Preview

Rheumatology Science and Practice

Advanced search

INTERLEUKIN-23 IN PATIENTS WITH ANTINEUTROPHIL CYTOPLASMIC ANTIBODY-ASSOCIATED SYSTEMIC VASCULITIDES: THE AUTHORS’ RESULTS AND A REVIEW OF LITERATURE

https://doi.org/10.14412/1995-4484-2015-493-501

Abstract

T helper type 17 (Th17) cell-mediated reactions can be implicated in the pathogenesis of antineutrophil cytoplasmic antibody (ANCA)-associated systemic vasculitides (SV) (ANCA-SV). The relationship of clinical parameters to the serum levels of interleukin-23 (IL-23) that is involved in a Th17 response and the impact of therapy on this factor were studied in patients with ANCA-SV.

Objective: to study serum IL-23 concentrations in patients having varying ANCA-SV activities and different induction treatment regimens as compared to healthy donors.

Subjects and methods. Enzyme immunoassay was used to investigate IL-23 concentrations in 40 patients with ANCA-SV [median age, 44 years (20 to 65 years); female/male ratio, 1.11] and 8 healthy donors [median age, 47 years (21 to 66 years); female/male ratio, 1.67]. ANCA-SV was classified as granulomatosis with polyangiitis in 23 patients, as microscopic polyangiitis in 14, and as eosinophilic granulomatosis with polyangiitis in 3. Examinations were made in 26 patients with ANCA-SV in active stage and in 28 in remission (induced with rituximab in 22 of the 28 patients). The association was analyzed between IL-23 concentrations and disease activity, as well as clinical features of ANCA-SV.

Results and discussion. Significantly elevated serum IL-23 concentrations were noted only in the untreated patients at the onset of ANCA-SV as compared to the healthy donors (median 41.9 and 13.1 pg/ml, respectively; p < 0.05). Both immunosuppressive and anti-B-cell therapy persistently decreased serum IL-23 concentrations (to 5.2–88 pg/ml).

Conclusion. Further investigation of IL-23 and functionally related cytokines in ANCA-SV is promising

About the Authors

T. V. Beketova
V.A. Nasonova Research Institute of Rheumatology, Moscow, Russia 34A, Kashirskoe Shosse, Moscow 115522
Russian Federation


E. N. Aleksandrova
V.A. Nasonova Research Institute of Rheumatology, Moscow, Russia 34A, Kashirskoe Shosse, Moscow 115522
Russian Federation


N. O. Nikonorova
V.A. Nasonova Research Institute of Rheumatology, Moscow, Russia 34A, Kashirskoe Shosse, Moscow 115522
Russian Federation


References

1. Huh JR, Littman DR. Small molecule inhibitors of RORgammat: targeting Th17 cells and other applications. Eur J Immunol. 2012;42(9):2232–7. doi: 10.1002/eji.201242740

2. Abdulahad WH, Lamprecht P, Kallenberg CG. T-helper cells as new players in ANCA-associated vasculitides. Arthritis Res Ther. 2011;13:236. doi: 10.1186/ar3362

3. Aggarwal S, Ghilardi N, Xie MH, et al. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J Biol Chem. 2003;278:1910–4. doi: 10.1074/jbc.M207577200

4. Teunissen MBM, Koomen CW, de Waal Malefit R, et al. Interleukin-17 and interferon-synergize in enhancement of proinflammatory cytokine production by human keratinocytes. J Invest Dermatol.1998;111:645–9. doi: 10.1046/j.1523-1747.1998.00347.x

5. Kastelein RA, Hunter CA, Cua DJ. Discovery and biology of IL-23 and IL-27: related but functionally distinct regulators of inflammation. Annu Rev Immunol. 2007;25:221–42. doi: 10.1146/annurev.immunol.22.012703.104758

6. Duvallet E, Semerano L, Assier E, et al. Interleukin-23: A key cytokine in inflammatory diseases. Ann Med. 2011;43(7):503–11. doi: 10.3109/07853890.2011.577093

7. Корсакова ЮЛ, Станислав МЛ, Денисов ЛН, Насонов ЕЛ. Устекинумаб – новый препарат для лечения псориаза и псориатического артрита. Научно-практическая ревматология. 2013;51(2):170–80 [Korsakova YuL, Stanislav ML, Denisov LN, Nasonov EL. Ustekinumab – a new drug for the treatment of psoriasis and psoriatic arthritis. Nauchno-prakticheskaya revmatologiya = Rheumatology Science and Practice. 2013;51(2):170–80 (In Russ.)].

