BELOK R-53: NOVAYa ZhIZN' STAROY MOLEKULY. Chast' II
https://doi.org/10.14412/1995-4484-2010-1169
References
1. <div><p>Appella E., Anderson C.W. Post-translational modifications and activation of p53 by genotoxic stresses. Eur J Biochem 2001;268:2764-72.</p><p>Bode A.M., Dong Z. Post-translational modification of p53 in tumorigenesis. Nat Rev Cancer 2004;4:793-805.</p><p>Kruse J.P., Gu W. SnapShot: p53 posttranslational modifications. Cell 2008;133:930-1.</p><p>Hofmann T.G., Moller A., Sirma H. et al. Regulation of p53 activity by its interaction with homeodomain-interacting protein kinase-2. Nat Cell Biol 2002;4:1-10.</p><p>Rui Y., Xu Z., Lin S. et al. Axin stimulates p53 functions by activation of HIPK2 kinase through multimeric complex formation. EMBO J 2004;23:4583-94.</p><p>Rinaldo C., Prodosmo A., Mancini F. et al. MDM2-regulated degradation of HIPK2 prevents p53Ser46 phosphorylation and DNA damage-induced apoptosis. Mol Cell 2007;25:739-50.</p><p>Shmueli A., Oren M. Mdm2: p53's lifesaver? Mol Cell 2007;25:794-6.</p><p>Perfettini J.L., Castedo M., Nardacci R. et al. Essential role of p53 phosphorylation by p38 MAPK in apoptosis induction by the HIV-1 envelope. J Exp Med 2005;201:279-89.</p><p>Taira N., Nihira K., Yamaguchi T. et al. DYRK2 is targeted to the nucleus and controls p53 via Ser 46 hosphorylation in the apoptotic response to DNA damage. Mol Cell 2007;25:725-38.</p><p>Yoshida K., Liu H., Miki Y. Protein kinase C delta regulates Ser46 phosphorylation of p53 tumor suppressor in the apoptotic response to DNA damage. J Biol Chem 2006;281:5734-40.</p><p>Cecchinelli B., Porrello A., Lazzari C. et al. Ser58 of mouse p53 is the homologue ofhuman Ser46 and is phosphorylated by HIPK2 in apoptosis. Cell Death Differ 2006;13:1994-7.</p><p>Fogal V., Hsieh J.K., Royer C. et al. Cell cycle-dependent nuclear retention of p53 by E2F1 requires phosphorylation of p53 at Ser315. EMBO J 2005;24:2768-82.</p><p>Qu L., Huang S., Baltzis D. et al. Endoplasmicreticulum stress induces p53 cytoplasmic localization and preventsp53-dependent apoptosis by a pathway involving glycogen synthase kinase-3beta. Genes Dev 2004;18:261-77.</p><p>Ou Y.H., Chung P.H., Sun T.P. et al. p53 C-terminal phosphorylation by CHK1 and CHK2 participates in the regulation of DNAdamage- induced C-terminal acetylation. Mol Biol Cell 2005;16:1684-95.</p><p>Bruins W., Jonker M.J., Bruning O. et al. Delayed expression of apoptotic and cell cycle control genes in carcinogen-exposed bladders of mice lacking p53.S389 phosphorylation. Carcinogenesis 2007;28:1814-23.</p><p>Bruins W., Bruning O., Jonker M.J. et al. The absence of Ser389 phosphorylation in p53 affects the basal gene expression level ofmany p53-dependent genes and alters the biphasic response to UV exposure in mouse embryonic fibroblasts. Mol Cell Biol 2008;28:1974-87.</p><p>Feng L., Lin T., Uranishi H. et al. Functional analysis of the roles of posttranslational modifications at the p53 C terminus in regulating p53 stability and activity. Mol Cell Biol 2005;25:5389-95.</p><p>Krummel K.A., Lee C.J., Toledo F. et al. The C-terminal lysines fine-tune P53 stress responses in a mouse model but are not required for stability control or transactivation. Proc Natl Acad Sci USA 2005;102:10188-93.