Иммуновоспалительные ревматические заболевания, связанные с интерфероном типа I: новые данные
https://doi.org/10.14412/1995-4484-2019-452-461
Аннотация
Иммуновоспалительные ревматические заболевания (ИВРЗ) – большая группа патологических состояний, в основе которых лежит нарушение иммунологической толерантности к собственным тканям, ведущее к воспалению и необратимым органным повреждениям. В обзоре рассмотрены современные представления о роли интерферонов типа I в иммунопатогенезе ИВРЗ, в первую очередь системной красной волчанки, и новые возможности персонифицированной терапии.
Об авторах
Е. Л. НасоновРоссия
научный руководитель ФГБНУ «НИИР им. В.А. Насоновой», академик РАН, профессор, докт. мед. наук
115522, Москва, Каширское шоссе, 34А
119991, Москва, ул. Трубецкая, 8, стр. 2
А. С. Авдеева
Россия
научный сотрудник лаборатории стандартизации терапии ревматических заболеваний, канд. мед. наук
115522, Москва, Каширское шоссе, 34А
Список литературы
1. Насонов ЕЛ, Александрова ЕН, Новиков АА. Аутоиммунные ревматические заболевания – проблемы иммунопатологии и персонифицированной терапии. Вестник Российской академии медицинских наук. 2015;70(2):169-82
2. Wang L, Wang F-S, Gershwin ME. Human autoimmune diseases: a comprehensive update. J Intern Med. 2015;278:369-95. doi: 10.1111/joim.12395
3. Rö nnblom L, Eloranta M-L. The interferon signature in autoimmune diseases. Curr Opin Rheumatol. 2013;25:248-53. doi: 10.1097/BOR.0b013e32835c7e32
4. Kretschmer S, Lee-Kirsch MA. Type I interferon-mediated autoinflammation and autoimmunity. Curr Opin Immunol. 2017;49:96-102. doi: 10.1016/j.coi.2017.09.003
5. Green DS, Young HA, Valencia JC. Current prospects of type II interferon γ signaling and autoimmunity. J Biol Chem. 2017;25;292(34):13925-33. doi: 10.1074/jbc.R116.774745
6. Psarras A, Emery P, Vital EM. Type I interferon-mediated autoimmune diseases: pathogenesis, diagnosis and targeted therapy. Rheumatology (Oxford). 2017;56(10):1662-75. doi: 10.1093/rheumatology/kew431
7. Muskardin TLW, Niewold TB. Type I interferon in rheumatic diseases. Nat Rev Rheumatol. 2018;14(4):214-28. doi: 10.1038/nrrheum.2018.31
8. Schneider WM, Chevillotte MD, Rice CM. Interferon-stimulated genes: a complex web of host defenses. Annu Rev Immunol. 2014;32:513-45. doi: 10.1146/annurev-immunol-032713-120231
9. Banchereau R, Cepika AM, Banchereau J, Pascual V. Understanding Human Autoimmunity and Autoinflammation Through Transcriptomics. Annu Rev Immunol. 2017;35:337-70. doi: 10.1146/annurev-immunol-051116-052225
10. Ivashkiv LB, Donlin LT. Regulation of type I interferon responses. Nat Rev Immunol. 2014;14:36-49. doi: 10.1038/nri3581
11. Crow YJ. Type I interferonopathies: a novel set of inborn errors of immunity: type I interferonopathies. Ann N Y Acad Sci Nov. 2011;1238:91-8. doi: 10.1111/j.1749-6632.2011.06220.x
12. Ioannou Y, Isenberg DA. Current evidence for the induction of autoimmune rheumatic manifestations by cytokine therapy. Arthritis Rheum. 2000;43:1431-42. doi: 10.1002/1529-0131(200007)43:7<1431::AID-ANR3>3.0.CO;2-E
13. Picard C, Belot A. Does type-I interferon drive systemic autoimmunity? Autoimmun Rev. 2017;16(9):897-902. doi: 10.1016/j.autrev.2017.07.001
14. Higgs BW, Liu Z, White B, et al. Patients with systemic lupus erythematosus, myositis, rheumatoid arthritis and scleroderma share activation of a common type I interferon pathway. Ann Rheum Dis. 2011;70:2029-36. doi: 10.1136/ard.2011.150326
15. Chasset F, Arnaud L. Targeting interferons and their pathways in systemic lupus erythematosus. Autoimmun Rev. 2018;17:44-52. doi: 10.1016/j.autrev.2017.11.009
