MAST CELLS ARE KEY PARTICIPANTS IN THE PATHOGENESIS OF IMMUNOINFLAMMATORY DISEASES
https://doi.org/10.14412/1995-4484-2015-182-189
Abstract
Mast cells are an integral component of the pathogenetic chain of immune inflammation in the body's tissues in different diseases. The mechanisms underlying the proinflammatory effects of mast cells remain inadequately investigated. Their study may contribute to the optimization of therapy for different diseases, including chronic arthritis.
About the Authors
E. O. BaglayRussian Federation
Contact: Ekaterina Baglai; bagl86@mail.ru
Competing Interests: Аспирант кафедры факультетской терапии
A. I. Dubikov
Russian Federation
References
1. Okayama Y, Kawakami T. Development, migration, and survival of mast cells. Immunol Res. 2006;34:97–115. doi: 10.1385/IR:34:2:97
2. Rao KN, Brown MA. Mast cells: multifaceted immune cells with diverse roles in health and disease. Ann NY Acad Sci. 2008;1143:83–104. doi: 10.1196/annals.1443.023
3. Metz M, Maurer M. Mast cells – key effector cells in immune responses. Trends Immunol. 2007;28:234–41. doi: 10.1016/j.it.2007.03.003
4. Kalesnikoff J, Galli SJ. New developments in mast cell biology. Nat Immunol. 2008;9:1215–23. doi: 10.1038/ni.f.216
5. Kneilling M, Rocken M. Mast cells: novel clinical perspectives from recent insights. Exp Dermatol. 2009;18:488–96. doi: 10.1111/j.1600-0625.2009.00860.x
6. Sayed BA, Christy A, Quirion MR, Brown MA. The master switch: the role of mast cells in autoimmunity and tolerance. Annu Rev Immunol. 2008;26:705–39. doi: 10.1146/annurev.immunol.26.021607.090320
7. Wei OL, Hilliard A, Kalman D, Sherman M. Mast cells limit systemic bacterial dissemination but not colitis in response to Citrobacter rodentium. Infect Immun. 2005;73:1978–85. doi: 10.1128/IAI.73.4.1978-1985.2005
8. Velin D, Bachmann D, Bouzourene H, Michetti P. Mast cells are critical mediators of vaccine-induced Helicobacter clearance in the mouse model. Gastroenterology. 2005;129:142–55. doi: 10.1053/j.gastro.2005.04.010
9. Lawrence CE, Paterson YY, Wright SH, et al. Mouse mast cell protease-1 is required for the enteropathy induced by gastrointestinal helminth infection in the mouse. Gastroenterology. 2004;127:155–65. doi: 10.1053/j.gastro.2004.04.004
10. Anthony RM, Rutitzky LI, Urban Jr JF, et al. Protective immune mechanisms in helminth infection. Nat Rev Immunol. 2007;7:975–87. doi: 10.1038/nri2199
11. Sundstrom JB, Hair GA, Ansari AA, et al. IgE-Fc-epsilon RI interactions determine HIV coreceptor usage and susceptibility to infection during ontogeny of mast cells. J Immunol. 2009;182:6401–9. doi: 10.4049/jimmunol.0801481
12. Taub DD, Mikovits JA, Nilsson G, et al. Alterations in mast cell function and survival following in vitro infection with human immunodeficiency viruses-1 through CXCR4. Cell Immunol. 2004;230:65–80. doi: 10.1016/j.cellimm.2004.09.005
13. Becker Y. HIV-1 induced AIDS is an allergy and the allergen is the Shed gp120 – a review, hypothesis, and implications. Virus Genes. 2004;28:319–31. doi: 10.1023/B:VIRU.0000025778.56507.61
14. Grimbaldeston MA, Chen CC, Piliponsky AM, et al. Mast celldeficient W-sash c-kit mutant Kit W-sh/W-sh mice as a model for investigating mast cell biology in vivo. Am J Pathol. 2005;167:835–48. doi: 10.1016/S0002-9440(10)62055-X
15. Steinman L. Multiple sclerosis: a coordinated immunological attack against myelin in the central nervous system. Cell. 1996;85:299–302. doi: 10.1016/S0092-8674(00)81107-1
16. Jager A, Kuchroo VK. Effector and regulatory T-cell subsets in autoimmunity and tissue inflammation. Scand J Immunol. 2010;72:173–84. doi: 10.1111/j.1365-3083.2010.02432.x
17. Fletcher JM, Lalor SJ, Sweeney CM, et al. T cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Clin Exp Immunol. 2010;162:1–11. doi: 10.1111/j.1365-2249.2010.04143.x
18. Neuman J. Ueber das Vorkommen der sogneannten «Mastzellen» bei pathologischen Veraenderungen des Gehirns. Arch Pathol Anat Physiol Virchows. 1890;122:378–81.
