Preview

Rheumatology Science and Practice

Advanced search

IL-23/IL-17 INHIBITORS IN IMMUNOINFLAMMATORY RHEUMATIC DISEASES: NEW HORIZONS

https://doi.org/10.14412/1995-4484-2019-400-406

Abstract

Recently, more attention has been given to Th17 cells, the pathological activation of which plays a leading role in the development of a wide spectrum of human immunoinflammatory diseases (IID), including rheumatoid arthritis, psoriasis, ankylosing spondylitis, psoriatic arthritis, inflammatory bowel diseases, etc. This has served as an incentive to design new biological agents and small molecules, the main mechanism of action of which is based on blocking the pathological effects of interleukin-17 (IL-17), others are associated with the activation of Th17 cells cytokines or signaling pathways that regulate the effects of these cytokines. The review discusses current ideas about the mechanisms regulating the formation and functional activity of IL-17 family cytokines, as well as evidence for the importance of these cytokines in the pathogenesis of IID.

About the Authors

E. L. Nasonov
V.A. Nasonova Research Institute of Rheumatology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia
Russian Federation

34A, Kashirskoe Shosse, Moscow 115522

8, Trubetskaya St., Build. 2, Moscow 119991



T. V. Korotaeva
V.A. Nasonova Research Institute of Rheumatology
Russian Federation
34A, Kashirskoe Shosse, Moscow 115522


T. V. Dubinina
V.A. Nasonova Research Institute of Rheumatology
Russian Federation
34A, Kashirskoe Shosse, Moscow 115522


A. M. Lila
V.A. Nasonova Research Institute of Rheumatology, Department of Rheumatology, Russian Medical Academy of Continuing Professional Education, Ministry of Health of Russia
Russian Federation

34A, Kashirskoe Shosse, Moscow 115522

2/1, Barrikadnaya St., Build. 1, Moscow 125993



References

1. El-Gabalawy H, Guenther LC, Bernstein CN. Epidemiology of immune-mediated inflammatory diseases: incidence, prevalence, natural history, and comorbidities. J Rheumatol Suppl. 2010;85:2-10. doi: 10.3899/jrheum.091461

2. Nasonov EL, Aleksandrova EN, Novikov AA. Autoimmune rheumatic diseases – problems of immunopathology and personalized therapy. Vestnik Rossiiskoi Akademii Meditsinskikh Nauk. 2015;70(2):169-82 (In Russ.).

3. Wang L, Wang FS, Gershwin ME. Human autoimmune diseases: a comprehensive update. J Intern Med. 2015;278:369-95. doi: 10.1111/joim.12395

4. Parkes M, Cortes A, van Heel DA, Brown MA. Genetic insights into common pathways and complex relationships among immune-mediated diseases. Nat Rev Genet. 2013;14:661-73. doi: 10.1038/nrg3502

5. Ellinghaus D, Jostins L, Spain SL, et al. Analysis of five chronic inflammatory diseases identifies 27 new associations and highlights disease-specific patterns at shared loci. Nat Genet. 2016;48:510-8. doi: 10.1038/ng.3528

6. Cotsapas C, Voight BF, Rossin E, et al. Pervasive sharing of genetic effects in autoimmune disease. PLoS Genet. 2011;7:e1002254. doi: 10.1371/journal.pgen.1002254

7. Farh KK, Marson A, Zhu J, et al. Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature. 2015;518:337-43. doi: 10.1038/nature13835

8. Annuziato F, Romagnani C, Romagnani S. The 3 major types of innate and adaptive cell-mediated effector immunity. J Allergy Clin Immunol. 2015;135:626-35. doi: 10.1016/j.jaci.2014.11.001

9. Isalovic N, Daigo K, Mantovani A, Selmi C. Interleukin-17 and innate immunity in infections and chronic inflammation. J Autoimmun. 2015;60:1-11. doi: 10.1016/j.jaut.2015.04.006

10. Miossec P, Kolls JK. Targeting IL-17 and Th17 cells in chronic inflammation. Nat Rev Drug Discov. 2012;11:763-76. doi: 10.1038/nrd3794