16. Crow MK, Olferiev M, Kirou KA. Type I Interferons in Autoimmune Disease. Annu Rev Pathol. 2019;14:369-93. doi: 10.1146/annurev-pathol-020117-043952
17. Garcia-Romo GS, Caielli S, Vega B, et al. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci Transl Med. 2011;3:ra20. doi: 10.1126/scitranslmed.3001201
18. Doedens JR, Jones WD, Hill K, et al. Blood-borne Rna correlates with disease activity and Ifn-stimulated gene expression in systemic lupus erythematosus. J Immunol. 2016;197:2854-63. doi: 10.4049/jimmunol.1601142
19. Mavragani CP, Sagalovskiy I, Guo Q, et al. Expression of long interspersed nuclear element 1 retroelements and induction of type I interferon in patients with systemic autoimmune disease. Arthritis Rheum. 2016;68:2686-96. doi: 10.1002/art.39795
20. Lee JY, Park JK, Lee EY, et al. Circulating exosomes from patients with systemic lupus erythematosus induce an proinflammatory immune response. Arthritis Res Ther. 2016;18:264. doi: 10.1186/s13075-016-1159-y
21. Bengtsson AA, Rö nnblom L. Role of interferons in SLE. Best Pract Res Clin Rheumatol. 2017;31(3):415-28. doi: 10.1016/j.berh.2017.10.0
22. Eloranta ML, Rö nnblom L. Cause and consequences of the activated type I interferon system in SLE. J Mol Med (Berl). 2016;94(10):1103-10. doi: 10.1007/s00109-016-1421-4
23. Weckerle CE, Franek BS, Kelly JA, et al. Network analysis of associations between serum interferon-α activity, autoantibodies, and clinical features in systemic lupus erythematosus. Arthritis Rheum. 2011;63(4):1044-53. doi: 10.1002/art.30187
24. Baechler EC, Batliwalla FM, Karypis G, et al. Interferoninducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci U S A. 2003;100(5):2610-5. doi: 10.1073/pnas.0337679100
25. Munroe ME, Lu R, Zhao YD, et al. Altered type II interferon precedes autoantibody accrual and elevated type I interferon activity prior to systemic lupus erythematosus classification. Ann Rheum Dis. 2016;75(11):2014-21. doi: 10.1136/annrheumdis-2015-2081
26. Niewold TB, Hua J, Lehman TJ, et al. High serum IFN-α activity is a heritable risk factor for systemic lupus erythematosus. Genes Immun. 2007;8:492-502. doi: 10.1038/sj.gene.6364408
27. Kariuki SN, Franek BS, Kumar AA, et al. Trait-stratified genome-wide association study identifies novel and diverse genetic associations with serologic and cytokine phenotypes in systemic lupus erythematosus. Arthritis Res Ther. 2010;12(4):R151. doi: 10.1186/ar3101
28. Md Yusof MY, Psarras A, El-Sherbiny YM, et al. Prediction of autoimmune connective tissue disease in an at-risk cohort: prognostic value of a novel two-score system for interferon status. Ann Rheum Dis. 2018;77:1432-9. doi: 10.1136/annrheumdis-2018-213386
29. Morimoto AM, Flesher DT, Yang J, et al. Association of endogenous anti-interferon-α autoantibodies with decreased interferonpathway and disease activity in patients with systemic lupus erythematosus. Arthritis Rheum. 2011;63:2407-15. doi: 10.1002/art.30399
30. Landolt-Marticorena C, Bonventi G, Lubovich A, et al. Lack of association between the interferon-alpha signature and longitudinal changes in disease activity in systemic lupus erythematosus. Ann Rheum Dis. 2009;68(9):1440-6. doi: 10.1136/ard.2008.093146
31. Petri M, Singh S, Tesfasyone H, et al. Longitudinal expression of type I interferon responsive genes in systemic lupus erythematosus. Lupus. 2009;18(11):980-9. doi: 10.1177/0961203309105529
32. Rose T, Grutzkau A, Klotsche J, et al. Are interferon-related biomarkers advantageous for monitoring disease activity in systemic lupus erythematosus? A longitudinal benchmark study. Rheumatology (Oxford). 2017;56:1618-26. doi: 10.1093/rheumatology/kex220