8. Tuskey A, Behm BW. Profile of ustekinumab and its potential in patients with moderate-to-severe Crohn’s disease. Clin Exper Gastroenterol. 2014;7:173–9.

9. Toussirot E, Michel F, Bereau M, Binda D. Ustekinumab in chronic immune-mediated diseases: a review of long term safety and patient improvement. Patient Рrefer Аdherence. 2013;7:369–77. doi: 10.2147/PPA.S33162

10. McKinney EF, Willcocks LC, Broecker V, Smith KGC. The immunopathology of ANCA-associated vasculitis. Semin Immunopathol. 2014;36(4):461–78. doi: 10.1007/s00281-014- 0436-6

11. Leavitt RY, Fauci AS, Bloch DA, et al. The American College of Rheumatology 1990 criteria for the classification of Wegener’s granulomatosis. Arthritis Rheum. 1990;33:1101–7. doi: 10.1002/art.1780330807

12. Masi AT, Hunder GG, Lie JT, et al. The American College of Rheumatology 1990 criteria for the classification of Churg-Strauss syndrome (allergic granulomatosis and angiitis). Arthritis Rheum. 1990;33:1094–100. doi: 10.1002/art.1780330806

13. Jennette JC, Falk RJ, Bacon PA, et al. 2012 revised International Chapel Hill Consensus Conference Nomenclature of Vasculitides. Arthritis Rheum. 2013;65(1):1–11. doi: 10.1002/art.37715

14. Watts R, Lane S, Hanslik T, et al. Development and validation of a consensus methodology for the classification of the ANCAassociated vasculitides and polyarteritis nodosa for epidemiological studies. Ann Rheum Dis. 2007;66:222–7. doi: 10.1136/ard.2006.054593

15. Luqmani R, Bacon P, Moots R, et al. Birmingham Vasculitis Activity Score (BVAS) in systemic necrotizing vasculitis. QJM. 1994;87:671–8.

16. Schö nermarck U, Csernok E, Gross WL. Pathogenesis of antineutrophil cytoplasmic antibody-associated vasculitis: challenges and solutions 2014. Nephrol Dial Transplant. 2014(Dec 23) pii: gfu398. [Epub ahead of print]. Review. PubMed PMID: 25540095.

17. Hilhorst M, Shirai T, Berry G, et al. T cell-macrophage interactions and granuloma formation in vasculitis. Front Immunol. 2014(Sep)12;5:432.

18. Nogueira E, Hamour S, Sawant D, et al. Serum IL-17 and IL-23 levels and autoantigen-specific Th17 cells are elevated in patients with ANCA-associated vasculitis. Nephrol Dial Transplant. 2010;25(7):2209–17. doi: 10.1093/ndt/gfp783

19. Schnurr M, Toy T, Shin A, et al. Extracellular nucleotide signaling by P2 receptors inhibits IL-12 and enhances IL-23 expression in human dendritic cells: a novel role for the cAMP pathway. Blood. 2005;105:1582–9. doi: 10.1182/blood-2004-05-1718

20. Torchinsky MB, Blander JM. T helper 17 cells: discovery, function,and physiological trigger. Cell Mol Life Sci. 2010(May);67(9):1407–21.

21. Zhou L, Lopes JE, Chong MMW, et al. TGF-β-induced Foxp3 inhibits TH17 cell differentiation by antagonizing RORt function. Nature. 2008;453:236–40. doi: 10.1038/nature06878

22. Tesmer LA, Lundy K, Sarkar S, Fox DA. Th17 cells in human disease. Immunol Rev. 2008;223:87–113. doi: 10.1111/j.1600-065X.2008.00628.x

23. Kim HS, Choi D, Lim LL, et al. Association of interleukin 23 receptor gene with sarcoidosis. Dis Markers. 2011;31(1):17–24. doi: 10.1155/2011/185106

24. Oliver B, Rueda MA, Lopez-Nevot M, et al. Replication of an association between IL23R gene polymorphism with inflammatory bowel disease. Clin Gastroenterol Hepatol. 2007;5:977–81. doi: 10.1016/j.cgh.2007.05.002

25. Nair RP, Duffin KC, Helms C, et al; Collaborative Association Study of Psoriasis. Genome-wide scan reveals association of psoriasis with IL-23 and NF-kappaB pathways. Nat Genet. 2009;41(2):199–204. doi: 10.1038/ng.311

26. Duan Z, Pan F, Zeng Z, et al. Interleukin-23 receptor genetic polymorphisms and ankylosing spondylitis susceptibility: a metaanalysis. Rheumatol Int. 2012(May);32(5):1209–14.

