blazina Š., Avčin T. The role of IL-1 inhibition in systemic juvenile idiopathic arthritis: current status and future perspectives. Drug Des Devel Ther. 2018;12:1633–1643. DOI: 10.2147/DDDT.S114532

88. Monteagudo L.A., Boothby A., Gertner E. Continuous Intravenous Anakinra Infusion to Calm the Cytokine Storm in Macrophage Activation Syndrome. ACR Open Rheumatol. 2020;2(5):276–282. DOI: 10.1002/acr2.11135

89. Sönmez H.E., Demir S., Bilginer Y., Özen S. Anakinra treatment in macrophage activation syndrome: a single center experience and systemic review of literature. Clin Rheumatol. 2018;37(12):3329–3335. DOI: 10.1007/s10067-018-4095-1

90. Mehta P., Cron R.Q., Hartwell J., Manson J.J., Tattersall R.S. Silencing the cytokine storm: the use of intravenous anakinra in haemophagocytic lymphohistiocytosis or macrophage activation syndrome. Lancet Rheumatol. 2020;2(6):e358–e367. DOI: 10.1016/S2665-9913(20)30096-5

91. Eloseily E.M., Weiser P., Crayne C.B., et al. Benefit of anakinra in treating pediatric secondary hemophagocytic lymphohistiocytosis. Arthritis Rheum. 2020;72(2):326–334. DOI: 10.1002/art.41103

92. Shakoory B., Carcillo J.A., Chatham W.W., et al. Interleukin-1 Receptor Blockade Is Associated With Reduced Mortality in Sepsis Patients With Features of Macrophage Activation Syndrome: Reanalysis of a Prior Phase III Trial. Crit Care Med. 2016;44(2):275–281. DOI: 10.1097/CCM.0000000000001402

93. Aouba A., Baldolli A., Geffray L., et al. Targeting the inflammatory cascade with anakinra in moderate to severe COVID-19 pneumonia: case series [published online ahead of print, 2020]. Ann Rheum Dis. 2020;annrheumdis-2020-217706. DOI: 10.1136/annrheumdis-2020-217706

94. Cavalli G., De Luca G., Campochiaro C., et al. Interleukin-1 blockade with high-dose anakinra in patients with COVID-19, acute respiratory distress syndrome, and hyperinflammation: a retrospective cohort study. Lancet Rheumatol. 2020;2(6):e325e331. DOI: 10.1016/S2665-9913(20)30127-2

95. Navarro-Millán I., Sattui S.E., Lakhanpal A., Zisa D., Siegel C.H., Crow M.K. Use of Anakinra to Prevent Mechanical Ventilation in Severe COVID-19: A Case Series. Arthritis Rheumatol. 2020;10.1002/art.41422. DOI: 10.1002/art.41422

96. Franzetti M., Pozzetti U., Carugati M., et al. Interleukin-1 receptor antagonist anakinra in association with remdesivir in severe COVID-19: A case report. Int J Infect Dis. 2020;97:215–218. DOI: 10.1016/j.ijid.2020.05.050

97. Dimopoulos G., de Mast Q., Markou N., et al. Favorable Anakinra Responses in Severe Covid-19 Patients with Secondary Hemophagocytic Lymphohistiocytosis. Cell Host Microbe. 2020;28(1):117–123.e1. DOI: 10.1016/j.chom.2020.05.007

98. Day J.W., Fox T.A., Halsey R., Carpenter B., Kottaridis P.D. Interleukin-1 blockade with anakinra in acute leukaemia patients with severe COVID-19 pneumonia appears safe and may result in clinical improvement. Br J Haematol. 2020;190(2):e80–e83. DOI: 10.1111/bjh.16873

99. Pontali E., Volpi S., Antonucci G., et al. Safety and efficacy of early high-dose IV anakinra in severe COVID-19 lung disease. J Allergy Clin Immunol. 2020;146(1):213–215. DOI: 10.1016/j.jaci.2020.05.002.

100. Huet T., Beaussier H., Voisin O., et al. Anakinra for severe forms of COVID-19: a cohort study. Lancet Rheumatol. 2020;2(7):e393–e400. DOI: 10.1016/S2665-9913(20)30164-8

101. Cauchois R., Koubi M., Delarbre D., et al. Early IL-1 receptor blockade in severe inflammatory respiratory failure complicating COVID-19. Proc Natl Acad Sci U S A. 2020;117(32):1895118953. DOI: 10.1073/pnas.2009017117

102. Gagiannis D., Steinestel J., Hackenbroch C., et al. COVID-19induced acute respiratory failure: an exacerbation of organspecific autoimmunity? medRxiv 2020.04.27.20077180. DOI: 10.1101/2020.04.27.20077180

103. Didier K., Bolko L., Giusti D., et al. Autoantibodies Associated With Connective Tissue Diseases: What Meaning for Clinicians? Front Immunol. 2018;9:541. DOI: 10.3389/fimmu.2018.00541

104. Gazzaruso C., Carlo Stella N., Mariani G., et al. High prevalence of antinuclear antibodies and lupus anticoagulant in patients hospitalized for SARS-CoV2 pneumonia. Clin Rheumatol. 2020;39(7):2095–2097. DOI: 10.1007/s10067-020-05180-7

105. Zhou Y., Han T., Chen J., et al. Clinical and Autoimmune Characteristics of Severe and Critical Cases of COVID-19. Clin Transl Sci. 2020;10.1111/cts.12805. DOI: 10.1111/cts.12805


Для цитирования:


Каледа М.И., Никишина И.П., Федоров Е.С., Насонов Е.Л. Коронавирусная болезнь 2019 (COVID-19) у детей: уроки педиатрической ревматологии. Научно-практическая ревматология. 2020;58(5):469-479. https://doi.org/10.47360/1995-4484-2020-469-479

For citation:


Kaleda M.I., Nikishina I.P., Fedorov E.S., Nasonov E.L. Coronavirus Desease 2019 (COVID-19) in Children: Lessons from Pediatric Rheumatology. Rheumatology Science and Practice. 2020;58(5):469-479. https://doi.org/10.47360/1995-4484-2020-469-479

Просмотров: 150


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1995-4484 (Print)
ISSN 1995-4492 (Online)