Preview

Rheumatology Science and Practice

Advanced search

IMMUNOINFLAMMATORY RHEUMATIC DISEASES ASSOCIATED WITH TYPE I INTERFERON: NEW EVIDENCE

https://doi.org/10.14412/1995-4484-2019-452-461

Abstract

Immunoinflammatory rheumatic diseases (IIRDs) are a large group of pathological conditions with impaired immunological tolerance to autogenous tissues, leading to inflammation and irreversible organ damage. The review discusses current ideas on the role of type I interferons in the immunopathogenesis of IIRDs, primarily systemic lupus erythematosus, and new possibilities for personalized therapy.

About the Authors

E. L. Nasonov
V.A. Nasonova Research Institute of Rheumatology; I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

34A, Kashirskoe Shosse, Moscow 115522

8, Trubetskaya St., Build. 2, Moscow 119991



A. S. Avdeeva
V.A. Nasonova Research Institute of Rheumatology
Russian Federation
34A, Kashirskoe Shosse, Moscow 115522


References

1. Sanayama Y, Ikeda K, Saito Y, et al. Prediction of therapeutic responses to tocilizumab in patients with rheumatoid arthritis: biomarkers identified by analysis of gene expression in peripheral blood mononuclear cells using genome-wide DNA microarray. Arthritis Rheum. 2014;66(6):1421-31. doi: 10.1002/art.38400

2. Bodewes ILA, Al-Ali S, van Helden-Meeuwsen CG, et al. Systemic interferon type I and type II signatures in primary Sjö gren's syndrome reveal differences in biological disease activity. Rheumatology. 2018;57:921-30. doi: 10.1093/rheumatology/kex490

3. Ivashkiv LB, Donlin LT. Regulation of type I interferon responses. Nat Rev Immunol. 2014;14:36-49. doi: 10.1038/nri3581

4. Nasonov EL, Aleksandrova EN, Novikov AA. Autoimmune rheumatic diseases – problems of immunopathology and personalized therapy. Vestnik Rossiiskoi Akademii Meditsinskikh Nauk. 2015;70(2):169-82 (In Russ.).

5. Mavragani CP, La DT, Stohl W, Crow MK. Association of the response to tumor necrosis factor antagonists with plasma type I interferon activity and interferon-β/α ratios in rheumatoid arthritis patients: a post hoc analysis of a predominantly Hispanic cohort. Arthritis Rheum. 2010;62:392-401. doi: 10.1002/art.27226

6. Dieude P, Guedj M, Wipff J, et al. STAT4 is a genetic risk factor for systemic sclerosis having additive effects with IRF5 on disease susceptibility and related pulmonary fibrosis. Arthritis Rheum. 2009;60:2472-9. doi: 10.1002/art.24688

7. Crow YJ. Type I interferonopathies: a novel set of inborn errors of immunity: type I interferonopathies. Ann N Y Acad Sci Nov. 2011;1238:91-8. doi: 10.1111/j.1749-6632.2011.06220.x

8. Wang L, Wang F-S, Gershwin ME. Human autoimmune diseases: a comprehensive update. J Intern Med. 2015;278:369-95. doi: 10.1111/joim.12395

9. Wampler Muskardin T, Vashisht P, Dorschner JM, et al. Increased pretreatment serum IFN-β/α ratio predicts non-response to tumour necrosis factor α inhibition in rheumatoid arthritis. Ann Rheum Dis. 2016;75(10):1757-62. doi: 10.1136/annrheumdis-2015-208001

10. Ioannou Y, Isenberg DA. Current evidence for the induction of autoimmune rheumatic manifestations by cytokine therapy. Arthritis Rheum. 2000;43:1431-42. doi: 10.1002/1529-0131(200007)43:7<1431::AID-ANR3>3.0.CO;2-E

11. Rö nnblom L, Eloranta M-L. The interferon signature in autoimmune diseases. Curr Opin Rheumatol. 2013;25:248-53. doi: 10.1097/BOR.0b013e32835c7e32

12. Gourh P, Agarwal SK, Divecha D, et al. Polymorphisms in TBX21 and STAT4 increase the risk of systemic sclerosis: evidence of possible gene-gene interaction and alterations in Th1/Th2 cytokines. Arthritis Rheum. 2009;60:3794-806. doi: 10.1002/art.24958

13. De Jong TD, Blits M, de Ridder S, et al. Type I interferon response gene expression in established rheumatoid arthritis is not associated with clinical parameters. Arthritis Res Ther. 2016;18:Article number 290. doi: 10.1186/s13075-016-1191-y

14. Picard C, Belot A. Does type-I interferon drive systemic autoimmunity? Autoimmun Rev. 2017;16(9):897-902. doi: 10.1016/j.autrev.2017.07.001

15. Rueda B, Broen J, Simeon C, et al. The STAT4 gene influences the genetic predisposition to systemic sclerosis phenotype. Hum Mol Genet. 2009;18:2071-7. doi: 10.1093/hmg/ddp119

16. Kretschmer S, Lee-Kirsch MA. Type I interferon-mediated autoinflammation and autoimmunity. Curr Opin Immunol. 2017;49:96-102. doi: 10.1016/j.coi.2017.09.003

17. De Jong TD, Vosslamber S, Blits M, et al. Effect of prednisone on type I interferon signature in rheumatoid arthritis: consequences for response prediction to rituximab. Arthritis Res Ther. 2015;17:78. doi: 10.1186/s13075-015-0564-y

18. Skaug B, Assassi S. Type I interferon dysregulation in Systemic Sclerosis. Cytokine. 2019 Jan 23. doi: 10.1016/j.cyto.2018.12.018

19. Green DS, Young HA, Valencia JC. Current prospects of type II interferon γ signaling and autoimmunity. J Biol Chem. 2017;25;292(34):13925-33. doi: 10.1074/jbc.R116.774745

20. Higgs BW, Liu Z, White B, et al. Patients with systemic lupus erythematosus, myositis, rheumatoid arthritis and scleroderma share activation of a common type I interferon pathway. Ann Rheum Dis. 2011;70:2029-36. doi: 10.1136/ard.2011.150326

21. De Jong TD, Snoek T, Mantel E, et al. Dynamics of the Type I Interferon Response During Immunosuppressive Therapy in Rheumatoid Arthritis. Front Immunol. 2019 Apr 24;10:902. doi: 10.3389/fimmu.2019.00902

22. Psarras A, Emery P, Vital EM. Type I interferon-mediated autoimmune diseases: pathogenesis, diagnosis and targeted therapy. Rheumatology (Oxford). 2017;56(10):1662-75. doi: 10.1093/rheumatology/kew431

23. Christmann RB, Sampaio-Barros P, Stifano G, et al. Association of interferon- and transforming growth factor β-regulated genes and macrophage activation with systemic sclerosis-related progressive lung fibrosis. Arthritis Rheum. 2014;66:714-25. doi: 10.1002/art.38288

24. Chasset F, Arnaud L. Targeting interferons and their pathways in systemic lupus erythematosus. Autoimmun Rev. 2018;17:44-52. doi: 10.1016/j.autrev.2017.11.009

25. Thorlacius GE, Wahren-Herlenius M, Ronnblom L. An update on the role of type I interferons in systemic lupus erythematosus and Sjogren's syndrome. Curr Opin Rheumatol. 2018;30:471-81. doi: 10.1097/BOR.0000000000000524

26. Muskardin TLW, Niewold TB. Type I interferon in rheumatic diseases. Nat Rev Rheumatol. 2018;14(4):214-28. doi: 10.1038/nrrheum.2018.31

27. George PM, Oliver E, Dorfmuller P, et al. Evidence for the involvement of type I interferon in pulmonary arterial hypertension. Circ Res. 2014;114:677-88. doi: 10.1161/CIRCRESAHA.114.302221

28. Crow MK, Olferiev M, Kirou KA. Type I Interferons in Autoimmune Disease. Annu Rev Pathol. 2019;14:369-93. doi: 10.1146/annurev-pathol-020117-043952

29. Nezos A, Gravani F, Tassidou A, et al. Type I and II interferon signatures in Sjogren's syndrome pathogenesis: contributions in distinct clinical phenotypes and Sjogren's related lymphomagenesis. J Autoimmun. 2015;63:47-58. doi: 10.1016/j.jaut.2015.07.002

30. Schneider WM, Chevillotte MD, Rice CM. Interferon-stimulated genes: a complex web of host defenses. Annu Rev Immunol. 2014;32:513-45. doi: 10.1146/annurev-immunol-032713-120231

31. Garcia-Romo GS, Caielli S, Vega B, et al. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci Transl Med. 2011;3:ra20. doi: 10.1126/scitranslmed.3001201

32. Brkic Z, van Bon L, Cossu M, et al. The interferon type I signature is present in systemic sclerosis before overt fibrosis and might contribute to its pathogenesis through high BAFF gene expression and high collagen synthesis. Ann Rheum Dis. 2016;75(8):1567-73. doi: 10.1136/annrheumdis-2015-207

33. Benchabane S, Belkhelfa M, Belguendouz H, et al. Interferon-γ inhibits inflammatory responses mediators via suppression of iNOS signaling pathway in PBMCs from patients with primary Sjö gren's syndrome. Inflammopharmacology. 2018;26:1165-74. doi: 10.1007/s10787-018-0499-4

34. Banchereau R, Cepika AM, Banchereau J, Pascual V. Understanding Human Autoimmunity and Autoinflammation Through Transcriptomics. Annu Rev Immunol. 2017;35:337-70. doi: 10.1146/annurev-immunol-051116-052225