27. Tsai JP, Yang SF, Wu SW, et al. Association between interleukin 23 receptor polymorphism and kidney transplant outcomes: a 10-year Taiwan cohort study. Clin Chim Acta. 2011;412(11–12):958–62. doi: 10.1016/j.cca.2011.01.031

28. Paust HJ, Turner JE, Steinmetz OM, et al. The IL-23/Th17 axis contributes to renal injury in experimental glomerulonephritis. J Am Soc Nephrol. 2009;20(5):969–79. doi: 10.1681/ASN.2008050556

29. Gan P-Y, Steinmetz OM, Tan DSY, et al. Th17 cells promote autoimmune anti-myeloperoxidase glomerulonephritis. J Am Soc Nephrol. 2010;21:925–31. doi: 10.1681/ASN.2009070763

30. Yen D, Cheung J, Scheerens H, et al. IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J Clin Invest. 2006;116:1310–6. doi: 10.1172/JCI21404

31. Kyttaris VC, Zhang Z, Kuchroo VK, et al. Cutting edge: IL-23 receptor deficiency prevents the development of lupus nephritis in C57BL/6-lpr/lpr mice. J Immunol. 2010;184(9):4605–9. doi: 10.4049/jimmunol.0903595

32. Ooi JD, Phoon RK, Holdsworth SR, Kitching AR. IL-23, not IL-12, directs autoimmunity to the Goodpasture antigen. J Am Soc Nephrol. 2009;20(5):980–9. doi: 10.1681/ASN.2008080891

33. Cua DJ, Sherlock J, Chen Y, et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature. 2003;421:744–8. doi: 10.1038/nature01355

34. Murphy CA, Langrish CL, Chen Y, et al. Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J Exp Med. 2003;198:1951–7. doi: 10.1084/jem.20030896

35. Ogawa A, Andoh A, Araki Y, et al. Neutralization of interleukin- 17 aggravates dextran sulfate sodium-induced colitis in mice. Clin Immunol. 2004;110:55–62. doi: 10.1016/j.clim.2003.09.013

36. Becker C, Dornhoff H, Neufert C, et al. Cutting edge: IL-23 cross-regulates IL-12 production in T cell-dependent experimental colitis. J Immunol. 2006;177(5):2760–4. doi: 10.4049/jimmunol.177.5.2760

37. Savvatis K, Pappritz K, Becher PM, et al. Interleukin-23 deficiency leads to impaired wound healing and adverse prognosis after myocardial infarction. Circ Heart Fail. 2014;7(1):161–71. doi: 10.1161/CIRCHEARTFAILURE.113.000604

38. Olewicz-Gawlik A, Danczak-Pazdrowska A, Kuznar-Kaminska B, et al. Interleukin-17 and interleukin-23: importance in the pathogenesis of lung impairment in patients with systemic sclerosis. Int J Rheum Dis. 2014;17(6):664–70. doi: 10.1111/1756- 185X.12290

39. Masaki K, Suzuki Y, Kagawa S, et al. Dual role of interleukin-23 in epicutaneously-sensitized asthma in mice. Allergol Int. 2014;63(Suppl 1):13–22. doi: 10.2332/allergolint.13-OA-0632

40. Harrington LE, Hatton RD, Mangan PR. Interleukin 17-producing CD4+ effector T cells develop via a lineage dis-tinct from the T helper type 1 and 2 lineages. Nat Immunol. 2005;6:1123–32. doi: 10.1038/ni1254