11. Beringer A, Miossec P. Systemic effects of IL-17 in inflammatory arthritis. Nat Rev Rheumatol. 2019 Jun 21. doi: 10.1038/s41584-019-0243-5

12. Beringer A, Noack M, Miossec P. IL-17 in chronic inflammation: from discovery to targeting. Trends Molec Med. 2016;22:230-41. doi: 10.1016/j.molmed.2016.01.001

13. Benedetti G, Miossec P. Interleukin 17 contributes to the chronicity of inflammatory diseases such as rheumatoid arthritis. Eur J Immunol. 2014;44:339-47. doi: 10.1002/eji.201344184

14. Fragoulis GE, Siebert S, McInnes IB. Therapeutic targeting of IL-17 and IL-23 cytokines in immune-mediated disease. Ann Rev Med. 2016:67:337-53. doi: 10.1146/annurev-med-051914-0219444

15. Allam G, Abdel-Moneim A, Gaber AM. The pleiotropic role of interleukin-17 in atherosclerosis. Biomed Pharmacother. 2018;106:1412-8. doi: 10.1016/j.biopha.2018.07.110

16. Robert M, Miossec P. Effects of Interleukin 17 on the cardiovascular system. Autoimmun Rev. 2017;16(9):984-91. doi: 10.1016/j.autrev.2017.07.009

17. Cortvrindt C, Speeckaert R, Moerman A, et al. The role of interleukin-17A in the pathogenesis of kidney diseases. Pathology. 2017;49(3):247-58. doi: 10.1016/j.pathol.2017.01.003

18. Ramani K, Biswas PS. Interleukin-17: Friend or foe in organ fibrosis. Cytokine. 2019;120:282-8. doi: 10.1016/j.cyto.2018.11.003

19. Gurczynski SJ, Moore BB. IL-17 in the lung: the good, the bad, and the ugly. Am J Physiol Lung Cell Mol Physiol. 2018;314(1):L6-L16. doi: 10.1152/ajplung.00344.2

20. Chackelevicius CM, Gambaro SE, Tiribelli C, Rosso N. Th17 involvement in nonalcoholic fatty liver disease progression to nonalcoholic steatohepatitis. World J Gastroenterol. 2016 Nov 7;22(41):9096-103.

21. Gaffen SL. Recent advances in the IL-17 cytokine family. Curr Opin Immunol. 2011;23:613-9. doi: 10.1016/j.coi.2011.07.006

22. Nasonov EL. New possibilities of pharmacotherapy for immunoinflammatory rheumatic diseases: A focus on inhibitors of interleukin-17. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2017;55(1):68-86 (In Russ.). doi: 10.14412/1995-4484-2017-68-86

23. Tait Wojno ED, Hunter CA, Stumhofer JS. The Immunobiology of the Interleukin-12 Family: Room for Discovery. Immunity. 2019;50(4):851-70. doi: 10.1016/j.immuni.2019.03.011

24. Noack M, Miossec P. Th17 and regulatory T cell balance in autoimmune and inflammatory diseases. Autoimmun Rev. 2014;13:668-77. doi: 10.1016/j.autrev.2013.12.004

25. Sabat R, Ouyang W, Wolk K. Therapeutic opportunities of the IL-22-IL-22R1 system. Nat Rev Drug Discov. 2014;13:21-38. doi: 10.1038/nrd4176

26. Cua DJ, Tato CM. Innate IL-17-producing cells: the sentinels of the immune system. Nat Rev Immunol. 2010;10:479-89. doi: 10.1038/nri2800

27. Schwartz DM, Kanno Y, Villarino A, et al. JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat Rev Drug Discov. 2017;16(12):843-62. doi: 10.1038/nrd.2017.201

28. Gadina M, Johnson C, Schwartz D, et al. Translational and clinical advances in JAK-STAT biology: The present and future of jakinibs. J Leukoc Biol. 2018;104(3):499-514. doi: 10.1002/JLB.5RI0218-084R