</p><p>Sykes S.M., Mellert H.S., Holbert M.A. et al. Acetylation of the p53 DNA-binding domain regulates apoptosis induction. Mol Cell 2006;24:841-51.</p><p>Tang Y., Luo J., Zhang W. et al. Tip60- dependent acetylation of p53 modulates the decision between cell cycle arrest and apoptosis. Mol Cell 2006;24:827-39.</p><p>Zupnick A., Prives C. Mutational analysis of the p53 core domain L1 loop. J Biol Chem 2006;281:20464-73.</p><p>Tang Y., Zhao W., Chen Y. et al. Acetylation is indispensable for p53 activation. Cell 2008;133:612-26.</p><p>Kitagawa M., Lee S.H., McCormick F. Skp2 suppresses p53-dependent apoptosis by inhibiting p300. Mol Cell 2008;29:217-31.</p><p>Iyer N.G., Chin S.F., Ozdag H. et al. p300 regulates p53-dependent apoptosis after DNA damage in colorectal cancer cells by modulation of PUMA/p21 levels. Proc Natl Acad Sci USA 2004;101:7386-91.</p><p>Knights C.D., Catania J., Di Giovanni S. et al. Distinct p53 acetylation cassettes differentially influence gene-expression patterns and cell fate. J Cell Biol 2006;173:533-44.</p><p>Di Giovanni S., Knights C.D., Rao M.et al. The tumor suppressor protein p53 is required for neurite outgrowth and axon regeneration. EMBO J 2006;25:4084-96</p><p>Le Cam L., Linares L.K., Paul C. et al. E4F1 is an atypical ubiquitin ligase that modulates p53 effector functions independently of degradation. Cell 2006;127:775-88.</p><p>Linares L.K., Kiernan R., Triboulet R. et al. Intrinsic ubiquitination activity of PCAF controls the stability of the oncoprotein Hdm2. Nat Cell Biol 2007;9:331-8.</p><p>Chuikov S., Kurash J.K., Wilson J.R. et al. Regulation of p53activity through lysine methylation. Nature 2004;432:353-60.</p><p>Huang J., Perez-Burgos L., Placek B.J. et al. Repression of p53 activity by Smyd2-mediated methylation. Nature 2006;444:629-32.</p><p>Ivanov G.S., Ivanova T., Kurash J. et al. Methylation-acetylation interplay activates p53 in response to DNA damage. Mol Cell Biol 2007;27:6756-69.</p><p>Jansson M., Durant S.T., Cho E.C. et al. Arginine methylation regulates the p53 response. Nat Cell Biol 2008;10:1431-9.</p><p>Marine J.C., Francoz S., Maetens M. et al. Keeping p53 in check: essential and synergistic functions of Mdm2 and Mdm4. Cell Death Differ 2006;13:927-34.</p><p>Marine J.C., Dyer M.A., Jochemsen A.G. MDMX: from bench to bedside. J Cell Sci 2007;120:371-8.</p><p>Poyurovsky M.V., Prives C. Unleashing the power of p53: lessons from mice and men. Genes Dev 2006;20:125-31.</p><p>Toledo F., Wahl G.M. Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat Rev Cancer 2006;6:909-23.</p><p>Itahana K., Mao H., Jin A. et al. Targeted inactivation ofMdm2 RING finger E3 ubiquitin ligase activity in the mouse reveals mechanistic insights into p53 regulation. Cancer Cell 2007;12:355-66.</p><p>Ito A., Lai C.H., Zhao X. et al. p300/CBPmediated p53 acetylation is commonly induced by p53-activating agents and inhibited by MDM2. EMBO J 2001;20:1331-40.</p><p>Teufel D.P., Freund S.M., Bycroft M. et al. Four domains of p300 each bind tightly to a sequence spanning both transactivation subdomains of p53. Proc Natl Acad Sci USA 2007;104:7009-14.</p><p>Ohkubo S., Tanaka T., Taya Y. et al. Excess HDM2 impacts cell cycle and apoptosis and has a selective effect on p53-dependent transcription. J Biol Chem 2006;281:16943-50.