41. Park H, Li Z, Yang XO, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol. 2005;6:1133–41. doi: 10.1038/ni1261

42. Afzali B, Lombardi G, Lecher RI, Lord GM. The role of T helper 17 (Th17) and regulatory T cells (Treg) in human organ transplantation and autoimmune disease. Clin Exper Immunol. 2007;148:32–46. doi: 10.1111/j.1365-2249.2007.03356.x

43. Kasper LH, Everitt D, Leist TP, et al. A phase I trial of an interleukin-12/23 monoclonal antibody in relapsing multiple sclerosis. Curr Med Res Opin. 2006;22:1671–8. doi: 10.1185/030079906X120931

44. McGeachy MJ, Bak-Jensen KS, Chen Y, et al. TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T(H)-17 cell-mediated pathology. Nat Immunol. 2007;8:1390–7. doi: 10.1038/ni1539

45. Fitzgerald DC, Ciric B, Touil T, et al. Suppressive effect of IL-27 on encephalolithogenic TH17 cells and the effector phase of experimental autoimmune encephalomyelitis. J Immunol. 2007;179:3268–327. doi: 10.4049/jimmunol.179.5.3268

46. Velden J, Paust HJ, Hoxha E, et al. Renal IL-17 expression in human ANCA-associated glomerulonephritis. Am J Physiol Renal Physiol. 2012;302(12):1663–73. doi: 10.1152/ajprenal.00683.2011

47. Stummvoll GH, DiPaolo TS, Glass D, et al. Th1, Th2 and Th17 effector T cell-induced autoimmune gastritis differs in pathological pattern and in susceptibility to suppression by regulatory T cells. J Immunol. 2008;181:1908–16. doi: 10.4049/jimmunol. 181.3.1908

48. Yu JJ, Gaffen SL. Interleukin-17: a novel inflammatory cytokine that bridges innate and adaptive immunity. Front Biosci. 2008;13:170–7. doi: 10.2741/2667

49. Ouyang W, Kolls JK, Zheng Y. The biological functions of T helper 17 cell effector cytokines in inflammation. J Immunity. 2008;28:454–67. doi: 10.1016/j.immuni.2008.03.004

50. Happel KI, Zheng M, Young E, et al. Cutting edge: roles of Tolllike receptor 4 and IL-23 in IL-17 expression in response to Klebsiella pneumoniae infection. J Immunol. 2003;170(9):4432–6. doi: 10.4049/jimmunol.170.9.4432

51. Aujla SJ, Chan YR, Zheng M, et al. IL-22 mediates mucosal host defense against Gram-negative bacterial pneumonia. Nat Med. 2008;14(3):275–81. doi: 10.1038/nm1710

52. Huang W, Na L, Fidel PL, Schwarzenberger P. Requirement of interleukin-17A for systemic anti-Candida albicans host defense in mice. J Infect Dis. 2004;190:624–31. doi: 10.1086/422329

53. Kelly MN, Kolls JK, Happel K, et al. Interleukin-17/interleukin-17 receptor-mediated signaling is important for generation of an optimal polymorphonuclear response against Toxoplasma gondii infection. Infect Immun. 2005;73(1):617–21. doi: 10.1128/IAI.73.1.617-621.2005

54. Weaver CT, Hatton RD, Hangan PR, Harringon LE. IL-17 family cytokines and the expanding diversity of effector T cell lineages. Ann Rev Immunol. 2007;25:821–52. doi: 10.1146/annurev.immunol.25.022106.141557

55. Wilde B, Thewissen M, Damoiseaux J, et al. Th17 expansion in granulomatosis with polyangiitis (Wegener’s): the role of disease activity, immune regulation and therapy. Arthritis Res Ther. 2012;14(5):R227. doi: 10.1186/ar4066

56. Fagin U, Csernok E, Muller A, et al. Distinct proteinase 3-induced cytokine patterns in Wegener’s granulomatosis, Churg-Strauss syndrome, and healthy controls. Clin Exp Rheumatol. 2011;29:57–62.

57. Abdulahad WH, Stegeman CA, Limburg PC, Kallenberg CG. Skewed distribution of Th17 lymphocytes in patients with Wegener's granulomatosis in remission. Arthritis Rheum. 2008;58(7):2196–205. doi: 10.1002/art.23557

58. Мазуров ВИ, Долгих СВ. Диагностическая значимость биологических маркеров при первичных системных некротизирующих васкулитах. Вестник Санкт- Петербургской медицинской академии последипломного образования. 2010;1(2):4–8 [Mazurov VI, Dolgikh SV. The diagnostic value of biomarkers in primary systemic necrotizing vasculitis. Vestnik Sankt-Peterburgskoi meditsinskoi akademii poslediplomnogo obrazovaniya. 2010;1(2):4–8 (In Russ.)].