29. Nasonov EL, Lila AM. Janus kinase inhibitors in immuno-inflammatory rheumatic diseases: new opportunities and prospects. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2019;57(1):8-16 (In Russ.). doi: 10.14412/1995-4484-2019-8-16

30. Robert M, Miossec P. IL-17 in Rheumatoid Arthritis and Precision Medicine: From Synovitis Expression to Circulating Bioactive Levels. Front Med (Lausanne). 2019;5:364. doi: 10.3389/fmed.2018.00364

31. Kunwar S, Dahal K, Sharma S. Anti-IL-17 therapy in treatment of rheumatoid arthritis: a systematic literature review and metaanalysis of randomized controlled trials. Rheumatol Int. 2016;36:1065-75. doi: 10.1007/s00296-016-3480-9

32. Pfeifle R, Rothe T, Ipseiz N, et al. Regulation of autoantibody activity by the IL-23-TH17 axis determines the onset of autoimmune disease. Nat Immunol. 2017;18(1):104-13. doi: 10.1038/ni.3579

33. Langley RG, Elewski BE, Lebwohl M, et al. Secukinumab in plaque psoriasis – results of two phase 3 trials. N Engl J Med. 2014;371:326-38. doi: 10.1056/NEJMoa1314258

34. Griffiths CE, Reich K, Lebwohl M, et al. Comparison of ixekizumab with etanercept or placebo in moderate-to-severe psoriasis (UNCOVER-2 and UNCOVER-3): results from two phase 3 randomised trials. Lancet. 2015;386:541-51. doi: 10.1016/S0140-6736(15)60125-8

35. Blauvelt A, Papp KA, Griffiths CE, et al. Efficacy and safety of guselkumab, an anti-interleukin-23 monoclonal antibody, compared with adalimumab for the continuous treatment of patients with moderate to severe psoriasis: results from the phase III, double-blinded, placebo- and active comparator-controlled VOYAGE 1 trial. J Am Acad Dermatol. 2017;76:405-17. doi: 10.1016/j.jaad.2016.11.041

36. Gordon KB, Blauvelt A, Foley P, et al. Efficacy of guselkumab in subpopulations of patients with moderate-to-severe plaque psoriasis: a pooled analysis of the phase III VOYAGE 1 and VOYAGE 2 studies. Br J Dermatol. 2018;178(1):132-9. doi: 10.1111/bjd.16008

37. Reich K, Papp KA, Blauvelt A, et al. Tildrakizumab versus placebo or etanercept for chronic plaque psoriasis (reSURFACE 1 and reSURFACE 2): results from two randomised controlled, phase 3 trials. Lancet. 2017;390:276-88. doi: 10.1016/S0140-6736(17)31279-5

38. Papp KA, Reich K, Blauvelt A, et al. Efficacy of tildrakizumab for moderate-to-severe plaque psoriasis: pooled analysis of three randomized controlled trials at weeks 12 and 28. Eur Acad Dermatol Venereol. 2019;33(6):1098-106. doi: 10.1111/jdv.15400

39. Papp KA, Blauvelt A, Bukhalo M, et al. Risankizumab versus ustekinumab for moderate-to-severe plaque psoriasis. N Engl J Med. 2017;376:1551-60. doi: 10.1056/NEJMoa1607017

40. Gordon KB, Strober B, Lebwohl M, et al. Efficacy and safety of risankizumab in moderate-to-severe plaque psoriasis (UltIMMa-1 and UltIMMa-2): results from two double-blind, randomised, placebo-controlled and ustekinumab-controlled phase 3 trials. Lancet. 2018;392(10148):650-61. doi: 10.1016/S0140-6736(18)31713-6

41. Mease PJ, McInnes IB, Kirkham B, et al. Secukinumab inhibition of interleukin-17a in patients with psoriatic arthritis. N Engl J Med. 2015;373:1329-39. doi: 10.1056/NEJMoa1412679

