ASSOCIATION OF BLOOD GENE EXPRESSIONS IN RHEUMATOID ARTHRITIS PATIENTS WITH CLINICAL AND LABORATORY PARAMETERS BEFORE AND AFTER METHOTREXATE THERAPY
https://doi.org/10.14412/1995-4484-2016-155-163
Abstract
The genes, the high basic expression of which indicates the efficiency of methotrexate (MTX) therapy in relieving joint inflammation and destruction in patients with rheumatoid arthritis (RA), have been defined.
Objective: to find an association between the initial expression of the genes: mTOR (mammalian target of rapamycin), a major regulator of cell growth and proliferation; ULK1 (an autophagy marker 1); p21 (a cyclin-dependent kinase inhibitor); kaspase-3 (an apoptosis activity indicator); MMP-9 (matrix metalloproteinase 9), and cathepsin K, which are involved in joint destruction, and the cytokines: TNF-α (tumor necrosis factor-α), TGFβ1 (transforming growth factor β1) and Runx2 (Runt-related transcription factor 2) in the blood of RA patients with disease activity and joint destruction before and after MTX therapy during 24 months.
Subjects and methods. Forty patients (mean age, 47.5 years) with RA lasting < 2 years) and 26 healthy donors (mean age, 45.1 years) were examined. All the patients took MTX for 2 years. A clinical response was assessed with disease activity score (DAS28); erythrocyte sedimentation rate and the serum levels of anti-cyclic citrullinated peptide antibodies (ACCPA), C-reactive protein (CRP), and rheumatoid factor (RF) were also estimated. Joint destructive changes were assessed by radiography. Furthermore, blood and knee articular cartilage samples from 21 patients (mean age, 50.4 years) with late-stage RA and cartilage samples from 25 healthy individuals were investigated. Gene expression in the cells of peripheral blood and cartilage was determined by real-time reverse transcriptase polymerase chain reaction.
Results and discussion. MTX therapy considerably reduced disease activity assessed by DAS28, CRP levels, stiffness, tender and swollen joint counts (TJC and SJC); however, joint space (JS) narrowing (JSN) substantially increased compared with the baseline values. The expression of the ULK1, p21, MMP-9, cathepsin K genes, and TGFβ1 was increased both at the beginning of the investigation and 24 months later whereas the initially higher expression of mTOR, TNF-α, caspase 3, and Runx2 was decreased by the end of therapy to the level of the healthy individuals. The initial expression of the TGFβ1, Runx2, caspase 3, and р21 genes correlated negatively with the RF level measured both at the beginning of the investigation and 24 months later. There was a positive correlation of the initial expression of ULK1 and MMP-9 with CRP levels prior to therapy and that of the initial expression of MMP-9 with baseline DAS28 scores and NSJ. Moreover, the initial expression of the TNF-α gene positively correlated with JSN at the end of therapy and that of the p21, caspase 3, and Runx2 genes with a change in DAS28. There was also a negative correlation of the initial expression of the mTOR gene with the SJC and the number of erosions; the p21 and TNF-α genes correlated negatively with SJC and TJC; and the TNF-α, TGFβ1, Runx2, and cathepsin K genes also negatively correlated to the duration of stiffness at the end of therapy. A positive correlation was found between the expression of the cathepsin K and TGFβ1 genes in the blood and articular cartilage of patients with late-stage RA.
Conclusion. The expression of the MMP-9 and ULK1 genes is associated with disease activity. The high initial blood expression of the other examined genes is associated with the more effective action of MTX on stiffness (TNF-α, Runx2, cathepsin K, and TGFβ1), TJC and SJC (mTOR, p21, and TNF-α), and the progression of joint destruction (mTOR) and may play a protective role. The positive correlation of the blood and articular cartilage expression of the TGFβ1 and cathepsin K genes may point to their co-regulation in these tissues in RA.
