Preview

Научно-практическая ревматология

Расширенный поиск

Роль субхондральной кости при остеоартрозе

https://doi.org/10.14412/1995-4484-2009-1149

Аннотация

Остеоартроз (ОА) характеризуется прогрессивной потерей суставного хряща и, в противовес этому, усилением процесса костеобразования, склерозированием субхондральной кости (СХК) и пластинки роста и формированием остеофитов. Эти два противоположных процесса составляют основу патогенеза ОА. За последние десятилетия достигнут значительный прогресс в изучении этиологии и патогенеза заболевания, однако многие вопросы до сих пор остаются спорными. В частности, продолжает обсуждаться вопрос о том, какие изменения – в кости или хряще – следует считать первичными и что является пусковым фактором деградации суставного хряща.В настоящее время сформированы 2 основные теории патогенеза ОА. Первая из них получила распространение и была общепризнанной в 70-е годы прошлого века. Согласно этой теории, в основе ОА лежит первичная дегенерация суставного хряща вследствие нарушения обменных процессов. Среди причин, способных приводить к нарушению метаболизма хрящевой ткани, рассматривались генетические, эндокринные и иммунологические факторы, ухудшение кровообращения в тканях сустава и изменение физико-химических свойств синовиальной жидкости.

Список литературы

1. <div><p>Mort J.S., Billington C.J. Articular cartilage and changes in arthritis: matrix degradation. Arthritis Res., 2001,3,337-41.</p><p>Felson D.T., Neogi T. Osteoarthritis: is it disease of cartilage or of bone? Arthritis Rheum., 2004,2,341-44.</p><p>Radin E.L., Paul I.L., Tolkoff M.J. Subchondral changes in patients with early degenerative joint desease. Arthritis Rheum., 1970,13,400-05.</p><p>Dieppe P., Cuchnaghan J, Young P., Kirwan J. Prediction of the progression of joint space narrowing in osteoarthritis of the knee by bone scintigraphy. Ann. Rheum. Dis., 1993,52,557-63.</p><p>Brandt K.D., Schauwecker D.S., Dansereau S. et al. Bone scintigraphy in the canine cruciate deficiency model of osteoarthritis. Comparison of the unstable and contralateral knee. J.Rheumatol., 1997,24,140-45.</p><p>Hogervorst T., Pels Rijcken T.H., Rucker D. et al. Changes in bone scans after anterior cruciate ligament reconstruction: a prospective study. Am.J.Sports Med., 2002,30,823-33.</p><p>Boegard T., Rudling O., Dahlstrom J. et al. Bone scintigraphy in chronic knee pain: comparison with MRI. Ann. Rheum. Dis., 1999,58,20-6.</p><p>Felson D.T., McLaughlin S., Goggins J. et al. Bone marrow edema and its relation to progression of knee osteoarthritis. Ann. Intern. Med., 2003,139,330-36.</p><p>Petersson I.F., Boegard T., Dahlstrom J. Bone scan and serum markers of bone and cartilage in patients with knee pain and osteoarthritis. Osteoarthritis Cartilage, 1998,6,33-9.</p><p>Sniekers Y.H., Intema F., Lafeber F. et al. A role for subchondral bone changes in the process of osteoarthritis; a micro-CT study of two canine models. BMC Musculoskelet Disord., 2008, 9, 20.</p><p>Pelletier JP, Boileau C, Brunet J. et al. The inhibition of subchondral bone resorption in the early phase of experimental dog osteoarthritis by licofelone is associated with a reduction in the synthesis of MMP-13 and cathepsin K. Bone., 2004,34,527–38.</p><p>Dedrick DK, Goldstein SA, Brandt KD. et al. A longitudinal study of subchondral plate and trabecular bone in cruciate-deficient dogs with osteoarthritis followed up for 54 months. Arthritis Rheum., 1993,36,1460–67.</p><p>Hayami T, Pickarski M, Zhuo Y. et al. Characterization of articular cartilage and subchondral bone changes in the rat anterior cruciate ligament transection and meniscectomized models of osteoarthritis. Bone, 2006,38,234–43.