42. McInnes IB, Mease PJ, Kirkham B, et al. Secukinumab, a human anti-interleukin-17A monoclonal antibody, in patients with psoriatic arthritis (FUTURE 2): a randomised, double-blind, placebocontrolled, phase 3 trial. Lancet. 2015;386:1137-46. doi: 10.1016/S0140-6736(15)61134-5

43. Mease PJ, van der Heijde D, Ritchlin CT, et al. Ixekizumab, an interleukin-17A specific monoclonal antibody, for the treatment of biologic-naive patients with active psoriatic arthritis: results from the 24-week randomised, double-blind, placebo-controlled and active (adalimumab)-controlled period of the phase III trial SPIRIT-P1. Ann Rheum Dis. 2017;76:79-87. doi: 10.1136/annrheumdis-2016-209709

44. McInnes IB, Kavanaugh A, Gottlieb AB, et al. Efficacy and safety of ustekinumab in patients with active psoriatic arthritis: 1 year results of the phase 3, multicentre, double-blind, placebo-controlled PSUMMIT 1 trial. Lancet. 2013;382:780-9. doi: 10.1016/S0140-6736(13)60594-2

45. Ritchlin C, Rahman P, Kavanaugh A, et al. Efficacy and safety of the anti-IL-12/23 p40 monoclonal antibody, ustekinumab, in patients with active psoriatic arthritis despite conventional nonbiological and biological anti-tumour necrosis factor therapy: 6-month and 1-year results of the phase 3, multicentre, doubleblind, placebo-controlled, randomised PSUMMIT 2 trial. Ann Rheum Dis. 2014;73:990-9. doi: 10.1136/annrheumdis-2013-204655

46. Belasco J, Louie JS, Gulati N, et al. Comparative genomic profiling of synovium versus skin lesions in psoriatic arthritis. Arthritis Rheum. 2015;67:934-44. doi: 10.1002/art.38995

47. Deodhar A, Gensler LS, Sieper J, et al. Three Multicenter, Randomized, Double-Blind, Placebo-Controlled Studies Evaluating the Efficacy and Safety of Ustekinumab in Axial Spondyloarthritis. Arthritis Rheum. 2019;71(2):258-70. doi: 10.1002/art.40728

48. Mease P. Ustekinumab Fails to Show Efficacy in a Phase III Axial Spondyloarthritis Program: The Importance of Negative Results. Arthritis Rheum. 2019;71(2):179-81. doi: 10.1002/art.40759

49. Baeten D, Ostergaard M, Wei JC, et al. Risankizumab, an IL-23 inhibitor, for ankylosing spondylitis: results of a randomised, double-blind, placebo-controlled, proof-of-concept, dose-finding phase 2 study. Ann Rheum Dis. 2018;77(9):1295-302. doi: 10.1136/annrheumdis-2018-213328

50. Baeten D, Sieper J, Braun J, et al. Secukinumab, an interleukin-17A inhibitor, in ankylosing spondylitis. N Engl J Med. 2015;373(26):2534-48. doi: 10.1056/NEJMoa1505066

51. Braun J, Baraliakos X, Deodhar A, et al. Effect of secukinumab on clinical and radiographic outcomes in ankylosing spondylitis: 2-year results from the randomised phase III MEASURE 1 study. Ann Rheum Dis. 2017;76(6):1070-7. doi: 10.1136/annrheumdis-2016-209730

52. Braun J, Baraliakos X, Deodhar A, et al. Secukinumab shows sustained efficacy and low structural progression in ankylosing spondylitis: 4-year results from the MEASURE 1 study. Rheumatology. 2018;58(5):859-68. doi: 10.1093/rheumatology/key3

53. Feagan BG, Sandborn WJ, Gasink C, et al. Ustekinumab as induction and maintenance therapy for Crohn's disease. N Engl J Med. 2016;375:1946-60. doi: 10.1056/NEJMoa1602773

54. Feagan BG, Sandborn WJ, D'Haens G, et al. Induction therapy with the selective interleukin-23 inhibitor risankizumab in patients with moderate-to-severe Crohn's disease: a randomised, doubleblind, placebo-controlled phase 2 study. Lancet. 2017;389:1699-709. doi: 10.1016/S0140-6736(17)30570-6