About the Authors
E. V. ChetinaRussian Federation
34A, Kashirskoe Shosse, Moscow 115522
N. V. Demidova
Russian Federation
34A, Kashirskoe Shosse, Moscow 115522
D. E. Karateev
Russian Federation
34A, Kashirskoe Shosse, Moscow 115522
G. A. Markova
Russian Federation
34A, Kashirskoe Shosse, Moscow 115522
M. A. Makarov
Russian Federation
34A, Kashirskoe Shosse, Moscow 115522
V. V. Kolomatsky
Russian Federation
34A, Kashirskoe Shosse, Moscow 115522
A. L. Logunov
Russian Federation
34A, Kashirskoe Shosse, Moscow 115522
E. A. Naryshkin
Russian Federation
34A, Kashirskoe Shosse, Moscow 115522
M. M. Lipina
Russian Federation
34A, Kashirskoe Shosse, Moscow 115522
S. A. Makarov
Russian Federation
34A, Kashirskoe Shosse, Moscow 115522
A. N. Kuzin
Russian Federation
3, Tarnyi Passage, Moscow 115516
References
1. Насонов ЕЛ. Применение ритуксимаба при ревматоидном артрите. В кн.: Насонов ЕЛ, редактор. Анти-В-клеточная терапия в ревматологии: фокус на ритуксимаб. Москва: ИМА-ПРЕСС; 2012. С. 55-93 [Nasonov EL. The use of rituximab in rheumatoid arthritis. In: Nasonov EL, editor. Anti-B-kletochnaya terapiya v revmatologii: fokus na rituksimab [Anti-B-cell therapy in rheumatology: Focus on rituximab]. Moscow: IMAPRESS; 2012. P. 55-93].
2. Harris ED Jr. Rheumatoid Arthritis: pathophysiology and implications for therapy. N Engl J Med. 1990;322:1277-89. doi: 10.1056/NEJM199005033221805
3. Breedveld FC, Weisman MH, Kavanaugh AF, et al. The PREMIER study: A multicenter, randomized, double-blind clinical trial of combination therapy with adalimumab plus methotrexate versus methotrexate alone or adalimumab alone in patients with early, aggressive rheumatoid arthritis who had not had previous methotrexate treatment. Arthritis Rheum. 2006;54(1):26-37. doi: 10.1002/art.21519
4. Emery P, Breedveld FC, Hall S, et al. Comparison of methotrexate monotherapy with a combination of methotrexate and etanercept in active, early, moderate to severe rheumatoid arthritis (COMET): a randomized, double-blind, parallel treatment trial. Lancet. 2008;372(9636):375-82. doi: 10.1016/S0140-6736(08)61000-4
5. De Vries-Bouwstra JK, Goekoop-Ruiterman YP, Verpoort KN, et al. Progression of joint damage in early rheumatoid arthritis: association with HLA-DRB1, rheumatoid factor, and anti-citrullinated protein antibodies in relation to different treatment strategies. Arthritis Rheum. 2008;58(5):1293-8. doi: 10.1002/art.23439
6. Burmester GR, Mariette X, Montecucco C, et al. Adalimumab alone and in combination with disease-modifying antirheumatic drugs for the treatment of rheumatoid arthritis in clinical practice: the Research in Active Rheumatoid Arthritis (ReAct) trial. Ann Rheum Dis. 2007;66(6):732-9. doi: 10.1136/ard.2006.066761
7. Klareskog L, van der Heijde HD, de Jager JP, et al. Therapeutic effect of the combination of etanercept and methotrexate compared with each treatment alone in patients with rheumatoid arthritis: double-blind randomised controlled trial. Lancet. 2004;363(9410):675-81. doi: 10.1016/S0140-6736(04)15640-7
8. Emery P, Genovese MC, van VR, et al. Less radiographic progression with adalimumab plus methotrexate versus methotrexate monotherapy across the spectrum of clinical response in early rheumatoid arthritis. J Rheumatol. 2009;36(7):1429-41. doi: 10.3899/jrheum.081018
9. Tchetina EV, Squires G, Poole AR. Increased type II collagen degradation and very early focal cartilage degeneration is associated with upregulation of chondrocyte differentiation related genes in early human articular cartilage lesions. J Rheumatol. 2005;32(5):876-86.