33. Connelly KL, Kandane-Rathayake R, Huq M, et al. Longitudinal association of type 1 interferon-induced chemokines with disease activity in systemic lupus erythematosus. Scientific Report. 2018;8:3268. doi: 10.1038/s41598-018-20203-9
34. Banchereau R, Hong S, Cantarel B, et al. Personalized Immunomonitoring Uncovers Molecular Networks that Stratify Lupus Patients. Cell. 2016;165(3):551-65. doi: 10.1016/j.cell.2016.03.008
35. Ghodke-Puranik Y, Niewold TB. Genetics of the type I interferon pathway in systemic lupus erythematosus. Int J Clin Rheumtol. 2013;8:657-69. doi: 10.2217/ijr.13.58
36. Langefeld CD, Ainsworth HC, Cunninghame Graham DS, et al. Transancestral mapping and genetic load in systemic lupus erythematosus. Nat Commun. 2017;8:16021. doi: 10.1038/ncomms16021
37. Niewold TB, Kelly JA, Kariuki SN, et al. IRF5 haplotypes demonstrate diverse serological associations which predict serum interferon alpha activity and explain the majority of the genetic association with systemic lupus erythematosus. Ann Rheum Dis. 2012;71(3):463-8. doi: 10.1136/annrheumdis-2011-200463
38. Hagberg N, Joelsson M, Leonard D, et al. The Stat4 Sle risk allele Rs7574865[T] is associated with increased Il-12-induced IFN-γ production in T cells from patients with SLE. Ann Rheum Dis. 2018;77(7):1070-7. doi: 10.1136/annrheumdis-2017-212794
39. Lessard CJ, Li H, Adrianto I, et al. Variants at multiple loci implicated in both innate and adaptive immune responses are associated with Sjö gren's syndrome. Nat Genet. 2013;45(11):1284-92. doi: 10.1038/ng.2792
40. Angiolilli C, Marut W, van der Kroef M, et al. New insights into the genetics and epigenetics of systemic sclerosis. Nat Rev Rheumatol. 2018;14(11):657-73. doi: 10.1038/s41584-018-0099-0
41. Dieguez-Gonzalez R, Calaza M, Perez-Pampin E, et al. Association of interferon regulatory factor 5 haplotypes, similar to that found in systemic lupus erythematosus, in a large subgroup of patients with rheumatoid arthritis. Arthritis Rheum. 2008;58:1264-74. doi: 10.1002/art.23426
42. Nordang GB, Viken MK, Amundsen SS, et al. Interferon regulatory factor 5 gene polymorphism confers risk to several rheumatic diseases and correlates with expression of alternative thymic transcripts. Rheumatology (Oxford). 2012;51(4):619-26. doi: 10.1093/rheumatology/ker364
43. Demirkaya E, Zhou Q, Smith CK, et al. Brief report: deficiency of complement 1r subcomponent in early-onset systemic lupus erythematosus: the role of disease-modifying alleles in a monogenic disease. Arthritis Rheum. 2017;69:1832-9. doi: 10.1002/art.40158
44. Ghodke-Puranik Y, Dorschner JM, Vsetecka DM, et al. Lupusassociated functional polymorphism in Pnp causes cell cycle abnormalities and interferon pathway activation in human immune cells. Arthritis Rheum. 2017;69:2328-37. doi: 10.1002/art.40304
45. Kariuki SN, Ghodke-Puranik Y, Dorschner JM, et al. Genetic analysis of the pathogenic molecular sub-phenotype interferonalpha identifies multiple novel loci involved in systemic lupus erythematosus. Genes Immun. 2015;16:15-23. doi: 10.1038/gene.2014.57
46. Faridi MH, Khan SQ, Zhao W, et al. Cd11b activation suppresses TLR-dependent inflammation and autoimmunity in systemic lupus erythematosus. J Clin Invest. 2017;127:1271-83. doi: 10.1172/JCI88442
47. Coit P, Jeffries M, Altorok N, et al. Genome-wide DNA methylation study suggests epigenetic accessibility and transcriptional poising of interferon-regulated genes in naive CD4+ T cells from lupus patients. J Autoimmun. 2013;43:78-84.