</p><p>Botter SM, van Osch GJVM, Waarsing JH, et al. Quantification of subchondral bone changes in a murine osteoarthritis model using micro-CT. Biorheology, 2006,43,379–88.</p><p>Bruyere O, Dardenne C, Lejeune E. et al. Subchondral tibial bone mineral density predicts future joint space narrowing at the medial femoro-tibial compartment in patients with knee osteoarthritis. Bone, 2003,32(5),541-5.</p><p>Dore D, Ding C, Jones G. A pilot study of the reproducibility and validity of measuring knee subchondral bone density in the tibia. Osteoarthritis Cartilage, 2008,30, [Epub ahead of print]</p><p>Seibel MJ, Duncan A, Robins SP. Urinary hydroxypyridinium crosslinks provide indices of cartilage and bone involvement in arthritic diseases. J Rheumatol., 1989,16,964–70.</p><p>Li B, Marshall D, Roe M, Aspden RM. The electron microscope appearance of the subchondral bone plate in the human femoral head in osteoarthritis and osteoporosis. J Anat., 1999,195(Pt 1),101-10</p><p>Sowers M, Zobel D, Weissfeld L, et al. Progression of osteoarthritis of the hand and metacarpal bone loss. A twenty-year follow up of incident cases. Arthritis Rheum., 1991,34,36–42.</p><p>Boyd S.K., Matyas J.R., Wohl G.R. et al. Early regional adaptation of periarticular bone mineral density after anterior cruciate ligament injury. J. Appl. Physiol., 2000,89,2359-64.</p><p>Matsui H., Shimizu M., Tsuji H. Cartilage and subchondral bone interaction in osteoarthrosis of human knee joint: a histological and histomorphometric study. Microsc. Res Tech., 1997,37,333-42.</p><p>Hilal G., Martel-Pelletier J., Pelletier J.P. et al. Osteoblast-like cells from human subchondral osteoarthritic bone demonstrate an altered phenotype in vitro: possible role in subchondral bone sclerosis. Arthritis rheum.,1998,41,891-9.</p><p>Laieunesse D., Hilal G., Pelletier J.P. et al. Subchondral bone morphological and biochemical alterations in osteoarthritis (review). Osteoarthritis Cartilage,1999,7,21-22.</p><p>Canalis E., Centrella M., Burch W. et al. Insulinlike growth factor I mediates selective anabolic effects of parathyroid hormone in bone cultures. J. Clin. Invest.,1989,83,60-5.</p><p>Linkhart T.A., Mohan S. Parathyroid hormone stimulates release of insulin-like growth factor I (IGF-I) and IGF-II from neonatal mouse calvaria in organ culture. Endocrinology,1989,125,1484-91.</p><p>Uitterlinden A.G., Burger H., Huang O. et al. vitamin D receptor genotype is associated with radiographic osteoarthritis at the knee. J. Clin Invest.,1997,100,259-63.</p><p>Sanchez C, Deberg MA, Bellahcène A et al. Phenotypic characterization of osteoblasts from the sclerotic zones of osteoarthritic subchondral bone. Arthritis Rheum.,2008,58(2),442-55.</p><p>Hilal G, Massicotte F, Martel-Pelletier J, et al. Endogenous prostaglandin E2 and insulin-like growth factor 1 can modulate the levels of parathyroid hormone receptor in human osteoarthritic osteoblasts. J Bone Miner. Res., 2001,16,713–21</p><p>Mansell JP, Tarlton JF, Bailey AJ. Biochemical evidence for altered subchondral bone collagen metabolism in osteoarthritis of the hip. Br. J. Rheumatol., 1997,36,16–9.</p><p>Gevers G, Dequeker J. Collagen and non-collagenous protein content (osteocalcin, sialoprotein, proteoglycan) in the iliac crest bone and serum osteocalcin in women with and without hand osteoarthritis. Coll. Relat Res.,1987,7,435–42</p><p>Lajeunesse D. The role of bone in treatment of osteoarthritis. Osteoarthritis Cartilage, 2004,12 suppl A,S34-8.</p><p>Hunter DJ, Spector TD. The role of bone metabolism in osteoarthritis. Curr Rheumatol Rep.,2003,5(1),15-9.