PERSPECTIVE DIRECTIONS OF OSTEOARTHRITIS THERAPY
https://doi.org/10.14412/1995-4484-2014-247-250
Abstract
The paper discusses the new mechanisms of osteoarthritis (OA) pathogenesis. Particular emphasis is placed on the role of subchondral bone remodeling, inflammatory mediators, bone morphogenetic proteins, etc. These data may be of great importance for elaborating new approaches to OA treatment.
About the Authors
L. I. AlekseevaRussian Federation
E. M. Zaitseva
Russian Federation
References
1. Spector TD, MacGregor AJ. Risk factors for osteoarthritis: genet- ics. Osteoarthritis Cartilage. 2004;12 Suppl A:S39–44.
2. Mabuchi A, Ikeda T, Fukuda A, et al. Identification of sequence polymorphisms of the COMP (cartilage oligomeric matrix protein) gene and association study in osteoarthrosis of the knee and hip joints. J Hum Genet. 2001;46(8):456–62. DOI: http://dx.doi.org/10.1007/s100380170045.
3. Valdes AM, Spector TD. The contribution of genes to osteoarthri- tis. Rheum Dis Clin North Am. 2008;34(3):581–603. DOI: 10.1016/j.rdc.2008.04.008.
4. Lanyon P, Muir K, Doherty S, Doherty M. Assessment of a genet- ic contribution to osteoarthritis of the hip: sibling study. BMJ. 2000;321(7270):1179–83. DOI: http://dx.doi.org/10.1136/bmj.321.7270.1179.
5. Das SK, Farooqi A. Osteoarthritis. Best Pract Res Clin Rheumatol. 2008;22(4):657–75. DOI: 10.1016/j.berh.2008.07.002.
6. Li J, Sarosi I, Yan XQ, et al. RANK is the intrinsic hematopoietic- cell surface receptor that controls osteoclastogenesis and regula- tion of bonemass and calcium metabolism. Proc Natl Acad Sci USA. 2000;97(4):1566–71. DOI: http://dx.doi.org/10.1073/pnas.97.4.1566.
7. Anderson DM, Maraskovsky E, Billingsley WL, et al. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature. 1997;390(6656):175–9. DOI: http://dx.doi.org/10.1038/36593.
8. Hofbauer LC, Khosla S, Dunstan CR, et al. The roles of osteopro- tegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption. J Bone Miner Res. 2000;15(1):2–12. DOI: http://dx.doi.org/10.1359/jbmr.2000.15.1.2.
9. Griffith DL, Keck PC, Sampath TK, et al. Three-dimensional structure of recombinant human osteogenic protein 1: structural paradigm for the transforming growth factor beta superfamily. Proc Natl Acad Sci USA. 1996;93(2):878–83. DOI: http://dx.doi.org/10.1073/pnas.93.2.878.
10. Tardif G, Hum D, Pelletier JP, et al. Differential gene expression and regulation of the bone morphogenetic protein antagonists fol- listatin and gremlin in normal and osteoarthritic human chondro- cytes and synovial fibroblasts. Arthritis Rheum. 2004;50(8):2521–30. DOI: http://dx.doi.org/10.1002/art.20441.
11. Li B, Aspden RM. Composition and mechanical properties of cancellous bone from the femoral head of patients with osteoporo- sis or osteoarthritis. J Bone Mineral Res. 1997;12(4):641–51. DOI: http://dx.doi.org/10.1359/jbmr.1997.12.4.641.
12. Bailey AJ, Mansell JP, Sims TJ, Banse X. Biochemical and mechanical properties of subchondral bone in osteoarthritis. Biorheology. 2004;41(3–4):349–58.
13. Sanchez C, Deberg MA, BellahcПne A, et al. Phenotypic charac- terization of osteoblasts from the sclerotic zones of osteoarthritic subchondral bone. Arthritis Rheum. 2008;58(2):442–55. DOI: 10.1002/art.23159.
14. Chan TF, Couchourel D, Abed E, et al. Elevated Dickkopf-2 lev- els contribute to the abnormal phenotype of human osteoarthritic osteoblasts. J Bone Mineral Res. 2011;26(7):1399–410. DOI: 10.1002/jbmr.358.
15. Lajeunesse D, Reboul P. Subchondral bone in osteoarthritis: a bio- logic link with articular cartilage leading to abnormal remodeling. Curr Opin Rheumatol. 2003;15(5):628–33. DOI: http://dx.doi.org/10.1097/00002281-200309000-00018.
16. Prasadam I, van Gennip S, Friis T, et al. ERK-1/2 and p38 in the regulation of hypertrophic changes of normal articular cartilage chondrocytes induced by osteoarthritic subchondral osteoblasts. Arthritis Rheum. 2010;62(5):1349–60. DOI: 10.1002/art.27397.
17. Manolagas SC. Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev. 2000;21(2):115–37.
18. Pacifici R. Role of T cells in ovariectomy induced bone loss-revis- ited. J Bone Miner Res. 2012;27(2):231–9. DOI: 10.1002/jbmr.1500.