48. doi: 10.1016/j.jaut.2013.04.003
49. Cheng J, Wu R, Long L, et al. Mirna-451a targets Ifn regulatory factor 8 for the progression of systemic lupus erythematosus. Inflammation. 2017;40:676-87. doi: 10.1007/s10753-017-0514-8
50. Smith S, Fernando T, Wu PW, et al. Microrna-302d targets Irf9 to regulate the Ifn-induced gene expression in SLE. J Autoimmun. 2017;79:105-11. doi: 10.1016/j.jaut.2017.03.003
51. Van den Hoogen LL, van Roon JAG, Mertens JS, et al. Galectin-9 is an easy to measure biomarker for the interferon signature in systemic lupus erythematosus and antiphospholipid syndrome. Ann Rheum Dis. 2018;77(12):1810-4. doi: 10.1136/annrheumdis-2018-213497
52. Oliveira JJ, Karrar S, Rainbow DB, et al. The plasma biomarker soluble SIGLEC-1 is associated with the type I interferon transcriptional signature, ethnic background and renal disease in systemic lupus erythematosus. Arthritis Res Ther. 2018;20(1):152. doi: 10.1186/s13075-018-1649-1
53. Lü bbers J, Brink M, van de Stadt LA, et al. The type I IFN signature as a biomarker of preclinical rheumatoid arthritis. Ann Rheum Dis. 2013;72(5):776-80. doi: 10.1136/annrheumdis-2012-2
54. Thurlings RM, Boumans M, Tekstra J, et al. Relationship between the type I interferon signature and the response to rituximab in rheumatoid arthritis patients. Arthritis Rheum. 2010;62:3607-14. doi: 10.1002/art.27702
55. Raterman HG, Vosslamber S, De RS, et al. The interferon type I signature towards prediction of non-response to rituximab in rheumatoid arthritis patients. Arthritis Res Ther. 2012;14:R95. doi: 10.1186/ar3819
56. Sanayama Y, Ikeda K, Saito Y, et al. Prediction of therapeutic responses to tocilizumab in patients with rheumatoid arthritis: biomarkers identified by analysis of gene expression in peripheral blood mononuclear cells using genome-wide DNA microarray. Arthritis Rheum. 2014;66(6):1421-31. doi: 10.1002/art.38400
57. Mavragani CP, La DT, Stohl W, Crow MK. Association of the response to tumor necrosis factor antagonists with plasma type I interferon activity and interferon-β/α ratios in rheumatoid arthritis patients: a post hoc analysis of a predominantly Hispanic cohort. Arthritis Rheum. 2010;62:392-401. doi: 10.1002/art.27226
58. Wampler Muskardin T, Vashisht P, Dorschner JM, et al. Increased pretreatment serum IFN-β/α ratio predicts non-response to tumour necrosis factor α inhibition in rheumatoid arthritis. Ann Rheum Dis. 2016;75(10):1757-62. doi: 10.1136/annrheumdis-2015-208001
59. De Jong TD, Blits M, de Ridder S, et al. Type I interferon response gene expression in established rheumatoid arthritis is not associated with clinical parameters. Arthritis Res Ther. 2016;18:Article number 290. doi: 10.1186/s13075-016-1191-y
60. De Jong TD, Vosslamber S, Blits M, et al. Effect of prednisone on type I interferon signature in rheumatoid arthritis: consequences for response prediction to rituximab. Arthritis Res Ther. 2015;17:78. doi: 10.1186/s13075-015-0564-y
61. De Jong TD, Snoek T, Mantel E, et al. Dynamics of the Type I Interferon Response During Immunosuppressive Therapy in Rheumatoid Arthritis. Front Immunol. 2019 Apr 24;10:902. doi: 10.3389/fimmu.2019.00902
62. Thorlacius GE, Wahren-Herlenius M, Ronnblom L. An update on the role of type I interferons in systemic lupus erythematosus and Sjogren's syndrome. Curr Opin Rheumatol. 2018;30:471-81. doi: 10.1097/BOR.0000000000000524