19. Bebo Jr BF, Yong T, Orr EL, Linthicum DS. Hypothesis: a possible role for mast cells and their inflammatory mediators in the pathogenesis of autoimmune encephalomyelitis. J Neurosci Res. 1996;45:340–8. doi: 10.1002/(SICI)1097-4547(19960815)45:4<340::AID-JNR3>3.0.CO;2-9
20. Ibrahim MZ, Reder AT, Lawand R, et al. The mast cells of the multiple sclerosis brain. J Neuroimmunol. 1996;70:131–8. doi: 10.1016/S0165-5728(96)00102-6
21. Rozniecki JJ, Hauser SL, Stein M, et al. Elevated mast cell tryptase in cerebrospinal fluid of multiple sclerosis patients. Ann Neurol. 1995;37:63–6. doi: 10.1002/ana.410370112
22. Kannan K, Ortmann RA, Kimpel D. Animal models of rheumatoid arthritis and their relevance to human disease. Pathophysiology. 2005;12:167–81. doi: 10.1016/j.pathophys.2005.07.011
23. Lee DM, Friend DS, Gurish MF, et al. Mast cells: a cellular link between autoantibodies and inflammatory arthritis. Science. 2002;297:1689–92. doi: 10.1126/science.1073176
24. Hueber AJ, Asquith DL, Miller AM, et al. Mast cells express IL-17A in rheumatoid arthritis synovium. J Immunol. 2010;184:3336–40. doi: 10.4049/jimmunol.0903566
25. Sandler C, Lindstedt KA, Joutsiniemi S, et al. Selective activation of mast cells in rheumatoid synovial tissue results in production of TNF-alpha, IL-1beta and IL-1Ra. Inflamm Res. 2007;56:230–9. doi: 10.1007/s00011-007-6135-1
26. Shin K, Nigrovic PA, Crish J, et al. Mast cells contribute to autoimmune inflammatory arthritis via their tryptase/heparin complexes. J Immunol. 2009;182:647–56. doi: 10.4049/jimmunol.182.1.647
27. Sawamukai N, Yukawa S, Saito K, et al. Mast cell-derived tryptase inhibits apoptosis of human rheumatoid synovial fibroblasts via rho-mediated signaling. Arthritis Rheum. 2010;62:952–9. doi: 10.1002/art.27331
28. Palmer HS, Kelso EB, Lockhart JC, et al. Protease-activated receptor 2 mediates the proinflammatory effects of synovial mast cells. Arthritis Rheum. 2007;56:3532–40. doi: 10.1002/art.22936
29. Xu D, Jiang HR, Kewin P, et al. IL-33 exacerbates antigeninduced arthritis by activating mast cells. Proc Natl Acad Sci USA. 2008;105:10913–8. doi: 10.1073/pnas.0801898105
30. Насонов ЕЛ, Насонова ВА, редакторы. Ревматология. Национальное руководство. Москва: ГЭОТАР-Медиа; 2010. С. 296–8. [Nasonov EL, Nasonova VA, editors. Revmatologiya. Natsional’noe rukovodstvo [Rheumatology. National Guide]. Moscow: GEOTAR-media; 2010. P. 296–8].