</p><p>Minsky N., Oren M. The RING domain of Mdm2 mediates histone ubiquitylation and transcriptional repression. Mol Cell 2004;16:631-9.</p><p>Harms K.L., Chen X. The functional domains in p53 family proteins exhibit both common and distinct properties. Cell Death Differ 2006;13:890-7.</p><p>Baptiste-Okoh N., Barsotti A.M., Prives C. Caspase 2 is both required for p53-mediated apoptosis and downregulated by p53 in a p21- dependent manner. Cell Cycle 2008;7:1133-8.</p><p>Jung E.J., Liu G., Zhou W. et al. Myosin VI is a mediator of the p53-dependent cell survival pathway. Mol Cell Biol 2006;26:2175-86.</p><p>Gamper A.M., Roeder R.G. Multivalent binding of p53 to the STA- GA complex mediates coactivator recruitment after UV damage. Mol Cell Biol 2008;28:2517-27.</p><p>Hammond E.M., Mandell D.J., Salim A. et al. Genome-wide analysis of p53 under hypoxic conditions. Mol Cell Biol 2006;26:3492-504.</p><p>Ding K., Lu Y., Nikolovska-Coleska Z. et al Structure-based design of potent non-peptide MDM2 inhibitors. J Am Chem Soc 2005;127:10130-1.</p><p>Vassilev L.T., Vu B.T., Graves B. et al. In vivo activation of the p53 pathway by smallmolecule antagonists of MDM2. Science 2004;303:844-8.</p><p>Enge M., Bao W., Hedstrom E. et al. MDM2-dependent downregulation of p21 and hnRNP K provides a switch between apoptosis and growth arrest induced by pharmacologically activated p53. Cancer Cell 2009;15:171-83.</p><p>Pietsch E.C., Humbey O., Murphy M.E. Polymorphisms in the p53 pathway. Oncogene 2006;25:1602-11.</p><p>Bergamaschi D., Samuels Y., Sullivan A. et al. iASPP preferentially binds p53 proline-rich region and modulates apoptotic function of codon 72-polymorphic p53. Nat Genet 2006;38:1133-41.</p><p>Mantovani F., Tocco F., Girardini J. et al. The prolyl isomerase Pin1 orchestrates p53 acetylation and dissociation from the apoptosis inhibitor iASPP. Nat Struct Mol Biol 2007;14:912-20.</p><p>Cuadrado A., Lafarga V., Cheung P.C. et al. A new p38 MAP kinase-regulated transcriptional co-activator that stimulates p53-dependent apoptosis. EMBO J 2007;26:2115-26.</p><p>Hudson C.D., Morris P.J., Latchman D.S. et al. Brn-3a transcription factor blocks p53- mediated activation of proapoptotic target genes Noxa and Bax in vitro and in vivo to determine cell fate. J Biol Chem 2005;280:11851-8.</p><p>Schumm K., Rocha S., Caamano J. et al. Regulation of p53 tumour suppressor target gene expression by the p52 NF-kappaB subunit. EMBO J 2006;25:4820-32.</p><p>Wei X., Xu H., Kufe D. Human MUC1 oncoprotein regulates p53-responsive gene transcription in the genotoxic stress response. Cancer Cell 2005;7:167-78.</p><p>Homer C., Knight D.A., Hananeia L. et al. Y-box factor YB1 controls p53 apoptotic function. Oncogene 2005;24:8314-25.</p><p>Enari M., Ohmori K., Kitabayashi I. et al. Requirement of clathrin heavy chain for p53- mediated transcription. Genes Dev 2006;20:1087-99.</p><p>Iizuka M., Sarmento O.F., Sekiya T. et al Hbo1 Links p53-dependent stress signaling to DNA replication licensing. Mol Cell Biol 2008;28:140-53.</p><p>Imbriano C., Gurtner A., Cocchiarella F. et al. Direct p53 transcriptional repression: in vivo analysis of CCAAT-containing G2/M promoters. Mol Cell Biol 2005;25:3737-51.