59. Hemdan NY, Birkenmeier G, Wichmann G, et al. Interleukin-17-producing T helper cells in autoimmunity. Autoimmun Rev. 2010;9(11):785–92. doi: 10.1016/j.autrev.2010.07.003

60. Deng J, Younge BR, Olshen RA, et al. Th17 and Th1 T-Cell responses in giant cell arteritis. Circulation. 2010;121:906–15. doi: 10.1161/CIRCULATIONAHA.109.872903

61. Miossec P. Interleukin-17 and Th17 cells: From adult to juvenile arthritis – now it is serious! Arthritis Rheum. 2011;63:2168–71. doi: 10.1002/art.30331

62. Von Vietinghoff S, Ley K. Interleukin 17 in vascular inflammation. Cytokine Growth Factor Rev. 2010;21:463–9. doi: 10.1016/j.cytogfr.2010.10.003

63. Yang J, Chu Y, Yang X, et al. Th17 and natural Treg cell population dynamics in systemic lupus erythematosus. Arthritis Rheum. 2009;60:1472–83. doi: 10.1002/art.24499

64. Brentano F, Ospelt C, Stanczyk J, et al. Abundant expression of the interleukin (IL) 23 subunit p19, but low levels of bioactive IL23 in the rheumatoid synovium: Differential expression and Toll-like receptor-(TLR) dependent regulation of the IL23 subunits, p19 and p40, in rheumatoid arthritis. Ann Rheum Dis. 2009;68(1):143–50. doi: 10.1136/ard.2007.082081

65. Chabaud M, Lubberts E, Joosten L, et al. IL-17 derived from juxta-articular bone and synovium contributes to joint degradation in rheumatoid arthritis. Arthritis Res. 2001;3:168–77. doi: 10.1186/ar294

66. Dalila AS, Mohd Said MS, Shaharir SS, et al. Interleukin-23 and its correlation with disease activity, joint damage, and functional disability in rheumatoid arthritis. Kaohsiung J Med Sci. 2014;30(7):337–42. doi: 10.1016/j.kjms.2014.02.010

67. Wang X, Lin Z, Wei Q, et al. Expression of IL-23 and IL-17 and effect of IL-23 on IL-17 production in ankylosing spondylitis. Rheumatol Int. 2009;29(11):1343–7. doi: 10.1007/s00296-009- 0883-x

68. Mei Y, Pan F, Gao J, et al. Increased serum IL-17 and IL-23 in the patient with ankylosing spondylitis. Clin Rheumatol. 2011;30(2):269–73. doi: 10.1007/s10067-010-1647-4

69. Chen WS, Chang YS, Lin KC, et al. Association of serum interleukin-17 and interleukin-23 levels with disease activity in Chinese patients with ankylosing spondylitis. J Chin Med Assoc. 2012;75(7):303–8. doi: 10.1016/j.jcma.2012.05.006

70. Gheita TA, El Gazzar II, El-Fishawy HS, et al. Involvement of IL-23 in enteropathic arthritis patients with inflammatory bowel disease: preliminary results. Clin Rheumatol. 2014;33(5):713–7. doi: 10.1007/s10067-013-2469-y

71. Saadoun D, Garrido M, Comarmond C, et al. Th1 and Th17 cytokines drive Takayasu Arteritis inflammation. Arthritis Rheum. 2015 Jan 20. doi: 10.1002/art.39037 [Epub ahead of print].