55. Hueber W, Sands BE, Lewitzky S, et al. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn's disease: unexpected results of a randomised, double-blind placebocontrolled trial. Gut. 2012;61:1693-700. doi: 10.1136/gutjnl-2011-301668

56. Targan SR, Feagan B, Vermeire S, et al. A randomized, doubleblind, placebo-controlled phase 2 study of brodalumab in patients with moderate-to-severe Crohn's disease. Am J Gastroenterol. 2016;111:1599-607. doi: 10.1038/ajg.2016.298

57. Lee JS, Tato CM, Joyce-Shaikh B, et al. Interleukin-23-independent il-17 production regulates intestinal epithelial permeability. Immunity. 2015;43:727-38. doi: 10.1016/j.immuni.2015.09.003

58. Jacques P, van Praet L, Carron P, et al. Pathophysiology and role of the gastrointestinal system in spondyloarthritides. Rheum Dis Clin North Am. 2012;38:569-82. doi: 10.1016/j.rdc.2012.08.012

59. Hasegawa E, Sonoda KH, Shichita T, et al. IL-23-independent induction of IL-17 from γδT cells and innate lymphoid cells promotes experimental intraocular neovascularization. J Immunol. 2013;190:1778-87. doi: 10.4049/jimmunol.1202495

60. Garbers C, Heink S, Korn T, Rose-John S. Interleukin-6: designing specific therapeutics for a complex cytokine. Nat Rev Drug Discov. 2018 Jun;17(6):395-412. doi: 10.1038/nrd.2018.45

61. Nasonov EL, Lila AM. Inhibition of interleukin 6 in immune inflammatory rheumatic diseases: Achievements, prospects, and hopes. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2017;55(6):590-9 (In Russ.). doi: 10.14412/1995-4484-2017-590-599

62. Miyagawa I, Nakayamada S, Nakano K, et al. Precision medicine using different biological DMARDs based on characteristic phenotypes of peripheral T helper cells in psoriatic arthritis. Rheumatology (Oxford). 2019;58(2):336-44. doi: 10.1093/rheumatology/key069

63. Veale DJ, McGonagle D, McInnes IB, et al. The rationale for Janus kinase inhibitors for the treatment of spondyloarthritis. Rheumatology (Oxford). 2019 Feb 1;58(2):197-205. doi: 10.1093/rheumatology/key070

64. Virtanen A, Haikarainen T, Raivola J, Silvennoinen O. Selective JAKinibs: Prospects in Inflammatory and Autoimmune Diseases. BioDrugs. 2019;33(1):15-32. doi: 10.1007/s40259-019-00333-w

65. Kubo S, Nakayamada S, Sakata K, et al. Janus Kinase Inhibitor Baricitinib Modulates Human Innate and Adaptive Immune System. Front Immunol. 2018;9:1510. doi: 10.3389/fimmu.2018.01510

66. Hammitzsch A, Chen L, de Wit J, et al. Inhibiting ex-vivo Th17 responses in Ankylosing Spondylitis by targeting Janus kinases. Sci Rep. 2018;8(1):15645. doi: 10.1038/s41598-018-34026-1

67. Mease P, Hall S, Fitzgerald O, et al. Tofacitinib or adalimumab versus placebo for psoriatic arthritis. N Engl J Med. 2017;377:1537-50. doi: 10.1056/NEJMoa1615975

68. Gladman D, Rigby W, Azevedo VF, et al. Tofacitinib for psoriatic arthritis in patients with an inadequate response to TNF inhibitors. N Engl J Med. 2017;377:1525-36. doi: 10.1056/NEJMoa1615977

69. Nash P, Coates LC, Fleischmann R, et al. Efficacy of Tofacitinib for the Treatment of Psoriatic Arthritis: Pooled Analysis of Two Phase 3 Studies. Rheumatol Ther. 2018;5(2):567-82. doi: 10.1007/s40744-018-0131-5