63. Nezos A, Gravani F, Tassidou A, et al. Type I and II interferon signatures in Sjogren's syndrome pathogenesis: contributions in distinct clinical phenotypes and Sjogren's related lymphomagenesis. J Autoimmun. 2015;63:47-58. doi: 10.1016/j.jaut.2015.07.002
64. Benchabane S, Belkhelfa M, Belguendouz H, et al. Interferon-γ inhibits inflammatory responses mediators via suppression of iNOS signaling pathway in PBMCs from patients with primary Sjö gren's syndrome. Inflammopharmacology. 2018;26:1165-74. doi: 10.1007/s10787-018-0499-4
65. Bodewes ILA, Al-Ali S, van Helden-Meeuwsen CG, et al. Systemic interferon type I and type II signatures in primary Sjö gren's syndrome reveal differences in biological disease activity. Rheumatology. 2018;57:921-30. doi: 10.1093/rheumatology/kex490
66. Dieude P, Guedj M, Wipff J, et al. STAT4 is a genetic risk factor for systemic sclerosis having additive effects with IRF5 on disease susceptibility and related pulmonary fibrosis. Arthritis Rheum. 2009;60:2472-9. doi: 10.1002/art.24688
67. Gourh P, Agarwal SK, Divecha D, et al. Polymorphisms in TBX21 and STAT4 increase the risk of systemic sclerosis: evidence of possible gene-gene interaction and alterations in Th1/Th2 cytokines. Arthritis Rheum. 2009;60:3794-806. doi: 10.1002/art.24958
68. Rueda B, Broen J, Simeon C, et al. The STAT4 gene influences the genetic predisposition to systemic sclerosis phenotype. Hum Mol Genet. 2009;18:2071-7. doi: 10.1093/hmg/ddp119
69. Skaug B, Assassi S. Type I interferon dysregulation in Systemic Sclerosis. Cytokine. 2019 Jan 23. doi: 10.1016/j.cyto.2018.12.018
70. Christmann RB, Sampaio-Barros P, Stifano G, et al. Association of interferon- and transforming growth factor β-regulated genes and macrophage activation with systemic sclerosis-related progressive lung fibrosis. Arthritis Rheum. 2014;66:714-25. doi: 10.1002/art.38288
71. George PM, Oliver E, Dorfmuller P, et al. Evidence for the involvement of type I interferon in pulmonary arterial hypertension. Circ Res. 2014;114:677-88. doi: 10.1161/CIRCRESAHA.114.302221
72. Brkic Z, van Bon L, Cossu M, et al. The interferon type I signature is present in systemic sclerosis before overt fibrosis and might contribute to its pathogenesis through high BAFF gene expression and high collagen synthesis. Ann Rheum Dis. 2016;75(8):1567-73. doi: 10.1136/annrheumdis-2015-207
73. Van den Hoogen LL, Fritsch-Stork RD, Versnel MA, et al. Monocyte type I interferon signature in antiphospholipid syndrome is related to proinflammatory monocyte subsets, hydroxychloroquine and statin use. Ann Rheum Dis. 2016;75:e81. doi: 10.1136/annrheumdis-2016-210485
74. Ugolini-Lopes MR, Torrezan GT, Gandara APR, et al. Enhanced type I interferon gene signature in primary antiphospholipid syndrome: Association with earlier disease onset and preeclampsia. Autoimmun Rev. 2019;18(4):393-8. doi: 10.1016/j.autrev.2018.11.004
75. Palli E, Kravvariti E, Tektonidou MG. Type I Interferon Signature in Primary Antiphospholipid Syndrome: Clinical and Laboratory Associations. Front Immunol. 2019;10:487. doi: 10.3389/fimmu.2019.00487