</p><p>Li B, Aspden RM. Composition and mechanical properties of cancellous bone from the femoral head of patients with osteoporosis or osteoarthritis. J. Bone Miner. Res.,1997,12,641-51</p><p>Bailey AJ, Sims TJ, Knott L. Phenotypic expression of osteoblast collagen in osteoarthritic bone: production of type I homotrimer. Int. J. Biochem Cell Biol.,2002,34,176-82</p><p>Misof K, Landis WJ, Klaushofer K, et al. Cjllagen from the osteogenesis imperfecta mouse model (oim) shows redused resistance against tensile stress. J. Clin .Invest.,1997,100,40-5</p><p>Blair-Levy JM, Watts CE, Fiorientino NM et al. A type I collagen defect leads to rapidly progressive osteoarthritis in a mouse model. Arthritis Rheum.,2008, 58(4),1096-106.</p><p>Batiste D.L., Kirkley A., Laverty S. et al. High-resolution MRI and micro-KT in an ex vivo rabbit anterior cruciate ligament transaction model of osteoarthritis. Osteoarthritis Cartilage, 2004,12,614-26.</p><p>Karvonen R.L., Miller P.R., Nelson D.A. et al. Periarticular osteoporosis in osteoarthritis of the knee. J. Rheumatol.,1998,25(11),2187-94.</p><p>Grynpas M.D., Alpert B, Katz L. et al. Subchondral bone in osteoarthritis. Calcif. Tissue Int.,1991,49,20-6.</p><p>Mansell J.P., Bailey A.J. Abnormal cancellous bone collagen metabolism in osteoarthritis. J. Clin. Invest., 1998,101,1596-1603.</p><p>Carlson C.S., Loeser R.F., Purser C.B. et al. Osteoarthritis in Cynomolgus macaques: a primate model of naturally occurring disease. J.Orthop. Res.,1994,12,331-9.</p><p>Vener M.J., Thompson R.S.Jr., Lewis J.L. et al. Subchondral damage after acute transarticular loading: an in vitro model of joint injury. J. Orthop. Res.,1992,10,759-65.</p><p>Oettmeier R., Arokoski J., Roth A.L. et al. Quantitative study of articular cartilage and subchondral bone remodeling in the knee joint of dogs after strenuous training. J. Bone Miner. Res., 1992,7(suppl 2), S419-S424.</p><p>Carlson C.S., Loeser R.F., Purser C.B. et al. Osteoarthritis in Cynomolgus macaques. III. Effects of age, gender, and subchondral bone thickness on the severity of disease. J. Bone Miner. Res., 1996,11,1209-17.</p><p>Bobinac D, Spanjol J, Zoricic S, Maric I. Changes in articular cartilage and subchondral bone histomorphometry in osteoarthritic knee joints in humans. Bone, 2003,32(3),284-90</p><p>Knott L., Bailey A.J. Collagen cross-links in mineralizing tissues: a review of their chemistry, fumction and clinical relevance. Bone, 1998,22,181-7.</p><p>Mansell J.P., Collins C., Bailey A.J. Bone, not cartilage, should be the major focus in osteoarthritis. Nature, 2007, 3,6,306-7.</p><p>Burr D.B., Schaffler M.B. The involvement of subchondral mineralized tissues in osteoarthrosis: quantitative microscopic evidence. Microsc. Res. Tech., 1997,37,343-67.</p><p>Burr D.B. The importance of subchondral bone in osteoarthrosis. Curr. Opin Rheumatol., 1998,10,256-62.</p><p>Imhof H., Breitenseher M., Kainberger F. et al. Importance of subchondral bone to articular cartilage in health and disease. Top Magn. Reson. Imaging., 1999,10,180-92.</p><p>Westacott C.M. et al. Alteration of cartilage metabolism by cells from osteoarthritic bone. Arthritis Rheum., 1997,40,1282-91.</p><p>Sakao K, Takahashi KA, Mazda O, et al. Enhanced expression of interleukin-6, matrix metalloproteinase-13, and receptor activator of NF-kappaB ligand in cells derived from osteoarthritic subchondral bone. J. Orthop. Sci., 2008 May,13(3),202-10.</p><p>Sokoloff L. Microcracks in the calcified layer of articular cartilage. Arch. Pathol. Lab. Med.,1993,117,191-5.</p><p>Massicotte F., Martel-Pelletier J., Pelletier J.P. et al. Abnormal modulation of insulin-like growth fac- tor 1 levels in human osteoarthritic bone osteoblasts (abstract). Arthritis Rheum., 2000,43,S206.</p><p>Felson D.T., Anderson J.J., Naimarc A. et al. Obesity and knee osteoarthritis. Ann. Intern. Med., 1988,109,18-24.