70. Krueger J, Clark JD, Suarez-Farinas M, et al. Tofacitinib attenuates pathologic immune pathways in patients with psoriasis: a randomized phase 2 study. J Allergy Clin Immunol. 2016;137:1079-90. doi: 10.1016/j.jaci.2015.12.1318

71. Bachelez H, van de Kerkof PC, Strohal R, et al. Tofacitinib versus etanercept or placebo in moderate-to-severe chronic plaque psoriasis: a phase 3 randomised non-inferiority trial. Lancet. 2015;386:552-61. doi: 10.1016/S0140-6736(14)62113-9

72. Bissonnette R, Iversen L, Sofen H, et al. Tofacitinib withdrawal and retreatment in moderate-to-severe chronic plaque psoriasis: a randomized controlled trial. Br J Dermatol. 2015;172:1395-406. doi: 10.1111/bjd.13551

73. Van der Heijde D, Deodhar A, Wei JC, et al. Tofacitinib in patients with ankylosing spondylitis: a phase II, 16-week, randomised, placebo-controlled, dose-ranging study. Ann Rheum Dis. 2017;76:1340-7. doi: 10.1136/annrheumdis-2016-210322

74. Maksymowych WP, Heijde DV, Baraliakos X, et al. Tofacitinib is associated with attainment of the minimally important reduction in axial magnetic resonance imaging inflammation in ankylosing spondylitis patients. Rheumatology (Oxford). 2018;57(8):1390-9. doi: 10.1093/rheumatology/key104

75. Fernandez-Clotet A, Castro-Poceiro J, Panes J. Tofacitinib for the treatment of ulcerative colitis. Expert Rev Clin Immunol. 2018;14(11):881-92. doi: 10.1080/1744666X.2018.1532291

76. Nasonov EL, Abdulganieva DI, Fairushina IF. The use of Tofacitinib in the treatment of inflammatory bowel disease. Therapeutic Archive. 2019;91(2):101-8 (In Russ.). doi: 10.26442/00403660.2019.02.000155

77. Papp K, Gordon K, Thaci D, et al. Phase 2 trial of selective tyrosine kinase 2 inhibition in psoriasis. N Engl J Med. 2018 Oct 4;379(14):1313-21. doi: 10.1056/NEJMoa1806382

78. Schett G, Elewaut D, McInnes IB, et al. How cytokine networks fuel inflammation: Toward a cytokine-based disease taxonomy. Nat Med. 2013;19:822-4. doi: 10.1038/nm.3260

79. Lubberts E. The IL-23-IL-17 axis in inflammatory arthritis. Nat Rev Rheumatol. 2015;11:415-29. doi: 10.1038/nrrheum.2015.53

80. Livshits G, Kalinkovich A. Hierarchical, imbalanced pro-inflammatory cytokine networks govern the pathogenesis of chronic arthropathies. Osteoarthritis Cartilage. 2018;26:7-17. doi: 10.1016/j.joca.2017.10.013

81. Gracey E, Dumas E, Yerushalmi M, et al. The ties that bind: skin, gut and spondyloarthritis. Curr Opin Rheumatol. 2019;31(1):62-9. doi: 10.1097/BOR.0000000000000569

82. Siebert S, Millar NL, McInnes IB. Who did IL-23p19 inhibition fail in AS: a tale of tissue, trials or translation? Ann Rheum Dis. 2018 Oct 8. doi: 10.1136/annrheumdis-2018-213654

83. Bianchi E, Rogge L. The IL-23/IL-17 pathway in chronic inflammatory disease-new insight from genetics and targeted therapies. Gen Immun. 2019;20:415-25. doi: 10.1038/s41435-019-0067-y


Review

For citations:


Nasonov E.L., Korotaeva T.V., Dubinina T.V., Lila A.M. IL-23/IL-17 INHIBITORS IN IMMUNOINFLAMMATORY RHEUMATIC DISEASES: NEW HORIZONS. Rheumatology Science and Practice. 2019;57(4):400-406. (In Russ.) https://doi.org/10.14412/1995-4484-2019-400-406

Views: 3615


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1995-4484 (Print)
ISSN 1995-4492 (Online)