</p><p>Moumen A., Masterson P., O'Connor M.J. et al. hnRNP K: an HDM2 target and transcriptional coactivator of p53 in response to DNA damage. Cell 2005;123:1065-78.</p><p>Zhu Q., Wani G., Yao J. et al. The ubiquitin- proteasome system regulates p53-mediated transcription at p21waf1 promoter. Oncogene 2007;26:4199-208.</p><p>Zhou Y., Zhong Y., Wang Y. et al. Activation of p53 by MEG3 non-coding RNA. J Biol Chem 2007;282:24731-42.</p><p>Weber A., Marquardt J., Elzi D. et al. Zbtb4 represses transcription of P21CIP1 and controls the cellular response to p53 activation. EMBO J 2008;27:1563-74.</p><p>Wu W.S., Heinrichs S., Xu D. et al. Slug antagonizes p53-mediated apoptosis of hematopoietic progenitors by repressing puma. Cell 2005;123:641-53.</p><p>Bommer G.T., Gerin I., Feng Y. et al. p53- mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol 2007;17:1298-307.</p><p>Chang T.C., Wentzel E.A., Kent O.A. et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 2007;26:745-52.</p><p>Corney D.C., Flesken-Nikitin A., Godwin K.A. et al. MicroRNA-34b and MicroRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth. Cancer Res 2007;67:8433-8.</p><p>He L., He X., Lim L.P. et al. A microRNA component of the p53 tumour suppressor network. Nature 2007;447:1130-4.</p><p>Raver-Shapira N., Marciano E., Meiri E. et al. Transcriptional activation of miR- 34a contributes to p53-mediated apoptosis. Mol Cell 2007;26:731-43.</p><p>Tarasov V., Jung P., Verdoodt B. et al. Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR- 34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle 2007;6:1586-93.</p><p>Tazawa H., Tsuchiya N., Izumiya M. et al. Tumor-suppressive miR-34a induces senescence- like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci USA 2007;104:15472-7.</p><p>Yamakuchi M., Ferlito M., Lowenstein C.J. miR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci USA 2008;105:13421-6.</p><p>Braun C.J., Zhang X., Savelyeva I. et al. p53-Responsive micrornas 192 and 215 are capable of inducing cell cycle arrest. Cancer Res 2008;68:10094-104.</p><p>Sachdeva M., Zhu S., Wu F. et al. p53 represses c-Myc through induction of the tumor suppressor miR-145. Proc Natl Acad Sci USA 2009;106:3207-12.</p><p>Brosh R., Shalgi R., Liran A. et al. p53- Repressed miRNAs are involved with E2F in a feed-forward loop promoting proliferation. Mol Syst Biol 2008;4:229.</p><p>Kumamoto K., Spillare E.A., Fujita K. et al. Nutlin-3a activates p53 to both down-regulate inhibitor of growth 2 and up-regulate mir-34a, mir-34b, and mir-34c expression, and induce senescence. Cancer Res 2008;68:3193-203.</p><p>Paris R., Henry R.E., Stephens S.J. et al. Multiple p53-independent gene silencing mechanisms define the cellular response to p53 activation. Cell Cycle 2008;7:2427-33.</p><p>Martins C.P., Brown-Swigart L., Evan G.I. Modeling the therapeutic efficacy of p53 restoration in tumors. Cell 2006;127:1323-34.</p><p>Ventura A., Kirsch D.G., McLaughlin M.E. et al. Restoration of p53 function leads to tumour regression in vivo. Nature 2007;445:661-5.</p><p>Xue W., Zender L., Miething C. et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 2007;445:656-60.</p><p>Senzer N., Nemunaitis J. A review of contusugene ladenovec (Advexin) p53 therapy. Curr Opin Mol Ther 2009;11:54-61.