31. Дубиков АИ. Апоптоз клеток синовиальной оболочки у больных ревматоидным артритом. Тихоокеанский медицинский журнал. 2008;(4):20–3. [Dubikov AI. Apoptosis in the synovium of patients with rheumatoid arthritis. Tikhookeanskii meditsinskii zhurnal. 2008;(4):20–3. (In Russ.)].
32. Xu D, Jiang HR, Li Y, et al. IL-33 exacerbates autoantibodyinduced arthritis. J Immunol. 2010;184:2620–6. doi: 10.4049/jimmunol.0902685
33. Navi D, Saegusa J, Liu FT. Mast cells and immunological skin diseases. Clin Rev Allergy Immunol. 2007;33:144–55. doi: 10.1007/s12016-007-0029-4
34. Chen R, Ning G, Zhao ML, et al. Mast cells play a key role in neutrophil recruitment in experimental bullous pemphigoid. J Clin Invest. 2001;108:1151–8. doi: 10.1172/JCI11494
35. Liu Z, Diaz LA, Troy JL, et al. A passive transfer model of the organ-specific autoimmune disease, bullous pemphigoid, using antibodies generated against the hemidesmosomal antigen, BP180. J Clin Invest. 1993;92:2480–8. doi: 10.1172/JCI116856
36. Dvorak AM, Mihm Jr MC, Osage JE, et al. Bullous pemphigoid, an ultrastructural study of the inflammatory response: eosinophil, basophil and mast cell granule changes in multiple biopsies from
37. onepatient. J Invest Dermatol. 1982;78:91–101. doi: 10.1111/1523-1747.ep12505711
38. Baba T, Sonozaki H, Seki K, et al. An eosinophil chemotactic factor present in blister fluids of bullous pemphigoid patients. J Immunol. 1976;116:112–6.
39. Katayama I, Doi T, Nishioka K. High histamine level in the blister fluid of bullous pemphigoid. Arch Dermatol Res. 1984;276:126–7. doi: 10.1007/BF00511070
40. D'Auria L, Pietravalle M, Cordiali-Fei P, Ameglio F. Increased tryptase and myeloperoxidase levels in blister fluids of patients with bullous pemphigoid: correlations with cytokines, adhesion molecules and anti-basement membrane zone antibodies. Exp Dermatol. 2000;9:131–7. doi: 10.1034/j.1600-0625.2000.009002131.x
41. Brockow K, Abeck D, Hermann K, Ring J. Tryptase concentration in skin blister fluid from patients with bullous skin conditions. Arch Dermatol Res. 1996;288:771–3. doi: 10.1007/BF02505295
42. Bluestone JA, Herold K, Eisenbarth G. Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature. 2010;464:1293–300. doi: 10.1038/nature08933
43. Geoffrey R, Jia S, Kwitek AE, et al. Evidence of a functional role for mast cells in the development of type 1diabetes mellitus in the BioBreeding rat. J Immunol. 2006;177:7275–86. doi: 10.4049/jimmunol.177.10.7275
44. Louvet C, Szot GL, Lang J, et al. Tyrosine kinase inhibitors reverse type 1 diabetes in non obese diabetic mice. Proc Natl Acad Sci USA. 2008;105:18895–900. doi: 10.1073/pnas.0810246105
45. Liu J, Divoux A, Sun J, et al. Genetic deficiency and pharmacological stabilization of mast cells reduce diet induced obesity and diabetes in mice. Nat Med. 2009;15:940–5. doi: 10.1038/nm.1994
46. Buckner JH. Mechanisms of impaired regulation by CD4(+)CD25(+)FOXP3(+) regulatory T cells in human autoimmune diseases. Nat Rev Immunol. 2010;10:849–59. doi: 10.1038/nri2889
47. Gri G, Piconese S, Frossi B, et al. CD4+CD25+ regulatory T cells suppress mast cell degranulation and allergic responses through OX40-OX40L interaction. Immunity. 2008;29:771–81. doi: 10.1016/j.immuni.2008.08.018
48. Kashyap M, Thornton AM, Norton SK, et al. Cutting edge: CD4 T cell-mast cell interaction salter IgE receptor expression and signaling. J Immunol. 2008;180:2039–43. doi: 10.4049/jimmunol.180.4.2039