10. Burska AN, Roget K, Blits M, et al. Gene expression analysis in RA: towards personalized medicine. Pharmacogenomics J. 2014;14(2):93-106. doi: 10.1038/tpj.2013.48
11. Blits M, Jansen G, Assaraf YG, et al. Methotrexate normalizes upregulated folate pathway genes in rheumatoid arthritis. Arthritis Rheum. 2013;65(11):2791-802. doi: 10.1002/art.38094
12. Tchetina ЕV, Demidova NV, Semyonova LA, et al. Differential expression of mammalian target of rapamycin (mTOR) in the peripheral blood of early-stage rheumatoid arthritis patients as a prognostic marker of the disease activity and knee joint destruction: a two year follow-up study. Ann Rheum Dis. 2010;69 Suppl 3:675.
13. Четина ЕВ, Демидова НВ, Каратеев ДЕ, Насонов ЕЛ. Гетерогенность первичных больных ревматоидным артритом по экспрессии генов в крови: теоретические основы дифференциального подхода к терапии. Научно-практическая ревматология. 2011;49(4):24-30 [Chetina EV, Demidova NV, Karateev DE, Nasovov EL. Heterogeneity of early rheumatoid arthritis patients according to blood gene expression: theoretical bases of a differential therapy approach. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2011;49(4):24-30 (In Russ.)]. doi: 10.14412/1995-4484- 2011-57
14. Четина ЕВ, Семенова ЛА, Логунов АЛ и др. Повышенная экспрессия регуляторных генов в крови и суставном хряще больных ревматоидным артритом. Научно-практическая ревматология. 2012;50(4):44-8. [Chetina EV, Semyonova LA, Logunov AL, et al. Enhanced regulatory gene expressions in the blood and articular cartilage of patients with rheumatoid arthritis. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2012;50(4):44-8 (In Russ.)]. doi: 10.14412/1995- 4484-2012-1111
15. Четина ЕВ, Демидова НВ, Каратеев ДЕ, Насонов ЕЛ. Анализ экспрессии генов в крови как дополнительный инструмент мониторинга терапии метотрексатом больных ревматоидным артритом. Научно-практическая ревматология. 2013;51(6):654-61 [Chetina EV, Demidova NV, Karateev DE, Nasonov EL. Analysis of gene expression in blood as an additional tool to monitor methotrexate therapy in patients with rheumatoid arthritis. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2013;51(6):654-61(In Russ.)]. doi: 10.14412/1995-4484-2013-654-61
16. Четина ЕВ, Пиванова АВ, Кузикянц КХ и др. Мониторинг терапии ритуксимабом больных ревматоидным артритом посредством анализа экспрессии генов в периферической крови. Научно-практическая ревматология. 2014;52(3):263-9 [Chetina EV, Pivanova AV, Kuzikyants KK, et al. Rituximab therapy monitoring in patients with rheumatoid arthritis hrough peripheral blood gene expression analysis. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2014;52(3):263-9 (In Russ.)]. doi: 10.14412/1995-4484- 2014-263-269
17. Tchetina EV, Demidova NV, Karateev DE, Nasonov EL. Rheumatoid factor positivity is associated with increased joint destruction and upregulation of matrix metalloproteinase 9 and cathepsin K gene expression in the peripheral blood in rheumatoid arthritis patients treated with methotrexate. Int J Rheumatol. 2013;2013:Article ID 457876. doi: 10.1155/2013/457876
18. Hä upl T, Yahyawi M, Lü bke C, et al. Gene expression profiling of rheumatoid arthritis synovial cells treated with antirheumatic drugs. J Biomol Screen. 2007;12(3):328-40. doi: 10.1177/1087057107299261
19. Walsh NC, Reinwald S, Manning CA, et al. Osteoblast function is compromised at sites of focal bone erosion in inflammatory arthritis. J Bone Miner Res. 2009;24(9):1572-85. doi: 10.1359/jbmr.090320
20. Komori T. Regulation of bone development and maintenance by Runx2. Front Biosci. 2008;13:898-903. doi: 10.2741/2730
21. Alliston T. TGF-β regulation of osteoblast differentiation and bone properties. J Musculoskelet Neuronal Interact. 2006;6(4):349-50.