35. Doedens JR, Jones WD, Hill K, et al. Blood-borne Rna correlates with disease activity and Ifn-stimulated gene expression in systemic lupus erythematosus. J Immunol. 2016;197:2854-63. doi: 10.4049/jimmunol.1601142

36. Van den Hoogen LL, Fritsch-Stork RD, Versnel MA, et al. Monocyte type I interferon signature in antiphospholipid syndrome is related to proinflammatory monocyte subsets, hydroxychloroquine and statin use. Ann Rheum Dis. 2016;75:e81. doi: 10.1136/annrheumdis-2016-210485

37. Bodewes ILA, Al-Ali S, van Helden-Meeuwsen CG, et al. Systemic interferon type I and type II signatures in primary Sjö gren's syndrome reveal differences in biological disease activity. Rheumatology. 2018;57:921-30. doi: 10.1093/rheumatology/kex490

38. Mavragani CP, Sagalovskiy I, Guo Q, et al. Expression of long interspersed nuclear element 1 retroelements and induction of type I interferon in patients with systemic autoimmune disease. Arthritis Rheum. 2016;68:2686-96. doi: 10.1002/art.39795

39. Ivashkiv LB, Donlin LT. Regulation of type I interferon responses. Nat Rev Immunol. 2014;14:36-49. doi: 10.1038/nri3581

40. Ugolini-Lopes MR, Torrezan GT, Gandara APR, et al. Enhanced type I interferon gene signature in primary antiphospholipid syndrome: Association with earlier disease onset and preeclampsia. Autoimmun Rev. 2019;18(4):393-8. doi: 10.1016/j.autrev.2018.11.004

41. Dieude P, Guedj M, Wipff J, et al. STAT4 is a genetic risk factor for systemic sclerosis having additive effects with IRF5 on disease susceptibility and related pulmonary fibrosis. Arthritis Rheum. 2009;60:2472-9. doi: 10.1002/art.24688

42. Crow YJ. Type I interferonopathies: a novel set of inborn errors of immunity: type I interferonopathies. Ann N Y Acad Sci Nov. 2011;1238:91-8. doi: 10.1111/j.1749-6632.2011.06220.x

43. Lee JY, Park JK, Lee EY, et al. Circulating exosomes from patients with systemic lupus erythematosus induce an proinflammatory immune response. Arthritis Res Ther. 2016;18:264. doi: 10.1186/s13075-016-1159-y

44. Palli E, Kravvariti E, Tektonidou MG. Type I Interferon Signature in Primary Antiphospholipid Syndrome: Clinical and Laboratory Associations. Front Immunol. 2019;10:487. doi: 10.3389/fimmu.2019.00487

45. Gourh P, Agarwal SK, Divecha D, et al. Polymorphisms in TBX21 and STAT4 increase the risk of systemic sclerosis: evidence of possible gene-gene interaction and alterations in Th1/Th2 cytokines. Arthritis Rheum. 2009;60:3794-806. doi: 10.1002/art.24958

46. Ioannou Y, Isenberg DA. Current evidence for the induction of autoimmune rheumatic manifestations by cytokine therapy. Arthritis Rheum. 2000;43:1431-42. doi: 10.1002/1529-0131(200007)43:7<1431::AID-ANR3>3.0.CO;2-E

47. Grenn RC, Yalavarthi S, Gandhi AA, et al. Endothelial progenitor dysfunction associates with a type I interferon signature in primary antiphospholipid syndrome. Ann Rheum Dis. 2017;76:450-7. doi: 10.1136/annrheumdis-2016-209442

48. Bengtsson AA, Rö nnblom L. Role of interferons in SLE. Best Pract Res Clin Rheumatol. 2017;31(3):415-28. doi: 10.1016/j.berh.2017.10.0

49. Rueda B, Broen J, Simeon C, et al. The STAT4 gene influences the genetic predisposition to systemic sclerosis phenotype. Hum Mol Genet. 2009;18:2071-7. doi: 10.1093/hmg/ddp119

50. Eloranta ML, Rö nnblom L. Cause and consequences of the activated type I interferon system in SLE. J Mol Med (Berl). 2016;94(10):1103-10. doi: 10.1007/s00109-016-1421-4

51. Greenberg SA, Pinkus JL, Pinkus GS, et al. Interferon-β/α-mediated innate immune mechanisms in dermatomyositis. Ann Neurol. 2005;57:664-78. doi: 10.1002/ana.20464

52. Picard C, Belot A. Does type-I interferon drive systemic autoimmunity? Autoimmun Rev. 2017;16(9):897-902. doi: 10.1016/j.autrev.2017.07.001

53. Skaug B, Assassi S. Type I interferon dysregulation in Systemic Sclerosis. Cytokine. 2019 Jan 23. doi: 10.1016/j.cyto.2018.12.018

54. Liao AP, Salajegheh M, Nazareno R, et al. Interferon β is associated with type 1 interferon-inducible gene expression in dermatomyositis. Ann Rheum Dis. 2011;70:831-6. doi: 10.1136/ard.2010.139949

55. Higgs BW, Liu Z, White B, et al. Patients with systemic lupus erythematosus, myositis, rheumatoid arthritis and scleroderma share activation of a common type I interferon pathway. Ann Rheum Dis. 2011;70:2029-36. doi: 10.1136/ard.2011.150326

56. Weckerle CE, Franek BS, Kelly JA, et al. Network analysis of associations between serum interferon-α activity, autoantibodies, and clinical features in systemic lupus erythematosus. Arthritis Rheum. 2011;63(4):1044-53. doi: 10.1002/art.30187

57. Christmann RB, Sampaio-Barros P, Stifano G, et al. Association of interferon- and transforming growth factor β-regulated genes and macrophage activation with systemic sclerosis-related progressive lung fibrosis. Arthritis Rheum. 2014;66:714-25. doi: 10.1002/art.38288

58. Chasset F, Arnaud L. Targeting interferons and their pathways in systemic lupus erythematosus. Autoimmun Rev. 2018;17:44-52. doi: 10.1016/j.autrev.2017.11.009

59. Baechler EC, Batliwalla FM, Karypis G, et al. Interferoninducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci U S A. 2003;100(5):2610-5. doi: 10.1073/pnas.0337679100

60. Somani A-K, Swick AR, Cooper KD, et al. Severe dermatomyositis triggered by interferon beta-1a therapy and associated with enhanced type I interferon signaling. Arch Dermatol. 2008;144:1341-9. doi: 10.1001/archderm.144.10.1341

61. George PM, Oliver E, Dorfmuller P, et al. Evidence for the involvement of type I interferon in pulmonary arterial hypertension. Circ Res. 2014;114:677-88. doi: 10.1161/CIRCRESAHA.114.302221

62. Munroe ME, Lu R, Zhao YD, et al. Altered type II interferon precedes autoantibody accrual and elevated type I interferon activity prior to systemic lupus erythematosus classification. Ann Rheum Dis. 2016;75(11):2014-21. doi: 10.1136/annrheumdis-2015-2081

63. Crow MK, Olferiev M, Kirou KA. Type I Interferons in Autoimmune Disease. Annu Rev Pathol. 2019;14:369-93. doi: 10.1146/annurev-pathol-020117-043952

64. Piper CJM, Wilkinson MGL, Deakin CT, et al. CD19+CD24hiCD38hi B Cells Are Expanded in Juvenile Dermatomyositis and Exhibit a Pro-Inflammatory Phenotype After Activation Through Toll-Like Receptor 7 and Interferon-α. Front Immunol. 2018;9. doi: 10.3389/fimmu.2018.01372

65. Brkic Z, van Bon L, Cossu M, et al. The interferon type I signature is present in systemic sclerosis before overt fibrosis and might contribute to its pathogenesis through high BAFF gene expression and high collagen synthesis. Ann Rheum Dis. 2016;75(8):1567-73. doi: 10.1136/annrheumdis-2015-207

66. Niewold TB, Hua J, Lehman TJ, et al. High serum IFN-α activity is a heritable risk factor for systemic lupus erythematosus. Genes Immun. 2007;8:492-502. doi: 10.1038/sj.gene.6364408

67. Garcia-Romo GS, Caielli S, Vega B, et al. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci Transl Med. 2011;3:ra20. doi: 10.1126/scitranslmed.3001201

68. Oon S, Wilson NJ, Wicks I. Targeted therapeutics in SLE: emerging strategies to modulate the interferon pathway. Clin Transl Immunol. 2016;5:e79. doi: 10.1038/cti.2016.26

69. Van den Hoogen LL, Fritsch-Stork RD, Versnel MA, et al. Monocyte type I interferon signature in antiphospholipid syndrome is related to proinflammatory monocyte subsets, hydroxychloroquine and statin use. Ann Rheum Dis. 2016;75:e81. doi: 10.1136/annrheumdis-2016-210485

70. Kariuki SN, Franek BS, Kumar AA, et al. Trait-stratified genome-wide association study identifies novel and diverse genetic associations with serologic and cytokine phenotypes in systemic lupus erythematosus. Arthritis Res Ther. 2010;12(4):R151. doi: 10.1186/ar3101

71. Doedens JR, Jones WD, Hill K, et al. Blood-borne Rna correlates with disease activity and Ifn-stimulated gene expression in systemic lupus erythematosus. J Immunol. 2016;197:2854-63. doi: 10.4049/jimmunol.1601142

72. Mathian A, Hie M, Cohen-Aubart F, et al. Targeting interferons in systemic lupus erythematosus: current and future prospects. Drugs. 2015;75:835-46. doi: 10.1007/s40265-015-0394-x