72. Weyand CM, Younge BR, Goronzy JJ. IFN-γ and IL-17: the two faces of T-cell pathology in giant cell arteritis. Curr Opin Rheumatol. 2011;23(1):43–9. doi: 10.1097/BOR.0b013e32833ee946

73. Xia L, Li B, Shen H, Lu J. Interleukin-27 and interleukin-23 in patients with systemic lupus erythematosus: possible role in lupus nephritis. Scand J Rheumatol. 2015;6:1–6. doi: 10.3109/03009742.2014.962080

74. Huang X, Hua J, Shen N, et al. Dysregulated expression of interleukin-23 and interleukin-12 subunits in systemic lupus erythematosus patients. Mod Rheumatol. 2007;17:220–3. doi: 10.3109/s10165-007-0568-9

75. Puwipirom H, Hirankarn N, Sodsai P, et al. Increased interleukin-23 receptor(+) T cells in peripheral blood mononuclear cells of patients with systemic lupus erythematosus. Arthritis Res Ther. 2010;12:215. doi: 10.1186/ar3194

76. Ruggeri RM, Saitta S, Cristani M, et al. Serum interleukin-23 (IL-23) is increased in Hashimoto’s thyroiditis. Endocr J. 2014;61(4):359–63. doi: 10.1507/endocrj.EJ13-0484

77. Chen JM, Jiang GX, Li QW, et al. Increased serum levels of interleukin-18, -23 and -17 in chinese patients with Alzheimer's disease. Dement Geriatr Cogn Disord. 2014;38(5–6):321–9. doi: 10.1159/000360606

78. Vaccaro M, Cannavo SP, Imbesi S, et al. Increased serum levels of interleukin-23 circulating in patients with non-segmental generalized vitiligo. Int J Dermatol. 2014 Nov 27. doi: 10.1111/ijd.12392 [Epub ahead of print].

79. Leonardi S, Cuppari C, Manti S, et al. Serum interleukin 17, interleukin 23, and interleukin 10 values in children with atopic eczema/dermatitis syndrome (AEDS): Association with clinical severity and phenotype. Allergy Asthma Proc. 2015;36(1):74–81. doi: 10.2500/aap.2015.36.3808

80. Yu C, Gong X, Yang Q, et al. The serum IL-23 level predicts the response to pegylated interferon therapy in patients with chronic hepatitis B. Liver Int. 2014 Oct 14; doi: 10.1111/liv.12701 [Epub ahead of print].

81. Ashrafi Hafez A, Ahmadi Vasmehjani A, Baharlou R, et al. Analytical assessment of interleukin-23 and -27 cytokines in healthy people and patients with hepatitis C virus infection (genotypes 1 and 3a). Hepat Mon. 2014 Sep 27;14(9):e21000. doi: 10.5812/hepatmon.21000

82. Jia R, Tang M, Qiu L, et al. Increased Interleukin-23/17 Axis and C-reactive protein are associated with severity of acute pancreatitis in patients. Pancreas. 2015;44(2):321–5. doi: 10.1097/MPA.0000000000000284

83. Wong CK, Lit LC, Tam LS, et al. Hyperproduction of IL-23 and IL-17 in patients with systemic lupus erythematosus: implications for Th17-mediated inflammation in auto-immunity. Clin Immunol. 2008;127:385–93. doi: 10.1016/j.clim.2008.01.019

84. Alibaz-Oner F, Yentü r SP, Saruhan-Direskeneli G, Direskeneli H. Serum cytokine profiles in Takayasu’s arteritis: search for biomarkers. Clin Exp Rheumatol. 2014 Dec 1 [Epub ahead of print] PubMed PMID: 25436391.

85. Du J, Li Z, Shi J, Bi L. Associations between serum interleukin-23 levels and clinical characteristics in patients with systemic lupus erythematosus. J Int Med Res. 2014;42(5):1123–30. doi: 10.1177/0300060513509130

86. Wilde B, Thewissen M, Damoiseaux J, et al. Th17 expansion in granulomatosis with polyangiitis (Wegener’s): the role of disease activity, immune regulation and therapy. Arthritis Res Ther. 2012;14(5):R227. doi: 10.1186/ar4066


Review

For citations:


Beketova T.V., Aleksandrova E.N., Nikonorova N.O. INTERLEUKIN-23 IN PATIENTS WITH ANTINEUTROPHIL CYTOPLASMIC ANTIBODY-ASSOCIATED SYSTEMIC VASCULITIDES: THE AUTHORS’ RESULTS AND A REVIEW OF LITERATURE. Rheumatology Science and Practice. 2015;53(5):493-501. (In Russ.) https://doi.org/10.14412/1995-4484-2015-493-501

Views: 1493


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1995-4484 (Print)
ISSN 1995-4492 (Online)