49. Piconese S, Gri G, Tripodo C, et al. Mast cells counteract regulatory T-cell suppression through interleukin-6 and OX40/OX40L axis toward Th17-cell differentiation. Blood. 2009;114:2639–48. doi: 10.1182/blood-2009-05-220004
50. De Vries VC, Wasiuk A, Bennett KA, et al. Mast cell degranulation breaks peripheral tolerance. Am J Transplant. 2009;9:2270–80. doi: 10.1111/j.1600-6143.2009.02755.x
51. Von Vietinghoff S, Ley K. IL-17A controls IL-17F production and maintains blood neutrophil counts in mice. J Immunol. 2008 Aug 15;181(4):2799–805.
52. Forward NA, Furlong SJ, Yang Y, et al. Mast cells down-regulate CD4+CD25+ T regulatory cell suppressor function via histamine H1 receptor interaction. J Immunol. 2009;183:3014–22. doi: 10.4049/jimmunol.0802509
53. Hemdan NY, Birkenmeier G, Wichmann AM, et al. Interleukin-17-producing T helper cells in autoimmunity. Autoimmun Rev. 2010;9:785–92. doi: 10.1016/j.autrev.2010.07.003
54. Tripodo C, Gri G, Piccaluga PP, et al. Mast cells and Th17 cells contribute to the lymphoma-associated pro-inflammatory microenvironment of angioimmunoblastic T-cell lymphoma. Am J Pathol. 2010;177:792–802. doi: 10.2353/ajpath.2010.091286
55. Zhu J, Paul WE. Heterogeneity and plasticity of T helper cells. Cell Res. 2010;20:4–12. doi: 10.1038/cr.2009.138
56. Kawakami T, Kitaura J, Xiao W, Kawakami Y. IgE regulation of mast cell survival and function. Novartis Found Symp. 2005;271:100–7; discussion 108–14, 145–51.
57. Malbec O, Daeron M. The mast cell IgG receptors and their roles in tissue inflammation. Immunol Rev. 2007;217:206–21. doi: 10.1111/j.1600-065X.2007.00510.x
58. Merluzzi S, Frossi B, Gri G, et al. Mast cells enhance proliferation of B lymphocytes and drive their differentiation toward IgA secreting plasma cells. Blood. 2010;115:2810–7. doi: 10.1182/blood-2009-10-250126
59. Minagar A, Shapshak P, Fujimura R, et al. The role of macrophage/microglia and astrocytes in the pathogenesis of three neurologic disorders: HIV-associated dementia, Alzheimer disease, and multiple sclerosis. J Neurol Sci. 2002;202:13–23. doi: 10.1016/S0022-510X(02)00207-1
60. Kim DY, Jeoung D, Ro JY. Signaling pathways in the activation of mast cells cocultured with astrocytes and colocalization of both cells in experimental allergic encephalomyelitis. J Immunol. 2010;185:273–83. doi: 10.4049/jimmunol.1000991
61. Bulanova E, Bulfone-Paus S. P2 receptor-mediated signaling in mast cell biology. Purinergic Signa. 2010;6(1):3–17. doi: 10.1007/s11302-009-9173-z
62. Hudson CA, Christophi GP, Gruber RC, et al. Induction of IL-33 expression and activity in central nervous system glia. J Leukoc Biol. 2008;84:631–43. doi: 10.1189/jlb.1207830
63. Steinman L. A molecular trio in relapse and remission in multiple sclerosis. Nat Rev Immunol. 2009;9(6):440–7. doi: 10.1038/nri2548
64. Rangaswami H, Bulbule A, Kundu GC. Osteopontin: role in cell signaling and cancer progression. Trends Cell Biol. 2006;16:79–87. doi: 10.1016/j.tcb.2005.12.005
65. Denhardt DT, Burger EH, Kazanecki C, et al. Osteopontin-deficient bone cells are defective in their ability to produce NO in response to pulsatile fluid flow. Biochem Biophys Res Commun. 2001;288:448–53. doi: 10.1006/bbrc.2001.5780
66. O'Regan AW, Hayden JM, Berman JS. Osteopontin augments CD3-mediated interferon-gamma and CD40 ligand expression by T cells, which results in IL-12 production from peripheral blood mononuclear cells. J Leukoc Biol. 2000;68:495–502.