73. Md Yusof MY, Psarras A, El-Sherbiny YM, et al. Prediction of autoimmune connective tissue disease in an at-risk cohort: prognostic value of a novel two-score system for interferon status. Ann Rheum Dis. 2018;77:1432-9. doi: 10.1136/annrheumdis-2018-213386

74. Ugolini-Lopes MR, Torrezan GT, Gandara APR, et al. Enhanced type I interferon gene signature in primary antiphospholipid syndrome: Association with earlier disease onset and preeclampsia. Autoimmun Rev. 2019;18(4):393-8. doi: 10.1016/j.autrev.2018.11.004

75. Mavragani CP, Sagalovskiy I, Guo Q, et al. Expression of long interspersed nuclear element 1 retroelements and induction of type I interferon in patients with systemic autoimmune disease. Arthritis Rheum. 2016;68:2686-96. doi: 10.1002/art.39795

76. Bodewes ILA, Gottenberg JE, van Helden-Meeuwsen CG, et al. Hydroxychloroquine treatment downregulates systemic interferon activation in primary Sjö gren's syndrome in the JOQUER randomized trial. Rheumatology (Oxford). 2019 Jun 25. doi: 10.1093/rheumatology/kez242

77. Palli E, Kravvariti E, Tektonidou MG. Type I Interferon Signature in Primary Antiphospholipid Syndrome: Clinical and Laboratory Associations. Front Immunol. 2019;10:487. doi: 10.3389/fimmu.2019.00487

78. Morimoto AM, Flesher DT, Yang J, et al. Association of endogenous anti-interferon-α autoantibodies with decreased interferonpathway and disease activity in patients with systemic lupus erythematosus. Arthritis Rheum. 2011;63:2407-15. doi: 10.1002/art.30399

79. Lee JY, Park JK, Lee EY, et al. Circulating exosomes from patients with systemic lupus erythematosus induce an proinflammatory immune response. Arthritis Res Ther. 2016;18:264. doi: 10.1186/s13075-016-1159-y

80. Gardet A, Pellerin A, McCarl CA, et al. Effect of in vivo Hydroxychloroquine and ex vivo Anti-BDCA2 mAb Treatment on pDC IFNγ Production From Patients Affected With Cutaneous Lupus Erythematosus. Front Immunol. 2019;10:275. doi: 10.3389/fimmu.2019.00275

81. Landolt-Marticorena C, Bonventi G, Lubovich A, et al. Lack of association between the interferon-alpha signature and longitudinal changes in disease activity in systemic lupus erythematosus. Ann Rheum Dis. 2009;68(9):1440-6. doi: 10.1136/ard.2008.093146

82. Grenn RC, Yalavarthi S, Gandhi AA, et al. Endothelial progenitor dysfunction associates with a type I interferon signature in primary antiphospholipid syndrome. Ann Rheum Dis. 2017;76:450-7. doi: 10.1136/annrheumdis-2016-209442

83. Olsen NJ, McAloose C, Carter J, et al. Clinical and Immunologic Profiles in Incomplete Lupus Erythematosus and Improvement with Hydroxychloroquine Treatment. Autoimmune Dis. 2016:8791629. doi: 10.1155/2016/8791629

84. Bengtsson AA, Rö nnblom L. Role of interferons in SLE. Best Pract Res Clin Rheumatol. 2017;31(3):415-28. doi: 10.1016/j.berh.2017.10.0

85. Petri M, Singh S, Tesfasyone H, et al. Longitudinal expression of type I interferon responsive genes in systemic lupus erythematosus. Lupus. 2009;18(11):980-9. doi: 10.1177/0961203309105529

86. Greenberg SA, Pinkus JL, Pinkus GS, et al. Interferon-β/α-mediated innate immune mechanisms in dermatomyositis. Ann Neurol. 2005;57:664-78. doi: 10.1002/ana.20464

87. Eloranta ML, Rö nnblom L. Cause and consequences of the activated type I interferon system in SLE. J Mol Med (Berl). 2016;94(10):1103-10. doi: 10.1007/s00109-016-1421-4

88. Eloranta ML, Lö vgren T, Finke D, et al. Regulation of the interferon-alpha production induced by RNA-containing immune complexes in plasmacytoid dendritic cells. Arthritis Rheum. 2009;60:2418-27. doi: 10.1002/art.24686

89. Rose T, Grutzkau A, Klotsche J, et al. Are interferon-related biomarkers advantageous for monitoring disease activity in systemic lupus erythematosus? A longitudinal benchmark study. Rheumatology (Oxford). 2017;56:1618-26. doi: 10.1093/rheumatology/kex220

90. Liao AP, Salajegheh M, Nazareno R, et al. Interferon β is associated with type 1 interferon-inducible gene expression in dermatomyositis. Ann Rheum Dis. 2011;70:831-6. doi: 10.1136/ard.2010.139949

91. Weckerle CE, Franek BS, Kelly JA, et al. Network analysis of associations between serum interferon-α activity, autoantibodies, and clinical features in systemic lupus erythematosus. Arthritis Rheum. 2011;63(4):1044-53. doi: 10.1002/art.30187

92. Berggren O, Hagberg N, Weber G, et al. B lymphocytes enhance the interferon-alpha production by plasmacytoid dendritic cells. Arthritis Rheum. 2012;64:3409-19.

93. Connelly KL, Kandane-Rathayake R, Huq M, et al. Longitudinal association of type 1 interferon-induced chemokines with disease activity in systemic lupus erythematosus. Scientific Report. 2018;8:3268. doi: 10.1038/s41598-018-20203-9

94. Somani A-K, Swick AR, Cooper KD, et al. Severe dermatomyositis triggered by interferon beta-1a therapy and associated with enhanced type I interferon signaling. Arch Dermatol. 2008;144:1341-9. doi: 10.1001/archderm.144.10.1341

95. doi: 10.1002/art.34599

96. Baechler EC, Batliwalla FM, Karypis G, et al. Interferoninducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci U S A. 2003;100(5):2610-5. doi: 10.1073/pnas.0337679100

97. Banchereau R, Hong S, Cantarel B, et al. Personalized Immunomonitoring Uncovers Molecular Networks that Stratify Lupus Patients. Cell. 2016;165(3):551-65. doi: 10.1016/j.cell.2016.03.008

98. Piper CJM, Wilkinson MGL, Deakin CT, et al. CD19+CD24hiCD38hi B Cells Are Expanded in Juvenile Dermatomyositis and Exhibit a Pro-Inflammatory Phenotype After Activation Through Toll-Like Receptor 7 and Interferon-α. Front Immunol. 2018;9. doi: 10.3389/fimmu.2018.01372

99. Munroe ME, Lu R, Zhao YD, et al. Altered type II interferon precedes autoantibody accrual and elevated type I interferon activity prior to systemic lupus erythematosus classification. Ann Rheum Dis. 2016;75(11):2014-21. doi: 10.1136/annrheumdis-2015-2081

100. Leonard D, Eloranta ML, Hagberg N, et al. Activated T cells enhance interferon-alpha production by plasmacytoid dendritic cells stimulated with RNA-containing immune complexes. Ann Rheum Dis. 2016;75(9):1728-34. doi: 10.1136/annrheumdis-2015-208055

101. Ghodke-Puranik Y, Niewold TB. Genetics of the type I interferon pathway in systemic lupus erythematosus. Int J Clin Rheumtol. 2013;8:657-69. doi: 10.2217/ijr.13.58

102. Oon S, Wilson NJ, Wicks I. Targeted therapeutics in SLE: emerging strategies to modulate the interferon pathway. Clin Transl Immunol. 2016;5:e79. doi: 10.1038/cti.2016.26

103. Skurkovich SV, Klinova EG, Eremkina EI, Levina NV. Immunosupressive effect of anti-interferon serum. Nature. 1974;247:551-2. doi: 10.1038/247551a0

104. Niewold TB, Hua J, Lehman TJ, et al. High serum IFN-α activity is a heritable risk factor for systemic lupus erythematosus. Genes Immun. 2007;8:492-502. doi: 10.1038/sj.gene.6364408

105. Mathian A, Hie M, Cohen-Aubart F, et al. Targeting interferons in systemic lupus erythematosus: current and future prospects. Drugs. 2015;75:835-46. doi: 10.1007/s40265-015-0394-x

106. Langefeld CD, Ainsworth HC, Cunninghame Graham DS, et al. Transancestral mapping and genetic load in systemic lupus erythematosus. Nat Commun. 2017;8:16021. doi: 10.1038/ncomms16021

107. Kariuki SN, Franek BS, Kumar AA, et al. Trait-stratified genome-wide association study identifies novel and diverse genetic associations with serologic and cytokine phenotypes in systemic lupus erythematosus. Arthritis Res Ther. 2010;12(4):R151. doi: 10.1186/ar3101

108. Skurkovich SV, Loukina GV, Sigidin YA, Skurkovich BS. Succesful first-time use of antibodies to interferon-gamma alone and combined with antibodies to tumor necrosis factor-alfa to treat rheumatic diseasers (rheumatoid arthritis, systemic lupus erythematosus, psoriatic arthritis, Behcet`s syndrome). Int J Immunother. 1998;14:23-32.