76. Grenn RC, Yalavarthi S, Gandhi AA, et al. Endothelial progenitor dysfunction associates with a type I interferon signature in primary antiphospholipid syndrome. Ann Rheum Dis. 2017;76:450-7. doi: 10.1136/annrheumdis-2016-209442
77. Greenberg SA, Pinkus JL, Pinkus GS, et al. Interferon-β/α-mediated innate immune mechanisms in dermatomyositis. Ann Neurol. 2005;57:664-78. doi: 10.1002/ana.20464
78. Liao AP, Salajegheh M, Nazareno R, et al. Interferon β is associated with type 1 interferon-inducible gene expression in dermatomyositis. Ann Rheum Dis. 2011;70:831-6. doi: 10.1136/ard.2010.139949
79. Somani A-K, Swick AR, Cooper KD, et al. Severe dermatomyositis triggered by interferon beta-1a therapy and associated with enhanced type I interferon signaling. Arch Dermatol. 2008;144:1341-9. doi: 10.1001/archderm.144.10.1341
80. Piper CJM, Wilkinson MGL, Deakin CT, et al. CD19+CD24hiCD38hi B Cells Are Expanded in Juvenile Dermatomyositis and Exhibit a Pro-Inflammatory Phenotype After Activation Through Toll-Like Receptor 7 and Interferon-α. Front Immunol. 2018;9. doi: 10.3389/fimmu.2018.01372
81. Oon S, Wilson NJ, Wicks I. Targeted therapeutics in SLE: emerging strategies to modulate the interferon pathway. Clin Transl Immunol. 2016;5:e79. doi: 10.1038/cti.2016.26
82. Mathian A, Hie M, Cohen-Aubart F, et al. Targeting interferons in systemic lupus erythematosus: current and future prospects. Drugs. 2015;75:835-46. doi: 10.1007/s40265-015-0394-x
83. Bodewes ILA, Gottenberg JE, van Helden-Meeuwsen CG, et al. Hydroxychloroquine treatment downregulates systemic interferon activation in primary Sjö gren's syndrome in the JOQUER randomized trial. Rheumatology (Oxford). 2019 Jun 25. doi: 10.1093/rheumatology/kez242
84. Gardet A, Pellerin A, McCarl CA, et al. Effect of in vivo Hydroxychloroquine and ex vivo Anti-BDCA2 mAb Treatment on pDC IFNγ Production From Patients Affected With Cutaneous Lupus Erythematosus. Front Immunol. 2019;10:275. doi: 10.3389/fimmu.2019.00275
85. Olsen NJ, McAloose C, Carter J, et al. Clinical and Immunologic Profiles in Incomplete Lupus Erythematosus and Improvement with Hydroxychloroquine Treatment. Autoimmune Dis. 2016:8791629. doi: 10.1155/2016/8791629
86. Eloranta ML, Lö vgren T, Finke D, et al. Regulation of the interferon-alpha production induced by RNA-containing immune complexes in plasmacytoid dendritic cells. Arthritis Rheum. 2009;60:2418-27. doi: 10.1002/art.24686
87. Berggren O, Hagberg N, Weber G, et al. B lymphocytes enhance the interferon-alpha production by plasmacytoid dendritic cells. Arthritis Rheum. 2012;64:3409-19. doi: 10.1002/art.34599
88. Leonard D, Eloranta ML, Hagberg N, et al. Activated T cells enhance interferon-alpha production by plasmacytoid dendritic cells stimulated with RNA-containing immune complexes. Ann Rheum Dis. 2016;75(9):1728-34. doi: 10.1136/annrheumdis-2015-208055
89. Skurkovich SV, Klinova EG, Eremkina EI, Levina NV. Immunosupressive effect of anti-interferon serum. Nature. 1974;247:551-2. doi: 10.1038/247551a0
90. Skurkovich SV, Loukina GV, Sigidin YA, Skurkovich BS. Succesful first-time use of antibodies to interferon-gamma alone and combined with antibodies to tumor necrosis factor-alfa to treat rheumatic diseasers (rheumatoid arthritis, systemic lupus erythematosus, psoriatic arthritis, Behcet`s syndrome). Int J Immunother. 1998;14:23-32.