22. Kim J, Jung Y, Sun H, et al. Erythropoietin mediated bone formation is regulated by mTOR signaling. J Cell Biochem. 2012;113(1):220-8. doi: 10.1002/jcb.23347
23. Tang CH, Lu DY, Tan TW, et al. Ultrasound induces hypoxiainducible factor-1 activation and inducible nitric-oxide synthase expression through the integrin/integrin-linked kinase/Akt/mammalian target of rapamycin pathway in osteoblasts. J Biol Chem. 2007;282(35):25406-15. doi: 10.1074/jbc.M701001200
24. Grcevic D, Jajic Z, Kovacic N, et al. Peripheral blood expression profiles of bone morphogenetic proteins, tumor necrosis factorsuperfamily molecules, and transcription factor Runx2 could be used as markers of the form of arthritis, disease activity, and therapeutic responsiveness. J Rheumatol. 2010;37(2):246-256. doi: 10.3899/jrheum.090167
25. Pohlers D, Beyer A, Koczan D, et al. Constitutive upregulation of the transforming growth factor-beta pathway in rheumatoid arthritis synovial fibroblasts. Arthritis Res Ther. 2007;9(3):R59. doi: 10.1186/ar2217
26. Rooney T, Roux-Lombard P, Veale DJ, et al. Synovial tissue and serum biomarkers of disease activity, therapeutic response and radiographic progression: analysis of a proof-of-concept randomised clinical trial of cytokine blockade. Ann Rheum Dis. 2010;69(4):706-14. doi: 10.1136/ard.2009.108324
27. Четина ЕВ, ДиБатиста Д, Пул АР. Роль простагландина E2 в ингибировании разрушения коллагена суставного хряща больных остеоартрозом. Научно-практическая ревматология. 2009;47(3):18-23 [Chetina EV, DiBattista D, Pool AR. Prostaglandin E2 role in inhibition of joint cartilage collagen destruction in patients with osteoarthritis. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2009;47(3):18-24. (In Russ.)]. doi: 10.14412/1995-4484- 2009-1308
28. Yoshimura N, Ohmoto Y, Yasui H, et al. The direct effect of FK506 and rapamycin on interleukin 1(beta) and immunoglobulin production in vitro. Transplantation. 1994;57(12):1815-8. doi: 10.1097/00007890-199457120-00024
29. Foey AD, Feldmann M, Brennan FM. CD40 ligation induces macrophage IL-10 and TNF-alpha production: differential use of the PI3K and p42/44 MAPK-pathways. Cytokine. 2001;16(4):131- 42. doi: 10.1006/cyto.2001.0954
30. Carlson RP, Hartman DA, Tomchek LA, et al. Rapamycin, a potential disease-modifying antiarthritic drug. J Pharmacol Exp Ther. 1993;266(2):1125-38.