109. Bodewes ILA, Gottenberg JE, van Helden-Meeuwsen CG, et al. Hydroxychloroquine treatment downregulates systemic interferon activation in primary Sjö gren's syndrome in the JOQUER randomized trial. Rheumatology (Oxford). 2019 Jun 25. doi: 10.1093/rheumatology/kez242

110. Md Yusof MY, Psarras A, El-Sherbiny YM, et al. Prediction of autoimmune connective tissue disease in an at-risk cohort: prognostic value of a novel two-score system for interferon status. Ann Rheum Dis. 2018;77:1432-9. doi: 10.1136/annrheumdis-2018-213386

111. Niewold TB, Kelly JA, Kariuki SN, et al. IRF5 haplotypes demonstrate diverse serological associations which predict serum interferon alpha activity and explain the majority of the genetic association with systemic lupus erythematosus. Ann Rheum Dis. 2012;71(3):463-8. doi: 10.1136/annrheumdis-2011-200463

112. Sigidin AY, Loukina GV, Skurkovich B, Skurkovich SV. Randomized double-blind trial of anti-interferob-gamma antibodies in rheumatoid arthritis. Scand J Rheumatol. 2001;30:203-7. doi: 10.1080/030097401316909530

113. Gardet A, Pellerin A, McCarl CA, et al. Effect of in vivo Hydroxychloroquine and ex vivo Anti-BDCA2 mAb Treatment on pDC IFNγ Production From Patients Affected With Cutaneous Lupus Erythematosus. Front Immunol. 2019;10:275. doi: 10.3389/fimmu.2019.00275

114. Hagberg N, Joelsson M, Leonard D, et al. The Stat4 Sle risk allele Rs7574865[T] is associated with increased Il-12-induced IFN-γ production in T cells from patients with SLE. Ann Rheum Dis. 2018;77(7):1070-7. doi: 10.1136/annrheumdis-2017-212794

115. Morimoto AM, Flesher DT, Yang J, et al. Association of endogenous anti-interferon-α autoantibodies with decreased interferonpathway and disease activity in patients with systemic lupus erythematosus. Arthritis Rheum. 2011;63:2407-15. doi: 10.1002/art.30399

116. Baker KF, Isaacs JD. Novel therapies for immune-mediated inflammatory diseases: What can we learn from their use in rheumatoid arthritis, spondyloarthritis, systemic lupus erythematosus, psoriasis, Crohn's disease and ulcerative colitis? Ann Rheum Dis. 2018;77(2):175-87. doi: 10.1136/annrheumdis-2017-211555

117. Olsen NJ, McAloose C, Carter J, et al. Clinical and Immunologic Profiles in Incomplete Lupus Erythematosus and Improvement with Hydroxychloroquine Treatment. Autoimmune Dis. 2016:8791629. doi: 10.1155/2016/8791629

118. Landolt-Marticorena C, Bonventi G, Lubovich A, et al. Lack of association between the interferon-alpha signature and longitudinal changes in disease activity in systemic lupus erythematosus. Ann Rheum Dis. 2009;68(9):1440-6. doi: 10.1136/ard.2008.093146

119. Lessard CJ, Li H, Adrianto I, et al. Variants at multiple loci implicated in both innate and adaptive immune responses are associated with Sjö gren's syndrome. Nat Genet. 2013;45(11):1284-92. doi: 10.1038/ng.2792

120. Yao Y, Higgs BW, Morehouse C, et al. Development of potential pharmacodynamic and diagnostic markers for anti-IFN-alpha monoclonal antibody trials in systemic lupus erythematosus. Hum Genom Proteom. 2009:Article ID 374312. doi: 10.4061/2009/37431210.4061/2009/374312

121. Eloranta ML, Lö vgren T, Finke D, et al. Regulation of the interferon-alpha production induced by RNA-containing immune complexes in plasmacytoid dendritic cells. Arthritis Rheum. 2009;60:2418-27. doi: 10.1002/art.24686

122. Angiolilli C, Marut W, van der Kroef M, et al. New insights into the genetics and epigenetics of systemic sclerosis. Nat Rev Rheumatol. 2018;14(11):657-73. doi: 10.1038/s41584-018-0099-0

123. Petri M, Singh S, Tesfasyone H, et al. Longitudinal expression of type I interferon responsive genes in systemic lupus erythematosus. Lupus. 2009;18(11):980-9. doi: 10.1177/0961203309105529

124. Merrill JT, Wallace DJ, Petri M, et al. Safety profile and clinical activity of sifalimumab, a fully human anti-interferon alpha monoclonal antibody, in systemic lupus erythematosus: a phase I, multicentre, double-blind randomised study. Ann Rheum Dis. 2011;70:1905-13. doi: 10.1136/ard.2010.144485

125. Dieguez-Gonzalez R, Calaza M, Perez-Pampin E, et al. Association of interferon regulatory factor 5 haplotypes, similar to that found in systemic lupus erythematosus, in a large subgroup of patients with rheumatoid arthritis. Arthritis Rheum. 2008;58:1264-74. doi: 10.1002/art.23426

126. Rose T, Grutzkau A, Klotsche J, et al. Are interferon-related biomarkers advantageous for monitoring disease activity in systemic lupus erythematosus? A longitudinal benchmark study. Rheumatology (Oxford). 2017;56:1618-26. doi: 10.1093/rheumatology/kex220

127. Berggren O, Hagberg N, Weber G, et al. B lymphocytes enhance the interferon-alpha production by plasmacytoid dendritic cells. Arthritis Rheum. 2012;64:3409-19.

128. Petri M, Wallace DJ, Spindler A, et al. Sifalimumab, a human anti-interferon-alpha monoclonal antibody, in systemic lupus erythematosus: a phase I randomized, controlled, dose-escalation study. Arthritis Rheum. 2013;65:1011-21. doi: 10.1002/art.37824

129. doi: 10.1002/art.34599

130. Nordang GB, Viken MK, Amundsen SS, et al. Interferon regulatory factor 5 gene polymorphism confers risk to several rheumatic diseases and correlates with expression of alternative thymic transcripts. Rheumatology (Oxford). 2012;51(4):619-26. doi: 10.1093/rheumatology/ker364

131. Connelly KL, Kandane-Rathayake R, Huq M, et al. Longitudinal association of type 1 interferon-induced chemokines with disease activity in systemic lupus erythematosus. Scientific Report. 2018;8:3268. doi: 10.1038/s41598-018-20203-9

132. Khamashta M, Merrill JT, Werth VP, et al. Sifalimumab, an antiinterferon-α monoclonal antibody, in moderate to severe systemic lupus erythematosus: a randomised, double-blind, placebo-controlled study. Ann Rheum Dis. 2016;75:1909-16. doi: 10.1136/annrheumdis-2015-208562

133. Demirkaya E, Zhou Q, Smith CK, et al. Brief report: deficiency of complement 1r subcomponent in early-onset systemic lupus erythematosus: the role of disease-modifying alleles in a monogenic disease. Arthritis Rheum. 2017;69:1832-9. doi: 10.1002/art.40158

134. Leonard D, Eloranta ML, Hagberg N, et al. Activated T cells enhance interferon-alpha production by plasmacytoid dendritic cells stimulated with RNA-containing immune complexes. Ann Rheum Dis. 2016;75(9):1728-34. doi: 10.1136/annrheumdis-2015-208055

135. Banchereau R, Hong S, Cantarel B, et al. Personalized Immunomonitoring Uncovers Molecular Networks that Stratify Lupus Patients. Cell. 2016;165(3):551-65. doi: 10.1016/j.cell.2016.03.008

136. Tcherepanova I, Curtis M, Sale M, et al. SAT0193 Results of a randomized placebo controlled phase ia study of AGS-009, a humanized anti-interferon-α monoclonal antibody in subjects with systemic lupus erythematosus. Ann Rheum Dis. 2013;71(Suppl 3):536.3-7. doi: 10.1136/annrheumdis-2012-eular.3140

137. Ghodke-Puranik Y, Dorschner JM, Vsetecka DM, et al. Lupusassociated functional polymorphism in Pnp causes cell cycle abnormalities and interferon pathway activation in human immune cells. Arthritis Rheum. 2017;69:2328-37. doi: 10.1002/art.40304

138. Ghodke-Puranik Y, Niewold TB. Genetics of the type I interferon pathway in systemic lupus erythematosus. Int J Clin Rheumtol. 2013;8:657-69. doi: 10.2217/ijr.13.58

139. Skurkovich SV, Klinova EG, Eremkina EI, Levina NV. Immunosupressive effect of anti-interferon serum. Nature. 1974;247:551-2. doi: 10.1038/247551a0

140. Kalunian KC, Merrill JT, Maciuca R, et al. A phase II study of the efficacy and safety of rontalizumab (rhuMAb interferon-α) in patients with systemic lupus erythematosus (ROSE). Ann Rheum Dis. 2016;75:196-202. doi: 10.1136/annrheumdis-2014-206090

141. Kariuki SN, Ghodke-Puranik Y, Dorschner JM, et al. Genetic analysis of the pathogenic molecular sub-phenotype interferonalpha identifies multiple novel loci involved in systemic lupus erythematosus. Genes Immun. 2015;16:15-23. doi: 10.1038/gene.2014.57

142. Langefeld CD, Ainsworth HC, Cunninghame Graham DS, et al. Transancestral mapping and genetic load in systemic lupus erythematosus. Nat Commun. 2017;8:16021. doi: 10.1038/ncomms16021

143. Skurkovich SV, Loukina GV, Sigidin YA, Skurkovich BS. Succesful first-time use of antibodies to interferon-gamma alone and combined with antibodies to tumor necrosis factor-alfa to treat rheumatic diseasers (rheumatoid arthritis, systemic lupus erythematosus, psoriatic arthritis, Behcet`s syndrome). Int J Immunother. 1998;14:23-32.