</p><p>Lain S., Hollick J.J., Campbell J. et al. Discovery, in vivo activity, and mechanism of action of a small-molecule p53 activator. Cancer Cell 2008;13: 454-63.</p><p>Ringshausen I., O'Shea C.C., Finch A.J. et al. Mdm2 is critically and continuously required to suppress lethal p53 activity in vivo. Cancer Cell 2006;10:501-14.</p><p>Brummelkamp T.R., Fabius A.W., Mullenders J.et al. An shRNA barcode screen provides insight into cancer cell vulnerability to MDM2 inhibitors. Nat Chem Biol 2006;2:202-6.</p><p>Selivanova G., Wiman K.G. Reactivation of mutant p53: molecular mechanisms and therapeutic potential. Oncogene 2007;26:2243-54.</p><p>Petitjean A., Achatz M.I., Borresen-Dale A.L. et al. TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene 2007;26:2157-65.</p><p>Bertheau P., Espie M., Turpin E. et al. TP53 status and response to chemotherapy in breast cancer. Pathobiology 2008;75:132-9.</p><p>Sur S., Pagliarini R., Bunz F. et al. A panel of isogenic human cancer cells suggests a therapeutic approach for cancers with inactivated p53. Proc Natl Acad Sci USA 2009;106:3964-9.</p><p>Carvajal D., Tovar C., Yang H. et al. Activation of p53 by MDM2 antagonists can protect proliferating cells from mitotic inhibitors. Cancer Res 2005;65:1918-24.</p><p>Kranz D., Dobbelstein M. Nongenotoxic p53 activation protects cells against S-phasespecific chemotherapy. Cancer Res 2006;66:10274-80.</p><p>Gudkov A.V., Komarova E.A. Prospective therapeutic applications of p53 inhibitors. Biochem Biophys Res Commun 2005;331:726-36.</p><p>Strom E., Sathe S., Komarov P.G. et al. Small-molecule inhibitor of p53 binding to mitochondria protects mice from gamma radiation. Nat Chem Biol 2006;2:474-9.</p><p>Christophorou M.A., Ringhausen I., Finch A.J. et al. The pathological p53-mediated response to DNA damage is distinct from p53- mediated tumor suppression. Nature 2006;14:214-7.</p><p>Duan W., Zhu X., Ladenheim B. et al. p53 inhibitors preserve dopamine neurons and motor function in experimental parkinsonism. Ann Neurol 2002;52:597-606.</p><p>Leker R.R., Aharonowiz M., Greig N.H. et al. The role of p53-induced apoptosis in cerebral ischemia: effects of the p53 inhibitor pifithrin alpha. Exp Neurol 2004;187:478-86.</p><p>Leech M., Xue J.R., Dacumos A. et al. The tumour suppressor gene p53 modulates the severity of antigen-induced arthritis and the systemic immune response. Clin Exp Immun 2008;152:345-53.</p><p>Дубиков А.И. Ревматоидный артрит, апоптоз, оксид азота: новые аспекты патогенеза. Владивосток: Изд-во Дальневост. ун-та, 2004;132 с.</p><p>Yao Q., Wang S., Glorioso J.C. et al. Gene transfer of p53 to arthritic joints stimulates synovial apoptosis and inhibits inflammation. Mol Ther 2001;3:901-10.</p><p>An W., Kim J., Roeder R.G. Ordered cooperative functions of PRMT1, p300, and CARM1 in transcriptional activation by p53. Cell 2004;117:735-48.</p><p>Zhang X., Krutchinsky A., Fukuda A. et al. MED1/TRAP220 exists predominantly in a TRAP/ Mediator subpopulation enriched in RNA polymerase II and is required for ER-mediated transcription. Mol Cell 2005;19:89-100.</p></div><br />
Review
For citations:
Dubikov A.I. BELOK R-53: NOVAYa ZhIZN' STAROY MOLEKULY. Chast' II. Rheumatology Science and Practice. 2010;48(4):72-78. (In Russ.) https://doi.org/10.14412/1995-4484-2010-1169