67. Renkl AC, Wussler J, Ahrens T, et al. Osteopontin functionally activates dendritic cells and induces their differentiation toward a Th1-polarizing phenotype. Blood. 2005;106:946–55. doi: 10.1182/blood-2004-08-3228
68. Shinohara ML, Lu L, Bu J, et al. Osteopontin expression is essential for interferon-alpha production by plasmacytoid dendritic cells. Nat Immunol. 2006;7(5):498–506. doi: 10.1038/ni1327
69. Diao H, Kon S, Iwabuchi K, et al. Osteopontin as a mediator of NKT cell function in T cell mediated liver diseases. Immunity. 2004;21:539–50. doi: 10.1016/j.immuni.2004.08.012
70. Nagasaka A, Matsue H, Matsushima H, et al. Osteopontin is produced by mast cells and affects IgE-mediated degranulation and migration of mast cells. Eur J Immunol. 2008;38:489–99. doi: 10.1002/eji.200737057
71. O'Connor TM, O'Connell J, O'Brien DI, et al. The role of substance P in inflammatory disease. J Cell Physiol. 2004;201:167–80. doi: 10.1002/jcp.20061
72. Reinke E, Fabry Z. Breaking or making immunological privilege in the central nervous system: the regulation of immunity by neuropeptides. Immunol Lett. 2006;104:102–9. doi: 10.1016/j.imlet.2005.11.009
73. Theoharides TC, Donelan JM, Papadopoulou N, et al. Mast cells as targets of corticotropin-releasing factor and related peptides. Trends Pharmacol Sci. 2004;25:563–8. doi: 10.1016/j.tips.2004.09.007
74. Ansel JC, Brown JR, Payan DG, Brown MA. Substance P selectively activates TNF-alpha gene expression in murine mast cells. J Immunol. 1993;150:4478–85.
75. Oboki K, Ohno T, Kajiwara N, et al. IL-33 and IL-33 receptors in host defense and diseases. Allergol Int. 2010;59:143–60. doi: 10.2332/allergolint.10-RAI-0186
76. Roussel L, Erard M, Cayrol C, Girard JP. Molecular mimicry between IL-33 and KSHV for attachment to chromatin through the H2A-H2B acidic pocket. EMBO Rep. 2008;9:1006–12. doi: 10.1038/embor.2008.145
77. Liew FY, Pitman NI, McInnes IB. Disease-associated functions of IL-33: the new kid in the IL-1 family. Nat Rev Immunol. 2010;10:103–10. doi: 10.1038/nri2692
Review
For citations:
Baglay E.O., Dubikov A.I. MAST CELLS ARE KEY PARTICIPANTS IN THE PATHOGENESIS OF IMMUNOINFLAMMATORY DISEASES. Rheumatology Science and Practice. 2015;53(2):182-189. (In Russ.) https://doi.org/10.14412/1995-4484-2015-182-189