144. Peng L, Oganesyan V, Wu H, et al. Molecular basis for antagonistic activity of anifrolumab, an anti-interferon-α receptor 1 antibody. MAbs. 2015;7:428-39. doi: 10.1080/19420862.2015.1007810

145. Niewold TB, Kelly JA, Kariuki SN, et al. IRF5 haplotypes demonstrate diverse serological associations which predict serum interferon alpha activity and explain the majority of the genetic association with systemic lupus erythematosus. Ann Rheum Dis. 2012;71(3):463-8. doi: 10.1136/annrheumdis-2011-200463

146. Faridi MH, Khan SQ, Zhao W, et al. Cd11b activation suppresses TLR-dependent inflammation and autoimmunity in systemic lupus erythematosus. J Clin Invest. 2017;127:1271-83. doi: 10.1172/JCI88442

147. Sigidin AY, Loukina GV, Skurkovich B, Skurkovich SV. Randomized double-blind trial of anti-interferob-gamma antibodies in rheumatoid arthritis. Scand J Rheumatol. 2001;30:203-7. doi: 10.1080/030097401316909530

148. Riggs JM, Hanna RN, Rajan B, et al. Characterisation of anifrolumab, a fully human anti-interferon receptor antagonist antibody for the treatment of systemic lupus erythematosus. Lupus Sci Med. 2018;5:e000261. doi: 10.1136/lupus-2018-000261

149. Coit P, Jeffries M, Altorok N, et al. Genome-wide DNA methylation study suggests epigenetic accessibility and transcriptional poising of interferon-regulated genes in naive CD4+ T cells from lupus patients. J Autoimmun. 2013;43:78-84. doi: 10.1016/j.jaut.2013.04.003

150. Baker KF, Isaacs JD. Novel therapies for immune-mediated inflammatory diseases: What can we learn from their use in rheumatoid arthritis, spondyloarthritis, systemic lupus erythematosus, psoriasis, Crohn's disease and ulcerative colitis? Ann Rheum Dis. 2018;77(2):175-87. doi: 10.1136/annrheumdis-2017-211555

151. Hagberg N, Joelsson M, Leonard D, et al. The Stat4 Sle risk allele Rs7574865[T] is associated with increased Il-12-induced IFN-γ production in T cells from patients with SLE. Ann Rheum Dis. 2018;77(7):1070-7. doi: 10.1136/annrheumdis-2017-212794

152. Felten R, Scher F, Sagez F, et al. Spotlight on anifrolumab and its potential for the treatment of moderate-to-severe systemic lupus erythematosus: evidence to date. Drug Des Devel Ther. 2019;13:1535-43. doi: 10.2147/DDDT.S170969

153. Cheng J, Wu R, Long L, et al. Mirna-451a targets Ifn regulatory factor 8 for the progression of systemic lupus erythematosus. Inflammation. 2017;40:676-87. doi: 10.1007/s10753-017-0514-8

154. Lessard CJ, Li H, Adrianto I, et al. Variants at multiple loci implicated in both innate and adaptive immune responses are associated with Sjö gren's syndrome. Nat Genet. 2013;45(11):1284-92. doi: 10.1038/ng.2792

155. Yao Y, Higgs BW, Morehouse C, et al. Development of potential pharmacodynamic and diagnostic markers for anti-IFN-alpha monoclonal antibody trials in systemic lupus erythematosus. Hum Genom Proteom. 2009:Article ID 374312. doi: 10.4061/2009/37431210.4061/2009/374312

156. Furie R, Khamashta M, Merrill JT, et al. Anifrolumab, an antiinterferon-α receptor monoclonal antibody, in moderate-to-severe systemic lupus erythematosus. Arthritis Rheum. 2017;69:376-86. doi: 10.1002/art.39962

157. Merrill JT, Wallace DJ, Petri M, et al. Safety profile and clinical activity of sifalimumab, a fully human anti-interferon alpha monoclonal antibody, in systemic lupus erythematosus: a phase I, multicentre, double-blind randomised study. Ann Rheum Dis. 2011;70:1905-13. doi: 10.1136/ard.2010.144485

158. Smith S, Fernando T, Wu PW, et al. Microrna-302d targets Irf9 to regulate the Ifn-induced gene expression in SLE. J Autoimmun. 2017;79:105-11. doi: 10.1016/j.jaut.2017.03.003

159. Angiolilli C, Marut W, van der Kroef M, et al. New insights into the genetics and epigenetics of systemic sclerosis. Nat Rev Rheumatol. 2018;14(11):657-73. doi: 10.1038/s41584-018-0099-0

160. Merrill JT, Furie R, Werth VP, et al. Anifrolumab effects on rash and arthritis: impact of the type I interferon gene signature in the phase IIb MUSE study in patients with systemic lupus erythematosus. Lupus Sci Med. 2018;5(1):e000284. doi: 10.1136/lupus-2018-000284

161. Petri M, Wallace DJ, Spindler A, et al. Sifalimumab, a human anti-interferon-alpha monoclonal antibody, in systemic lupus erythematosus: a phase I randomized, controlled, dose-escalation study. Arthritis Rheum. 2013;65:1011-21. doi: 10.1002/art.37824

162. Dieguez-Gonzalez R, Calaza M, Perez-Pampin E, et al. Association of interferon regulatory factor 5 haplotypes, similar to that found in systemic lupus erythematosus, in a large subgroup of patients with rheumatoid arthritis. Arthritis Rheum. 2008;58:1264-74. doi: 10.1002/art.23426

163. Van den Hoogen LL, van Roon JAG, Mertens JS, et al. Galectin-9 is an easy to measure biomarker for the interferon signature in systemic lupus erythematosus and antiphospholipid syndrome. Ann Rheum Dis. 2018;77(12):1810-4. doi: 10.1136/annrheumdis-2018-213497

164. Casey KA, Guo X, Smith MA, et al. Type I interferon receptor blockade with anifrolumab corrects innate and adaptive immune perturbations of SLE. Lupus Sci Med. 2018;5(1):e000286. doi: 10.1136/lupus-2018-000286

165. Khamashta M, Merrill JT, Werth VP, et al. Sifalimumab, an antiinterferon-α monoclonal antibody, in moderate to severe systemic lupus erythematosus: a randomised, double-blind, placebo-controlled study. Ann Rheum Dis. 2016;75:1909-16. doi: 10.1136/annrheumdis-2015-208562

166. Nordang GB, Viken MK, Amundsen SS, et al. Interferon regulatory factor 5 gene polymorphism confers risk to several rheumatic diseases and correlates with expression of alternative thymic transcripts. Rheumatology (Oxford). 2012;51(4):619-26. doi: 10.1093/rheumatology/ker364

167. Oliveira JJ, Karrar S, Rainbow DB, et al. The plasma biomarker soluble SIGLEC-1 is associated with the type I interferon transcriptional signature, ethnic background and renal disease in systemic lupus erythematosus. Arthritis Res Ther. 2018;20(1):152. doi: 10.1186/s13075-018-1649-1

168. Goldberg A, Geppert T, Schiopu E, et al. Dose-escalation of human anti-interferon-α receptor monoclonal antibody MEDI-546 in subjects with systemic sclerosis: a phase 1, multicenter, open label study. Arthritis Res Ther. 2014;16:R57.

169. Demirkaya E, Zhou Q, Smith CK, et al. Brief report: deficiency of complement 1r subcomponent in early-onset systemic lupus erythematosus: the role of disease-modifying alleles in a monogenic disease. Arthritis Rheum. 2017;69:1832-9. doi: 10.1002/art.40158

170. Tcherepanova I, Curtis M, Sale M, et al. SAT0193 Results of a randomized placebo controlled phase ia study of AGS-009, a humanized anti-interferon-α monoclonal antibody in subjects with systemic lupus erythematosus. Ann Rheum Dis. 2013;71(Suppl 3):536.3-7. doi: 10.1136/annrheumdis-2012-eular.3140

171. Lü bbers J, Brink M, van de Stadt LA, et al. The type I IFN signature as a biomarker of preclinical rheumatoid arthritis. Ann Rheum Dis. 2013;72(5):776-80. doi: 10.1136/annrheumdis-2012-2

172. doi: 10.1186/ar4492

173. Kalunian KC, Merrill JT, Maciuca R, et al. A phase II study of the efficacy and safety of rontalizumab (rhuMAb interferon-α) in patients with systemic lupus erythematosus (ROSE). Ann Rheum Dis. 2016;75:196-202. doi: 10.1136/annrheumdis-2014-206090

174. Thurlings RM, Boumans M, Tekstra J, et al. Relationship between the type I interferon signature and the response to rituximab in rheumatoid arthritis patients. Arthritis Rheum. 2010;62:3607-14. doi: 10.1002/art.27702

175. Ghodke-Puranik Y, Dorschner JM, Vsetecka DM, et al. Lupusassociated functional polymorphism in Pnp causes cell cycle abnormalities and interferon pathway activation in human immune cells. Arthritis Rheum. 2017;69:2328-37. doi: 10.1002/art.40304

176. Update on TULIP 1 phase III trial for anifrolumab in systemic lupus erythematosus. Available from: https://www.astrazeneca.com/media-centre/press-releases/2018/update-on-tulip-1-phase-iii-trial-for-anifrolumab-insystemic-lupus-erythematosus-31082018.html. Accessed January 10, 2019.