19. Yu X, Scholler J, Foget NT. Interaction between effects of parathy- roid hormone and bisphosphonate on regulation of osteoclast activity by the osteoblast-like cell line UMR-106. Bone. 1996;19(4):339–45. DOI: http://dx.doi.org/10.1016/S8756- 3282(96)00184-6.
20. Reinholz GG, Gets B, Pederson L, et al. Bisphosphonates directly regulate cell proliferation, differentiation and gene expression in human osteoblasts. Cancer Res. 2000;60(21):6001–7.
21. Shirai T, Kobayashi M, Nishitani K, et al. Chondroprotective effect of alendronate in a rabbit model of osteoarthritis. J Orthop Res. 2011;29(10):1572–7. DOI: http://dx.doi.org/10.1002/jor.21394.
22. Caudrillier A, Hurtel-Lemaire AS, Wattel A, et al. Strontium ranelate decreases RANKL-induced osteoclastic differentiation in vitro: involvement of the calcium sensing receptor. Mol Pharmacol. 2010;78(4):569–76. DOI: 10.1124/mol.109.063347. Epub 2010 Jun 28.
23. Brennan TC, Rybchyn MS, Green W, et al. Osteoblasts play key roles in the mechanisms of action of strontium ranelate. Br J Pharmacol. 2009;157(7):1291–300. DOI: 10.1111/j.1476-
24. 2009.00305.x. Epub 2009 Jun 25.
25. Yu DG, Ding HF, Mao YQ, et al. Strontium ranelate reduces car-
26. tilage degeneration and subchondral bone remodeling in rat osteoarthritis model. Acta Pharmacol Sin. 2013;34(3):1–10. DOI: 10.1038/aps.2012.167. Epub 2013 Jan 21.
27. Henrotin Y, Labasse A, Zheng SX, et al. Strontium ranelate increases cartilage matrix formation. J Bone Miner Res. 2001;16(2):299–308. DOI: http://dx.doi.org/10.1359/jbmr.2001.16.2.299.
28. Fernandes JC, Martel-Pelletier J, Pelletier JP. The role of cytokines in osteoarthritis pathophysiology. Biorheology. 2002;39(1–2):237–46.
29. Riyazi N, Slagboom E, de Craen AJ, et al. Association of the risk of osteoarthritis with high innate production of interleukin-1β and low innate production of interleukin-10 ex vivo, upon lipopolysac- charide stimulation. Arthritis Rheum. 2005;52(5):1443–50. DOI: http://dx.doi.org/10.1002/art.21014.
30. Meulenbelt I, Bos SD, Kloppenburg M. Interleukin-1 gene cluster variants with innate cytokine production profiles and osteoarthritis in subjects from the Genetics, Osteoarthritis and Progression Study. Arthritis Rheum. 2010 Apr;62(4):1119–26. DOI: http://dx.doi.org/10.1002/art.27325.
31. Sun R, Zhang B, Chen L, Sun J. Role of nuclear factor of activat- ed T cells 1 in the pathogenesis of osteoarthritis. Exp Ther Med. 2014 Jan;7(1):195–8. Epub 2013 Nov 7.
32. Liu J, Cai W, Zhang H, et al. Rs143383 in the growth differentia- tion factor 5 (GDF5) gene significantly associated with osteoarthritis (OA) – a comprehensive meta-analysis. Int J Med Sci. 2013;10(3):312–9. DOI: http://dx.doi.org/10.7150/ijms.5455.
33. Chubinskaya S, Frank BS, Michalska M, et al. Osteogenic protein 1 in synovial fluid from patients with rheumatoid arthritis or osteoarthritis: relationship with disease and levels of hyaluronan and antigenic keratan sulfate. Arthritis Res Ther. 2006;8(3):R73. DOI: http://dx.doi.org/10.1186/ar1947. Epub 2006 Apr 28.
34. Bhutia SC, Singh TA, Sherpa ML. Correlation of the osteogenic protein-1 (OP-1) with age, cartilage metabolic markers and antioxidants in the osteoarthritic patients of sikkim. J Clin Diagn Res. 2013 Aug;7(8):1565–7.
35. Hurtig M, Chubinskaya S, Dickey J, Rueger D. BMP-7 protects against progression of cartilage degeneration after impact injury. J Orthop Res. 2009 May;27(5):602–11. DOI: 10.1002/jor.20787.
36. Sabatini M, Rolland G, Leonce S, et al. Effects of ceramide on apoptosis, proteoglycan degradation, and matrix metalloproteinase expression in rabbit articular cartilage. Biochem Biophys Res Commun. 2000;267(1):438–44. DOI: http://dx.doi.org/10.1006/bbrc.1999.1983.
Review
For citations:
Alekseeva L.I., Zaitseva E.M. PERSPECTIVE DIRECTIONS OF OSTEOARTHRITIS THERAPY. Rheumatology Science and Practice. 2014;52(3):247-250. (In Russ.) https://doi.org/10.14412/1995-4484-2014-247-250