</p><p>Martel-Pelletier J., Di Battista J.A., Lajeunesse D. et al. IGF/IGFBP axis in cartilage and bone in osteoarthritis pathogenesis (review). Inflamm. Res., 1998,47,90-100.</p><p>Rydziel S., Delany A.V., Canalis E. Insulin-like growth factor 1 inhibits the transcription of collagenase 3 in osteoblast cultures. J. Cell. Biochem.,1997,67,176-83.</p><p>Palcy S., Goltzman D. Protein kinase signaling pathways involved in the up-regulation of the rat akpha 1 (I) collagen gene by transforming growth factor beta 1 and bone morphogenetic protein 2 in osteoblastics cells. Biochem. J., 1999,343,21-7.</p><p>Bonewald LF, Dalls SL. Role of activated and latent transforming growth factor in bone formation. J. Cell Biochem., 1994,55,350-7.</p><p>Lajeunesse D., Massicotte F., Pelletier J-P, Martel-Pelletier J. Subchondral bone sclerosis in osteoarthritis: not just an innocent bystander. Mod. Rheumatol., 2003,13,7-14.</p><p>Koutsilieris M., Frenette G., Lazure C. et al. Urokinasetype plasminogen activator: a paracrine factor regulat- ing the bioavailability of IGFs in PA-III cell-indused osteoblastic metastases. Anticancer Res., 1993,13,481-6.</p><p>Martin T.J., Allan E.N., Fukumoto S. The plasminogen activator and inhibitor system in bone remodeling. Growth regul., 1993,3,209-14.</p><p>Lyons R.M., Gentry L.E., Perchio A.F. et al. Mechanism of activation of latent recombinant transforming growth factor beta 1 by plasmin. J. Cell Biol., 1990,110,1361-7.</p><p>Schouten J.S., Van den Ouweland F.A., Walkenburg H.A., Lamberts S.W. Insulin-like growth factor-1: a prognostic factor of knee osteoarthritis. Br. J. Rheumatol., 1993,32,274-80.</p><p>Skrtic S., Ohlsson C. Cortisol decreases hepatocyte growth factor levels in human osteoblast-like cells. Calcif. Tissue Int., 2000,66,108-12.</p><p>Blanquaert F., Pereira R.C., Canalis E. Cortisol inhibits hepatocyte growth factor/scatter factor expression and induces c-met transcripts in osteoblasts. Am J Physiol. Endocrinol. Metab., 2000,278,E509-E515.</p><p>Reboul P., Pelletier J.P., Tardif J. et al. Hepatocyte growth factor induction of collagenase 3 production in human osteoarthritic cartilage: involvement of the stress-activated protein kinase/c-Jun N-terminal kinase pathway and a sensitine p38 mitogen-activated protein kinase inhibitor cascade. Arthritis Rheum., 2001,44,73-84.</p><p>Paredes Y., Massicotte F., Pelletier J.P. et al. Study of role of leukotriene B4 in abnormal function of human subchondral osteoarthritis osteoblasts. Effects of cyclooxygenase and/or 5-lypoxcygenase inhibitor. Arthritis Rheum., 2002,46,1804-12.</p><p>Massicotte F., Lajeunesse D., Benderdour M. et al. Can altered production of interleukin 1 b, interleukin 6, transforming growth factor b and prostaglandin E2 by isolated human subchondral osteoblasts identify two subgroups of osteoarthritic patients. Osteoarthritis cartilage, 2002,10,491-500.</p><p>Lajeunesse D., Reboul P. Subchondral bone in osteoar- thritis: a biologic link with articular cartilage leading to abnormal remodeling. Curr. Opin. Rheumatol., 2003,15,628-33.</p><p>Mansell J.P., Collins C., Bailey A.J. Bone, not car- tilage, should be the major focus in osteoarthritis. Nature,2007, 3,6,306-7.</p><p>Kaneki H., Takasugi I., Fujieda M. et al. Prostaglandin E2 stimulates the formation of mineralized bone nodules by a cAMF-independent mechanism in the culture of adult rat calvarial osteoblasts. J. Cell Biochem., 1999,73,36-48.</p><p>Raisz L.G., Fall P.M. Biphasic effects of prostaglandin E2 on bone formation in cultured fetal rat calvariae: interaction with cortisol. Endocrinology,1990,126,1654-9.