177. Peng L, Oganesyan V, Wu H, et al. Molecular basis for antagonistic activity of anifrolumab, an anti-interferon-α receptor 1 antibody. MAbs. 2015;7:428-39. doi: 10.1080/19420862.2015.1007810

178. Kariuki SN, Ghodke-Puranik Y, Dorschner JM, et al. Genetic analysis of the pathogenic molecular sub-phenotype interferonalpha identifies multiple novel loci involved in systemic lupus erythematosus. Genes Immun. 2015;16:15-23. doi: 10.1038/gene.2014.57

179. Raterman HG, Vosslamber S, De RS, et al. The interferon type I signature towards prediction of non-response to rituximab in rheumatoid arthritis patients. Arthritis Res Ther. 2012;14:R95. doi: 10.1186/ar3819

180. Schwartz DM, Kanno Y, Villarino A, et al. JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat Rev Drug Discov. 2017;16(12):843-62. doi: 10.1038/nrd.2017.201

181. Riggs JM, Hanna RN, Rajan B, et al. Characterisation of anifrolumab, a fully human anti-interferon receptor antagonist antibody for the treatment of systemic lupus erythematosus. Lupus Sci Med. 2018;5:e000261. doi: 10.1136/lupus-2018-000261

182. Sanayama Y, Ikeda K, Saito Y, et al. Prediction of therapeutic responses to tocilizumab in patients with rheumatoid arthritis: biomarkers identified by analysis of gene expression in peripheral blood mononuclear cells using genome-wide DNA microarray. Arthritis Rheum. 2014;66(6):1421-31. doi: 10.1002/art.38400

183. Faridi MH, Khan SQ, Zhao W, et al. Cd11b activation suppresses TLR-dependent inflammation and autoimmunity in systemic lupus erythematosus. J Clin Invest. 2017;127:1271-83. doi: 10.1172/JCI88442

184. Nasonov EL, Lila AM. Janus kinase inhibitors in immuno-inflammatory rheumatic diseases: new opportunities and prospects. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2019;57(1):8-16 (In Russ.). doi: 10.14412/1995-4484-2019-8-16

185. Coit P, Jeffries M, Altorok N, et al. Genome-wide DNA methylation study suggests epigenetic accessibility and transcriptional poising of interferon-regulated genes in naive CD4+ T cells from lupus patients. J Autoimmun. 2013;43:78-84. doi: 10.1016/j.jaut.2013.04.003

186. Mavragani CP, La DT, Stohl W, Crow MK. Association of the response to tumor necrosis factor antagonists with plasma type I interferon activity and interferon-β/α ratios in rheumatoid arthritis patients: a post hoc analysis of a predominantly Hispanic cohort. Arthritis Rheum. 2010;62:392-401. doi: 10.1002/art.27226

187. Felten R, Scher F, Sagez F, et al. Spotlight on anifrolumab and its potential for the treatment of moderate-to-severe systemic lupus erythematosus: evidence to date. Drug Des Devel Ther. 2019;13:1535-43. doi: 10.2147/DDDT.S170969

188. Mok CC. The Jakinibs in systemic lupus erythematosus: progress and prospects. Expert Opin Investig Drugs. 2019;28(1):85-92. doi: 10.1080/13543784.2019.1551358

189. Furie R, Khamashta M, Merrill JT, et al. Anifrolumab, an antiinterferon-α receptor monoclonal antibody, in moderate-to-severe systemic lupus erythematosus. Arthritis Rheum. 2017;69:376-86. doi: 10.1002/art.39962

190. Cheng J, Wu R, Long L, et al. Mirna-451a targets Ifn regulatory factor 8 for the progression of systemic lupus erythematosus. Inflammation. 2017;40:676-87. doi: 10.1007/s10753-017-0514-8

191. Wampler Muskardin T, Vashisht P, Dorschner JM, et al. Increased pretreatment serum IFN-β/α ratio predicts non-response to tumour necrosis factor α inhibition in rheumatoid arthritis. Ann Rheum Dis. 2016;75(10):1757-62. doi: 10.1136/annrheumdis-2015-208001

192. Sanchez GAM, Reinhardt A, Ramsey S, et al. JAK1/2 inhibition with baricitinib in the treatment of autoinflammatory interferonopathies. J Clin Invest. 2018;128(7):3041-52. doi: 10.1172/JCI98814

193. Merrill JT, Furie R, Werth VP, et al. Anifrolumab effects on rash and arthritis: impact of the type I interferon gene signature in the phase IIb MUSE study in patients with systemic lupus erythematosus. Lupus Sci Med. 2018;5(1):e000284. doi: 10.1136/lupus-2018-000284

194. Smith S, Fernando T, Wu PW, et al. Microrna-302d targets Irf9 to regulate the Ifn-induced gene expression in SLE. J Autoimmun. 2017;79:105-11. doi: 10.1016/j.jaut.2017.03.003

195. De Jong TD, Blits M, de Ridder S, et al. Type I interferon response gene expression in established rheumatoid arthritis is not associated with clinical parameters. Arthritis Res Ther. 2016;18:Article number 290. doi: 10.1186/s13075-016-1191-y

196. Kö nig N, Fiehn C, Wolf C, et al. Familial chilblain lupus due to a gain-of-function mutation in STING. Ann Rheum Dis. 2017;76(2):468-72.

197. Casey KA, Guo X, Smith MA, et al. Type I interferon receptor blockade with anifrolumab corrects innate and adaptive immune perturbations of SLE. Lupus Sci Med. 2018;5(1):e000286. doi: 10.1136/lupus-2018-000286

198. Van den Hoogen LL, van Roon JAG, Mertens JS, et al. Galectin-9 is an easy to measure biomarker for the interferon signature in systemic lupus erythematosus and antiphospholipid syndrome. Ann Rheum Dis. 2018;77(12):1810-4. doi: 10.1136/annrheumdis-2018-213497

199. De Jong TD, Vosslamber S, Blits M, et al. Effect of prednisone on type I interferon signature in rheumatoid arthritis: consequences for response prediction to rituximab. Arthritis Res Ther. 2015;17:78. doi: 10.1186/s13075-015-0564-y

200. Rodero MP, Fremond M-L, Rice GI, et al. JAK inhibition in STING-associated interferonopathy. Ann Rheum Dis. 2016;75(12):e75. doi: 10.1136/annrheumdis-2016-210504

201. Oliveira JJ, Karrar S, Rainbow DB, et al. The plasma biomarker soluble SIGLEC-1 is associated with the type I interferon transcriptional signature, ethnic background and renal disease in systemic lupus erythematosus. Arthritis Res Ther. 2018;20(1):152. doi: 10.1186/s13075-018-1649-1

202. De Jong TD, Snoek T, Mantel E, et al. Dynamics of the Type I Interferon Response During Immunosuppressive Therapy in Rheumatoid Arthritis. Front Immunol. 2019 Apr 24;10:902. doi: 10.3389/fimmu.2019.00902

203. Goldberg A, Geppert T, Schiopu E, et al. Dose-escalation of human anti-interferon-α receptor monoclonal antibody MEDI-546 in subjects with systemic sclerosis: a phase 1, multicenter, open label study. Arthritis Res Ther. 2014;16:R57.

204. Seo J, Kang J-A, Suh DI, et al. Tofacitinib relieves symptoms of stimulator of interferon genes (STING)-associated vasculopathy with onset in infancy caused by 2 de novo variants in TMEM173. J Allergy Clin Immunol. 2017;139(4):1396-9.e12. doi: 10.1016/j.jaci.2016.10.030

205. doi: 10.1186/ar4492

206. Thorlacius GE, Wahren-Herlenius M, Ronnblom L. An update on the role of type I interferons in systemic lupus erythematosus and Sjogren's syndrome. Curr Opin Rheumatol. 2018;30:471-81. doi: 10.1097/BOR.0000000000000524

207. Lü bbers J, Brink M, van de Stadt LA, et al. The type I IFN signature as a biomarker of preclinical rheumatoid arthritis. Ann Rheum Dis. 2013;72(5):776-80. doi: 10.1136/annrheumdis-2012-2

208. Volpi S, Insalaco A, Caorsi R, et al. Efficacy and Adverse Events During Janus Kinase Inhibitor Treatment of SAVI Syndrome. J Clin Immunol. 2019 Jul;39(5):476-85. doi: 10.1007/s10875-019-00645-0

209. Nezos A, Gravani F, Tassidou A, et al. Type I and II interferon signatures in Sjogren's syndrome pathogenesis: contributions in distinct clinical phenotypes and Sjogren's related lymphomagenesis. J Autoimmun. 2015;63:47-58. doi: 10.1016/j.jaut.2015.07.002

210. Update on TULIP 1 phase III trial for anifrolumab in systemic lupus erythematosus. Available from: https://www.astrazeneca.com/media-centre/press-releases/2018/update-on-tulip-1-phase-iii-trial-for-anifrolumab-insystemic-lupus-erythematosus-31082018.html. Accessed January 10, 2019.