31. Bruyn GA, Tate G, Caeiro F, et al. Everolimus in patients with rheumatoid arthritis receiving concomitant methotrexate: a 3-month, double-blind, randomised, placebo-controlled, parallel-group, proof-of-concept study. Ann Rheum Dis. 2008;67(8):1090-5. doi: 10.1136/ard.2007.078808
32. Sugatani T, Hruska KA. Akt1/Akt2 and mammalian target of rapamycin/Bim play critical roles in osteoclast differentiation and survival, respectively, whereas Akt is dispensable for cell survival in isolated osteoclast precursors. J Biol Chem. 2005;280(5):3583-9. doi: 10.1074/jbc.M410480200
33. Glantschnig H, Fisher JE, Wesolowski G, et al. M-CSF, TNFalpha and RANK ligand promote osteoclast survival by signaling through mTOR/S6 kinase. Cell Death Differ. 2003;10(10):1165-77. doi: 10.1038/sj.cdd.4401285
34. Cejka D, Hayer S, Niederreiter B, et al. Mammalian target of rapamycin signaling is crucial for joint destruction in experimental arthritis and is activated in osteoclasts from patients with rheumatoid arthritis. Arthritis Rheum. 2010;62(8):2294-302. doi: 10.1002/art.27504
35. Laragione T, Gulko PS. mTOR regulates the invasive properties of synovial fibroblasts in rheumatoid arthritis. Mol Med. 2010;16(9- 10):352-8. doi: 10.2119/molmed.2010.00049
36. Kneissel M, Luong-Nguyen NH, Baptist M, et al. Everolimus suppresses cancellous bone loss, bone resorption, and cathepsin K expression by osteoclasts. Bone. 2004;35(5):1144-56. doi: 10.1016/j.bone.2004.07.013
37. Welsing PM, van Gestel AM, Swinkels HL, et al. The relationship between disease activity, joint destruction, and functional capacity over the course of rheumatoid arthritis. Arthritis Rheum. 2001;44(9):2009-17. doi: 10.1002/1529- 0131(200109)44:93.0.CO;2-L
38. Xue M, McKelvey K, Shen K, et al. Endogenous MMP-9 and not MMP-2 promotes rheumatoid synovial fibroblast survival, inflammation and cartilage degradation. Rheumatology (Oxford). 2014 Jun 29. pii: keu254. [Epub ahead of print].
39. Grassi F, Cristino S, Toneguzzi S, et al. CXCL12 chemokine upregulates bone resorption and MMP-9 release by human osteoclasts: CXCL12 levels are increased in synovial and bone tissue of rheumatoid arthritis patients. J Cell Physiol. 2004;199(2):244-51. doi.org/10.1002/jcp.10445
40. Kaneko M, Tomita T, Nakase T, et al. Expression of proteinases and inflammatory cytokines in subchondral bone regions in the destructive joint of rheumatoid arthritis. Rheumatology (Oxford). 2001;40(3):247-55. doi: 10.1093/rheumatology/40.3.247
41. Kim KS, Choi HM, Lee YA, et al. Expression levels and association of gelatinases MMP-2 and MMP-9 and collagenases MMP-1 and MMP-13 with VEGF in synovial fluid of patients with arthritis. Rheumatol Int. 2011;31(4):543-7. doi: 10.1007/s00296-010- 1592-1
42. Chia WT, Chen YW, Cheng LY, et al. MMP-9 mRNA as a therapeutic marker in acute and chronic stages of arthritis induced by type II collagen antibody. J Formos Med Assoc. 2008;107(3):245- 52. doi: 10.1016/S0929-6646(08)60143-6
43. Senolt L, Grigorian M, Lukanidin E, et al. S100A4 is expressed at site of invasion in rheumatoid arthritis synovium and modulates production of matrix metalloproteinases. Ann Rheum Dis. 2006;65(12):1645-8. doi: 10.1136/ard.2005.047704
44. Di Girolamo N, Indoh I, Jackson N, et al. Human mast cellderived gelatinase B (matrix metalloproteinase-9) is regulated by inflammatory cytokines: role in cell migration. J Immunol. 2006;177(4):2638-50. doi: 10.4049/jimmunol.177.4.2638
45. Burrage PS, Mix KS, Brinckerhoff CE. Matrix metalloproteinases: role in arthritis. Front Biosci. 2006;11:529-43. doi: 10.2741/1817
46. Richardson VJ. Divergent and synergistic regulation of matrix metalloprotease production by cytokines in combination with C-C chemokines. Int J Immunopathol Pharmacol. 2010;23(3):715-26.