91. Sigidin AY, Loukina GV, Skurkovich B, Skurkovich SV. Randomized double-blind trial of anti-interferob-gamma antibodies in rheumatoid arthritis. Scand J Rheumatol. 2001;30:203-7. doi: 10.1080/030097401316909530
92. Baker KF, Isaacs JD. Novel therapies for immune-mediated inflammatory diseases: What can we learn from their use in rheumatoid arthritis, spondyloarthritis, systemic lupus erythematosus, psoriasis, Crohn's disease and ulcerative colitis? Ann Rheum Dis. 2018;77(2):175-87. doi: 10.1136/annrheumdis-2017-211555
93. Yao Y, Higgs BW, Morehouse C, et al. Development of potential pharmacodynamic and diagnostic markers for anti-IFN-alpha monoclonal antibody trials in systemic lupus erythematosus. Hum Genom Proteom. 2009:Article ID 374312. doi: 10.4061/2009/37431210.4061/2009/374312
94. Merrill JT, Wallace DJ, Petri M, et al. Safety profile and clinical activity of sifalimumab, a fully human anti-interferon alpha monoclonal antibody, in systemic lupus erythematosus: a phase I, multicentre, double-blind randomised study. Ann Rheum Dis. 2011;70:1905-13. doi: 10.1136/ard.2010.144485
95. Petri M, Wallace DJ, Spindler A, et al. Sifalimumab, a human anti-interferon-alpha monoclonal antibody, in systemic lupus erythematosus: a phase I randomized, controlled, dose-escalation study. Arthritis Rheum. 2013;65:1011-21. doi: 10.1002/art.37824
96. Khamashta M, Merrill JT, Werth VP, et al. Sifalimumab, an antiinterferon-α monoclonal antibody, in moderate to severe systemic lupus erythematosus: a randomised, double-blind, placebo-controlled study. Ann Rheum Dis. 2016;75:1909-16. doi: 10.1136/annrheumdis-2015-208562
97. Tcherepanova I, Curtis M, Sale M, et al. SAT0193 Results of a randomized placebo controlled phase ia study of AGS-009, a humanized anti-interferon-α monoclonal antibody in subjects with systemic lupus erythematosus. Ann Rheum Dis. 2013;71(Suppl 3):536.3-7. doi: 10.1136/annrheumdis-2012-eular.3140
98. Kalunian KC, Merrill JT, Maciuca R, et al. A phase II study of the efficacy and safety of rontalizumab (rhuMAb interferon-α) in patients with systemic lupus erythematosus (ROSE). Ann Rheum Dis. 2016;75:196-202. doi: 10.1136/annrheumdis-2014-206090
99. Peng L, Oganesyan V, Wu H, et al. Molecular basis for antagonistic activity of anifrolumab, an anti-interferon-α receptor 1 antibody. MAbs. 2015;7:428-39. doi: 10.1080/19420862.2015.1007810
100. Riggs JM, Hanna RN, Rajan B, et al. Characterisation of anifrolumab, a fully human anti-interferon receptor antagonist antibody for the treatment of systemic lupus erythematosus. Lupus Sci Med. 2018;5:e000261. doi: 10.1136/lupus-2018-000261
101. Felten R, Scher F, Sagez F, et al. Spotlight on anifrolumab and its potential for the treatment of moderate-to-severe systemic lupus erythematosus: evidence to date. Drug Des Devel Ther. 2019;13:1535-43. doi: 10.2147/DDDT.S170969
102. Furie R, Khamashta M, Merrill JT, et al. Anifrolumab, an antiinterferon-α receptor monoclonal antibody, in moderate-to-severe systemic lupus erythematosus. Arthritis Rheum. 2017;69:376-86. doi: 10.1002/art.39962
103. Merrill JT, Furie R, Werth VP, et al. Anifrolumab effects on rash and arthritis: impact of the type I interferon gene signature in the phase IIb MUSE study in patients with systemic lupus erythematosus. Lupus Sci Med. 2018;5(1):e000284. doi: 10.1136/lupus-2018-000284
104. Casey KA, Guo X, Smith MA, et al. Type I interferon receptor blockade with anifrolumab corrects innate and adaptive immune perturbations of SLE. Lupus Sci Med. 2018;5(1):e000286. doi: 10.1136/lupus-2018-000286
105. Goldberg A, Geppert T, Schiopu E, et al. Dose-escalation of human anti-interferon-α receptor monoclonal antibody MEDI-546 in subjects with systemic sclerosis: a phase 1, multicenter, open label study. Arthritis Res Ther. 2014;16:R57.
106. doi: 10.1186/ar4492
107. Update on TULIP 1 phase III trial for anifrolumab in systemic lupus erythematosus. Available from: https://www.astrazeneca.com/media-centre/press-releases/2018/update-on-tulip-1-phase-iii-trial-for-anifrolumab-insystemic-lupus-erythematosus-31082018.html. Accessed January 10, 2019.
108. Schwartz DM, Kanno Y, Villarino A, et al. JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat Rev Drug Discov. 2017;16(12):843-62. doi: 10.1038/nrd.2017.201
109. Насонов ЕЛ, Лила АМ. Ингибиторы Янус-киназ при иммуновоспалительных ревматических заболеваниях: новые возможности и перспективы. Научно-практическая ревматология. 2019;57(1):8-16 doi: 10.14412/1995-4484-2019-8-16
110. Mok CC. The Jakinibs in systemic lupus erythematosus: progress and prospects. Expert Opin Investig Drugs. 2019;28(1):85-92. doi: 10.1080/13543784.2019.1551358
111. Sanchez GAM, Reinhardt A, Ramsey S, et al. JAK1/2 inhibition with baricitinib in the treatment of autoinflammatory interferonopathies. J Clin Invest. 2018;128(7):3041-52. doi: 10.1172/JCI98814
112. Kö nig N, Fiehn C, Wolf C, et al. Familial chilblain lupus due to a gain-of-function mutation in STING. Ann Rheum Dis. 2017;76(2):468-72.