211. Thurlings RM, Boumans M, Tekstra J, et al. Relationship between the type I interferon signature and the response to rituximab in rheumatoid arthritis patients. Arthritis Rheum. 2010;62:3607-14. doi: 10.1002/art.27702

212. Ikeda K, Hayakawa K, Fujishiro M, et al. JAK inhibitor has the amelioration effect in lupus-prone mice: the involvement of IFN signature gene downregulation. BMC Immunol. 2017;18(1):41. doi: 10.1186/s12865-017-0225-9

213. Benchabane S, Belkhelfa M, Belguendouz H, et al. Interferon-γ inhibits inflammatory responses mediators via suppression of iNOS signaling pathway in PBMCs from patients with primary Sjö gren's syndrome. Inflammopharmacology. 2018;26:1165-74. doi: 10.1007/s10787-018-0499-4

214. Schwartz DM, Kanno Y, Villarino A, et al. JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat Rev Drug Discov. 2017;16(12):843-62. doi: 10.1038/nrd.2017.201

215. Raterman HG, Vosslamber S, De RS, et al. The interferon type I signature towards prediction of non-response to rituximab in rheumatoid arthritis patients. Arthritis Res Ther. 2012;14:R95. doi: 10.1186/ar3819

216. Furumoto Y, Smith CK, Blanco L, et al. Tofacitinib Ameliorates Murine Lupus and Its Associated Vascular Dysfunction. Arthritis Rheum. 2017;69(1):148-60. doi: 10.1002/art.39818

217. Bodewes ILA, Al-Ali S, van Helden-Meeuwsen CG, et al. Systemic interferon type I and type II signatures in primary Sjö gren's syndrome reveal differences in biological disease activity. Rheumatology. 2018;57:921-30. doi: 10.1093/rheumatology/kex490

218. Sanayama Y, Ikeda K, Saito Y, et al. Prediction of therapeutic responses to tocilizumab in patients with rheumatoid arthritis: biomarkers identified by analysis of gene expression in peripheral blood mononuclear cells using genome-wide DNA microarray. Arthritis Rheum. 2014;66(6):1421-31. doi: 10.1002/art.38400

219. Nasonov EL, Lila AM. Janus kinase inhibitors in immuno-inflammatory rheumatic diseases: new opportunities and prospects. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2019;57(1):8-16 (In Russ.). doi: 10.14412/1995-4484-2019-8-16

220. Yamamoto M, Yokoyama Y, Shimizu Y, et al. Tofacitinib can decrease anti-DNA antibody titers in inactive systemic lupus erythematosus complicated by rheumatoid arthritis. Mod Rheumatol. 2016;26(4):633-4. doi: 10.3109/14397595.2015.1069473

221. Dieude P, Guedj M, Wipff J, et al. STAT4 is a genetic risk factor for systemic sclerosis having additive effects with IRF5 on disease susceptibility and related pulmonary fibrosis. Arthritis Rheum. 2009;60:2472-9. doi: 10.1002/art.24688

222. Mok CC. The Jakinibs in systemic lupus erythematosus: progress and prospects. Expert Opin Investig Drugs. 2019;28(1):85-92. doi: 10.1080/13543784.2019.1551358

223. Mavragani CP, La DT, Stohl W, Crow MK. Association of the response to tumor necrosis factor antagonists with plasma type I interferon activity and interferon-β/α ratios in rheumatoid arthritis patients: a post hoc analysis of a predominantly Hispanic cohort. Arthritis Rheum. 2010;62:392-401. doi: 10.1002/art.27226

224. You H, Zhang G, Wang Q, et al. Successful treatment of arthritis and rash with tofacitinib in systemic lupus erythematosus: the experience from a single centre. Ann Rheum Dis. 2019 Apr 20. doi: 10.1136/annrheumdis-2019-215455

225. Sanchez GAM, Reinhardt A, Ramsey S, et al. JAK1/2 inhibition with baricitinib in the treatment of autoinflammatory interferonopathies. J Clin Invest. 2018;128(7):3041-52. doi: 10.1172/JCI98814

226. Gourh P, Agarwal SK, Divecha D, et al. Polymorphisms in TBX21 and STAT4 increase the risk of systemic sclerosis: evidence of possible gene-gene interaction and alterations in Th1/Th2 cytokines. Arthritis Rheum. 2009;60:3794-806. doi: 10.1002/art.24958

227. Wampler Muskardin T, Vashisht P, Dorschner JM, et al. Increased pretreatment serum IFN-β/α ratio predicts non-response to tumour necrosis factor α inhibition in rheumatoid arthritis. Ann Rheum Dis. 2016;75(10):1757-62. doi: 10.1136/annrheumdis-2015-208001

228. Wallace DJ, Furie RA, Tanaka Y, et al. Baricitinib for systemic lupus erythematosus: a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet. 2018;392(10143):222-31. doi: 10.1016/S0140-6736(18)31363-1

229. Rueda B, Broen J, Simeon C, et al. The STAT4 gene influences the genetic predisposition to systemic sclerosis phenotype. Hum Mol Genet. 2009;18:2071-7. doi: 10.1093/hmg/ddp119

230. De Jong TD, Blits M, de Ridder S, et al. Type I interferon response gene expression in established rheumatoid arthritis is not associated with clinical parameters. Arthritis Res Ther. 2016;18:Article number 290. doi: 10.1186/s13075-016-1191-y

231. Kö nig N, Fiehn C, Wolf C, et al. Familial chilblain lupus due to a gain-of-function mutation in STING. Ann Rheum Dis. 2017;76(2):468-72.

232. Zhang LJ. Type 1 Interferons Potential Initiating Factors Linking Skin Wounds With Psoriasis Pathogenesis. Front Immunol. 2019;10:1440. doi: 10.3389/fimmu.2019.01440

233. Rodero MP, Fremond M-L, Rice GI, et al. JAK inhibition in STING-associated interferonopathy. Ann Rheum Dis. 2016;75(12):e75. doi: 10.1136/annrheumdis-2016-210504

234. De Jong TD, Vosslamber S, Blits M, et al. Effect of prednisone on type I interferon signature in rheumatoid arthritis: consequences for response prediction to rituximab. Arthritis Res Ther. 2015;17:78. doi: 10.1186/s13075-015-0564-y

235. Skaug B, Assassi S. Type I interferon dysregulation in Systemic Sclerosis. Cytokine. 2019 Jan 23. doi: 10.1016/j.cyto.2018.12.018

236. Mylonas A, Conrad C. Psoriasis: Classical vs. Paradoxical. The Yin-Yang of TNF and Type I Interferon. Front Immunol. 2018;9:2746. doi: 10.3389/fimmu.2018.02746

237. Christmann RB, Sampaio-Barros P, Stifano G, et al. Association of interferon- and transforming growth factor β-regulated genes and macrophage activation with systemic sclerosis-related progressive lung fibrosis. Arthritis Rheum. 2014;66:714-25. doi: 10.1002/art.38288

238. Seo J, Kang J-A, Suh DI, et al. Tofacitinib relieves symptoms of stimulator of interferon genes (STING)-associated vasculopathy with onset in infancy caused by 2 de novo variants in TMEM173. J Allergy Clin Immunol. 2017;139(4):1396-9.e12. doi: 10.1016/j.jaci.2016.10.030

239. De Jong TD, Snoek T, Mantel E, et al. Dynamics of the Type I Interferon Response During Immunosuppressive Therapy in Rheumatoid Arthritis. Front Immunol. 2019 Apr 24;10:902. doi: 10.3389/fimmu.2019.00902

240. Robinson ES, Werth VP. The role of cytokines in the pathogenesis of cutaneous lupus erythematosus. Cytokine. 2015;73:326-34. doi: 10.1016/j.cyto.2015.01.031

241. George PM, Oliver E, Dorfmuller P, et al. Evidence for the involvement of type I interferon in pulmonary arterial hypertension. Circ Res. 2014;114:677-88. doi: 10.1161/CIRCRESAHA.114.302221

242. Thorlacius GE, Wahren-Herlenius M, Ronnblom L. An update on the role of type I interferons in systemic lupus erythematosus and Sjogren's syndrome. Curr Opin Rheumatol. 2018;30:471-81. doi: 10.1097/BOR.0000000000000524

243. Volpi S, Insalaco A, Caorsi R, et al. Efficacy and Adverse Events During Janus Kinase Inhibitor Treatment of SAVI Syndrome. J Clin Immunol. 2019 Jul;39(5):476-85. doi: 10.1007/s10875-019-00645-0

244. Rubin RL. Drug-induced lupus. Expert Opin Drug Safe. 2015;14:361-78. doi: 10.1517/14740338.2015.995089

245. Brkic Z, van Bon L, Cossu M, et al. The interferon type I signature is present in systemic sclerosis before overt fibrosis and might contribute to its pathogenesis through high BAFF gene expression and high collagen synthesis. Ann Rheum Dis. 2016;75(8):1567-73. doi: 10.1136/annrheumdis-2015-207

246. Nezos A, Gravani F, Tassidou A, et al. Type I and II interferon signatures in Sjogren's syndrome pathogenesis: contributions in distinct clinical phenotypes and Sjogren's related lymphomagenesis. J Autoimmun. 2015;63:47-58. doi: 10.1016/j.jaut.2015.07.002

247. Ikeda K, Hayakawa K, Fujishiro M, et al. JAK inhibitor has the amelioration effect in lupus-prone mice: the involvement of IFN signature gene downregulation. BMC Immunol. 2017;18(1):41. doi: 10.1186/s12865-017-0225-9

248. Ciechanowicz P, Rakowska A, Sikora M, Rudnicka L. JAKinhibitors in dermatology. Current evidence and future applications. J Dermatolog Treat. 2018 Nov;15:1-22. doi: 10.1080/09546634.2018.1546043

249. Van den Hoogen LL, Fritsch-Stork RD, Versnel MA, et al. Monocyte type I interferon signature in antiphospholipid syndrome is related to proinflammatory monocyte subsets, hydroxychloroquine and statin use. Ann Rheum Dis. 2016;75:e81. doi: 10.1136/annrheumdis-2016-210485

250. Benchabane S, Belkhelfa M, Belguendouz H, et al. Interferon-γ inhibits inflammatory responses mediators via suppression of iNOS signaling pathway in PBMCs from patients with primary Sjö gren's syndrome. Inflammopharmacology. 2018;26:1165-74. doi: 10.1007/s10787-018-0499-4