47. Huang JL, Wu SY, Xie XJ, et al. Inhibiting effects of Leflunomide metabolite on overexpression of CD147, MMP-2 and MMP-9 in PMA differentiated THP-1 cells. Eur J Pharmacol. 2011;670(1):304-10. doi: 10.1016/j.ejphar.2011.07.045
48. Vandooren B, Kruithof E, Yu DT, et al. Involvement of matrix metalloproteinases and their inhibitors in peripheral synovitis and down-regulation by tumor necrosis factor alpha blockade in spondylarthropathy. Arthritis Rheum. 2004;50(9):2942-53. doi: 10.1002/art.20477
49. Matsushita I, Uzuki M, Matsuno H, et al. Rheumatoid nodulosis during methotrexate therapy in a patient with rheumatoid arthritis. Mod Rheumatol. 2006;16(6):401-3. doi: 10.3109/s10165-006- 0522-2
50. Van der Pouw Kraan TC, Wijbrandts CA, van Baarsen LG, et al. Responsiveness to anti-tumour necrosis factor alpha therapy is related to pre-treatment tissue inflammation levels in rheumatoid arthritis patients. Ann Rheum Dis. 2008;67(4):563-6. doi: 10.1136/ard.2007.081950
51. Lindberg J, af Klint E, Catrina AI, et al. Effect of infliximab on mRNA expression profiles in synovial tissue of rheumatoid arthritis patients. Arthritis Res Ther. 2006;8(6):R179. doi: 10.1186/ar2090
52. Catrina AI, Ulfgren AK, Lindblad S, et al. Low levels of apoptosis and high FLIP expression in early rheumatoid arthritis synovium. Ann Rheum Dis. 2002;61(10):934-6. doi: 10.1136/ard.61.10.934
53. Rasa K, Scheel-Toellner D, Lee C-Y, et al. Synovial fluid apoptosis is inhibited in patients with very early rheumatoid arthritis. Arthritis Res Ther. 2006;8(4):R120. doi: 10.1186/ar2009
54. Eguchi K. Apoptosis in autoimmune diseases. Intern Med. 2001;40(4):275-84. doi: 10.2169/internalmedicine.40.275
55. Sfikakis PP. The first decade of biologic TNF antagonists in clinical practice: lessons learned, unresolved issues and future directions. Curr Dir Autoimmun. 2010;11:180-210. doi: 10.1159/000289205
56. Eddy LJ, Goeddel DV, Wong GH. Tumor necrosis factor-alpha pretreatment is protective in a rat model of myocardial ischemiareperfusion injury. Biochem Biophys Res Commun. 1992;184(2):1056-9. doi: 10.1016/0006-291X(92)90698-K
57. Nelson SK, Wong GH, McCord JM. Leukemia inhibitory factor and tumor necrosis factor induce manganese superoxide dismutase and protect rabbit hearts from reperfusion injury. J Mol Cell Cardiol. 1995;27(1):223-9. doi: 10.1016/S0022-2828(08)80021-1
58. Yamashita N, Hoshida S, Otsu K, et al. The involvement of cytokines in the second window of ischaemic preconditioning. Br J Pharmacol. 2000;131(3):415-22. doi: 10.1038/sj.bjp.0703594
59. Lecour S, James RW. When are pro-inflammatory cytokines safe in heart failure? Eur Heart J. 2011;32(6):680-5. doi: 10.1093/eurheartj/ehq484
60. Burchfield JS, Dong JW, Sakata Y, et al. The cytoprotective effects of tumor necrosis factor are conveyed through tumor necrosis factor receptor-associated factor 2 in the heart. Circ Heart Fail. 2010;3(1):157-64. doi: 10.1161/CIRCHEARTFAILURE.109.899732
Review
For citations:
Chetina E.V., Demidova N.V., Karateev D.E., Markova G.A., Makarov M.A., Kolomatsky V.V., Logunov A.L., Naryshkin E.A., Lipina M.M., Makarov S.A., Kuzin A.N. ASSOCIATION OF BLOOD GENE EXPRESSIONS IN RHEUMATOID ARTHRITIS PATIENTS WITH CLINICAL AND LABORATORY PARAMETERS BEFORE AND AFTER METHOTREXATE THERAPY. Rheumatology Science and Practice. 2016;54(2):155-163. (In Russ.) https://doi.org/10.14412/1995-4484-2016-155-163