</p><p>Gallwitz W.E., Mundy G.R., Lee C.H. et al. 5-lypoxygenase metabolites of arachidonic acid stimulate isolated osteoclasts to resorb calcified matrices. J. Biol. Chem., 1993,268,1087-94.</p><p>Tat SK, Pelletier JP, Lajeunesse D et al. Differential modulation of RANKL isoforms by human osteoarthritic subchondral bone osteoblasts: Influence of osteotropic factors. Bone, 2008, 26.</p><p>Kusano K., Miyaura C., Inada M. et al. Regulation of matrix metalloproteinases (MMP-2, -3, -9, and –13) by interleukin-1 and interleukin-6 in mouse calvaria: association of MMP induction with bone resorbtion. Endocrinology, 1998,139,1338-45.</p><p>Smith A.J. et al. Extended haplotypes and linkage disequilibrium in the IL1R1-IL1A-IL1B-IL1RN gene cluster: association with knee osteoarthritis. Genes Immun., 2004,5,451-60.</p><p>Glasson S.S. Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis. Nature, 2005,434,644-8.</p><p>Garon J.P. Chondroprotective effect of intraarticular injection of interleukin 1 receptor antagonist in experimental osteoarthritis. Supression of collagenase-1 expression. Arthritis Rheum., 1996,39,1535-44.</p><p>Chevalier X. Safety study of intraarticular injection of interleukin 1 receptor antagonist in patients with painful knee osteoarthritis: a multicenter study. J. Rheumatol., 2005,32,1317-23.</p><p>Dequeker J., Mohan R., Finkelman R.D. et al. Generalized osteoarthritis associated with increased insulin-like growth factor types I and II and transforming growth factor beta in cortical bone from the iliac crest. Possible mechanism of increased bone dencity and protection against osteoporosis. Arthritis Rheum., 1993,36,1702-8.</p><p>Foss MVL, Byers P.D. Bone dencity, osteoarthrosis of the hip and fracture of the upper end of the femur. Ann Rheum Dis., 1972,31,259-64.</p><p>Moore R.J., Fazzalary N.L., Manthey B.A. et al. The relationship between head-neck-shaft angle, calcar width, articular cartilage thickness and bone volume in arthrosis of the hip. Br. J. Rheumatol., 1994,33,432-6.</p><p>Hannan M.T., Anderson J.J., Jayo Y. et al. Bone mineral density and knee osteoarthritis in elderly man and women. Arthritis Rheum., 1993,36,1671-80.</p><p>Rogers R., Shepstone L., Dieppe P. Is osteoarthritis a systemic disorder of bone? Arthritis Rheum., 2004,50,452-7.</p><p>Aspden R.M., Scheven B.A., Hutchison J.D. Osteoarthritis as a systemic disorder including strom- al cell differentiation and lipid metabolism. Lancet, 2001,357,1118-20.</p><p>Pasco J.A., Henry M.J., Kotowicz M.A. et al. Serum leptin levels are associated with bone mass in non obese women. J Clin Endocrinol Metab., 2001,86,1884-7.</p><p>Dumond H., Presle N., Terlain B. et al. Evidence for a key role of leptin in osteoarthritis. Arthritis Rheum., 2003,48,3118-29.</p><p>Murphy J.M., Dixon K., Beck S. et al. Reduced chondrogenic and adipogenic activity of mesenchymal stem cells from patients with advanced osteoarthritis. Arthritis Rheum., 2002,46,3,704-13</p><p>Gordeladze J.O., Drevon C.A., Syversen U., Reseland J.E. Leptin stimulates human osteoblastic cell proliferation, de novo collagen synthesis, and mineralization: Impact of differentiation markers, apoptosis, and osteoclastic signaling. J. Cell Biochem., 2002,85,825-36.</p></div><br />


Рецензия

Для цитирования:


Alexeeva L.I., Зайцева Е.М. Роль субхондральной кости при остеоартрозе. Научно-практическая ревматология. 2009;47(4):41-48. https://doi.org/10.14412/1995-4484-2009-1149

For citation:


Alexeeva L.I., Zaitseva E.M. Role of subchondral bone in osteoarthritis. Rheumatology Science and Practice. 2009;47(4):41-48. (In Russ.) https://doi.org/10.14412/1995-4484-2009-1149

Просмотров: 1333


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1995-4484 (Print)
ISSN 1995-4492 (Online)