113. Rodero MP, Fremond M-L, Rice GI, et al. JAK inhibition in STING-associated interferonopathy. Ann Rheum Dis. 2016;75(12):e75. doi: 10.1136/annrheumdis-2016-210504
114. Seo J, Kang J-A, Suh DI, et al. Tofacitinib relieves symptoms of stimulator of interferon genes (STING)-associated vasculopathy with onset in infancy caused by 2 de novo variants in TMEM173. J Allergy Clin Immunol. 2017;139(4):1396-9.e12. doi: 10.1016/j.jaci.2016.10.030
115. Volpi S, Insalaco A, Caorsi R, et al. Efficacy and Adverse Events During Janus Kinase Inhibitor Treatment of SAVI Syndrome. J Clin Immunol. 2019 Jul;39(5):476-85. doi: 10.1007/s10875-019-00645-0
116. Ikeda K, Hayakawa K, Fujishiro M, et al. JAK inhibitor has the amelioration effect in lupus-prone mice: the involvement of IFN signature gene downregulation. BMC Immunol. 2017;18(1):41. doi: 10.1186/s12865-017-0225-9
117. Furumoto Y, Smith CK, Blanco L, et al. Tofacitinib Ameliorates Murine Lupus and Its Associated Vascular Dysfunction. Arthritis Rheum. 2017;69(1):148-60. doi: 10.1002/art.39818
118. Yamamoto M, Yokoyama Y, Shimizu Y, et al. Tofacitinib can decrease anti-DNA antibody titers in inactive systemic lupus erythematosus complicated by rheumatoid arthritis. Mod Rheumatol. 2016;26(4):633-4. doi: 10.3109/14397595.2015.1069473
119. You H, Zhang G, Wang Q, et al. Successful treatment of arthritis and rash with tofacitinib in systemic lupus erythematosus: the experience from a single centre. Ann Rheum Dis. 2019 Apr 20. doi: 10.1136/annrheumdis-2019-215455
120. Wallace DJ, Furie RA, Tanaka Y, et al. Baricitinib for systemic lupus erythematosus: a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet. 2018;392(10143):222-31. doi: 10.1016/S0140-6736(18)31363-1
121. Zhang LJ. Type 1 Interferons Potential Initiating Factors Linking Skin Wounds With Psoriasis Pathogenesis. Front Immunol. 2019;10:1440. doi: 10.3389/fimmu.2019.01440
122. Mylonas A, Conrad C. Psoriasis: Classical vs. Paradoxical. The Yin-Yang of TNF and Type I Interferon. Front Immunol. 2018;9:2746. doi: 10.3389/fimmu.2018.02746
123. Robinson ES, Werth VP. The role of cytokines in the pathogenesis of cutaneous lupus erythematosus. Cytokine. 2015;73:326-34. doi: 10.1016/j.cyto.2015.01.031
124. Rubin RL. Drug-induced lupus. Expert Opin Drug Safe. 2015;14:361-78. doi: 10.1517/14740338.2015.995089
125. Ciechanowicz P, Rakowska A, Sikora M, Rudnicka L. JAKinhibitors in dermatology. Current evidence and future applications. J Dermatolog Treat. 2018 Nov;15:1-22. doi: 10.1080/09546634.2018.1546043
Рецензия
Для цитирования:
Насонов Е.Л., Авдеева А.С. Иммуновоспалительные ревматические заболевания, связанные с интерфероном типа I: новые данные. Научно-практическая ревматология. 2019;57(4):452-461. https://doi.org/10.14412/1995-4484-2019-452-461
For citation:
Nasonov E.L., Avdeeva A.S. IMMUNOINFLAMMATORY RHEUMATIC DISEASES ASSOCIATED WITH TYPE I INTERFERON: NEW EVIDENCE. Rheumatology Science and Practice. 2019;57(4):452-461. (In Russ.) https://doi.org/10.14412/1995-4484-2019-452-461