251. Furumoto Y, Smith CK, Blanco L, et al. Tofacitinib Ameliorates Murine Lupus and Its Associated Vascular Dysfunction. Arthritis Rheum. 2017;69(1):148-60. doi: 10.1002/art.39818

252. Bodewes ILA, Al-Ali S, van Helden-Meeuwsen CG, et al. Systemic interferon type I and type II signatures in primary Sjö gren's syndrome reveal differences in biological disease activity. Rheumatology. 2018;57:921-30. doi: 10.1093/rheumatology/kex490

253. Ugolini-Lopes MR, Torrezan GT, Gandara APR, et al. Enhanced type I interferon gene signature in primary antiphospholipid syndrome: Association with earlier disease onset and preeclampsia. Autoimmun Rev. 2019;18(4):393-8. doi: 10.1016/j.autrev.2018.11.004

254. Yamamoto M, Yokoyama Y, Shimizu Y, et al. Tofacitinib can decrease anti-DNA antibody titers in inactive systemic lupus erythematosus complicated by rheumatoid arthritis. Mod Rheumatol. 2016;26(4):633-4. doi: 10.3109/14397595.2015.1069473

255. Dieude P, Guedj M, Wipff J, et al. STAT4 is a genetic risk factor for systemic sclerosis having additive effects with IRF5 on disease susceptibility and related pulmonary fibrosis. Arthritis Rheum. 2009;60:2472-9. doi: 10.1002/art.24688

256. You H, Zhang G, Wang Q, et al. Successful treatment of arthritis and rash with tofacitinib in systemic lupus erythematosus: the experience from a single centre. Ann Rheum Dis. 2019 Apr 20. doi: 10.1136/annrheumdis-2019-215455

257. Palli E, Kravvariti E, Tektonidou MG. Type I Interferon Signature in Primary Antiphospholipid Syndrome: Clinical and Laboratory Associations. Front Immunol. 2019;10:487. doi: 10.3389/fimmu.2019.00487

258. Gourh P, Agarwal SK, Divecha D, et al. Polymorphisms in TBX21 and STAT4 increase the risk of systemic sclerosis: evidence of possible gene-gene interaction and alterations in Th1/Th2 cytokines. Arthritis Rheum. 2009;60:3794-806. doi: 10.1002/art.24958

259. Grenn RC, Yalavarthi S, Gandhi AA, et al. Endothelial progenitor dysfunction associates with a type I interferon signature in primary antiphospholipid syndrome. Ann Rheum Dis. 2017;76:450-7. doi: 10.1136/annrheumdis-2016-209442

260. Wallace DJ, Furie RA, Tanaka Y, et al. Baricitinib for systemic lupus erythematosus: a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet. 2018;392(10143):222-31. doi: 10.1016/S0140-6736(18)31363-1

261. Rueda B, Broen J, Simeon C, et al. The STAT4 gene influences the genetic predisposition to systemic sclerosis phenotype. Hum Mol Genet. 2009;18:2071-7. doi: 10.1093/hmg/ddp119

262. Greenberg SA, Pinkus JL, Pinkus GS, et al. Interferon-β/α-mediated innate immune mechanisms in dermatomyositis. Ann Neurol. 2005;57:664-78. doi: 10.1002/ana.20464

263. Zhang LJ. Type 1 Interferons Potential Initiating Factors Linking Skin Wounds With Psoriasis Pathogenesis. Front Immunol. 2019;10:1440. doi: 10.3389/fimmu.2019.01440

264. Skaug B, Assassi S. Type I interferon dysregulation in Systemic Sclerosis. Cytokine. 2019 Jan 23. doi: 10.1016/j.cyto.2018.12.018

265. Mylonas A, Conrad C. Psoriasis: Classical vs. Paradoxical. The Yin-Yang of TNF and Type I Interferon. Front Immunol. 2018;9:2746. doi: 10.3389/fimmu.2018.02746

266. Liao AP, Salajegheh M, Nazareno R, et al. Interferon β is associated with type 1 interferon-inducible gene expression in dermatomyositis. Ann Rheum Dis. 2011;70:831-6. doi: 10.1136/ard.2010.139949

267. Christmann RB, Sampaio-Barros P, Stifano G, et al. Association of interferon- and transforming growth factor β-regulated genes and macrophage activation with systemic sclerosis-related progressive lung fibrosis. Arthritis Rheum. 2014;66:714-25. doi: 10.1002/art.38288

268. Robinson ES, Werth VP. The role of cytokines in the pathogenesis of cutaneous lupus erythematosus. Cytokine. 2015;73:326-34. doi: 10.1016/j.cyto.2015.01.031

269. Somani A-K, Swick AR, Cooper KD, et al. Severe dermatomyositis triggered by interferon beta-1a therapy and associated with enhanced type I interferon signaling. Arch Dermatol. 2008;144:1341-9. doi: 10.1001/archderm.144.10.1341

270. George PM, Oliver E, Dorfmuller P, et al. Evidence for the involvement of type I interferon in pulmonary arterial hypertension. Circ Res. 2014;114:677-88. doi: 10.1161/CIRCRESAHA.114.302221

271. Piper CJM, Wilkinson MGL, Deakin CT, et al. CD19+CD24hiCD38hi B Cells Are Expanded in Juvenile Dermatomyositis and Exhibit a Pro-Inflammatory Phenotype After Activation Through Toll-Like Receptor 7 and Interferon-α. Front Immunol. 2018;9. doi: 10.3389/fimmu.2018.01372

272. Rubin RL. Drug-induced lupus. Expert Opin Drug Safe. 2015;14:361-78. doi: 10.1517/14740338.2015.995089

273. Brkic Z, van Bon L, Cossu M, et al. The interferon type I signature is present in systemic sclerosis before overt fibrosis and might contribute to its pathogenesis through high BAFF gene expression and high collagen synthesis. Ann Rheum Dis. 2016;75(8):1567-73. doi: 10.1136/annrheumdis-2015-207

274. Oon S, Wilson NJ, Wicks I. Targeted therapeutics in SLE: emerging strategies to modulate the interferon pathway. Clin Transl Immunol. 2016;5:e79. doi: 10.1038/cti.2016.26

275. Ciechanowicz P, Rakowska A, Sikora M, Rudnicka L. JAKinhibitors in dermatology. Current evidence and future applications. J Dermatolog Treat. 2018 Nov;15:1-22. doi: 10.1080/09546634.2018.1546043

276. Van den Hoogen LL, Fritsch-Stork RD, Versnel MA, et al. Monocyte type I interferon signature in antiphospholipid syndrome is related to proinflammatory monocyte subsets, hydroxychloroquine and statin use. Ann Rheum Dis. 2016;75:e81. doi: 10.1136/annrheumdis-2016-210485

277. Mathian A, Hie M, Cohen-Aubart F, et al. Targeting interferons in systemic lupus erythematosus: current and future prospects. Drugs. 2015;75:835-46. doi: 10.1007/s40265-015-0394-x

278. Ugolini-Lopes MR, Torrezan GT, Gandara APR, et al. Enhanced type I interferon gene signature in primary antiphospholipid syndrome: Association with earlier disease onset and preeclampsia. Autoimmun Rev. 2019;18(4):393-8. doi: 10.1016/j.autrev.2018.11.004

279. Bodewes ILA, Gottenberg JE, van Helden-Meeuwsen CG, et al. Hydroxychloroquine treatment downregulates systemic interferon activation in primary Sjö gren's syndrome in the JOQUER randomized trial. Rheumatology (Oxford). 2019 Jun 25. doi: 10.1093/rheumatology/kez242

280. Palli E, Kravvariti E, Tektonidou MG. Type I Interferon Signature in Primary Antiphospholipid Syndrome: Clinical and Laboratory Associations. Front Immunol. 2019;10:487. doi: 10.3389/fimmu.2019.00487

281. Gardet A, Pellerin A, McCarl CA, et al. Effect of in vivo Hydroxychloroquine and ex vivo Anti-BDCA2 mAb Treatment on pDC IFNγ Production From Patients Affected With Cutaneous Lupus Erythematosus. Front Immunol. 2019;10:275. doi: 10.3389/fimmu.2019.00275

282. Grenn RC, Yalavarthi S, Gandhi AA, et al. Endothelial progenitor dysfunction associates with a type I interferon signature in primary antiphospholipid syndrome. Ann Rheum Dis. 2017;76:450-7. doi: 10.1136/annrheumdis-2016-209442

283. Olsen NJ, McAloose C, Carter J, et al. Clinical and Immunologic Profiles in Incomplete Lupus Erythematosus and Improvement with Hydroxychloroquine Treatment. Autoimmune Dis. 2016:8791629. doi: 10.1155/2016/8791629

284. Greenberg SA, Pinkus JL, Pinkus GS, et al. Interferon-β/α-mediated innate immune mechanisms in dermatomyositis. Ann Neurol. 2005;57:664-78. doi: 10.1002/ana.20464

285. Eloranta ML, Lö vgren T, Finke D, et al. Regulation of the interferon-alpha production induced by RNA-containing immune complexes in plasmacytoid dendritic cells. Arthritis Rheum. 2009;60:2418-27. doi: 10.1002/art.24686

286. Liao AP, Salajegheh M, Nazareno R, et al. Interferon β is associated with type 1 interferon-inducible gene expression in dermatomyositis. Ann Rheum Dis. 2011;70:831-6. doi: 10.1136/ard.2010.139949

287. Berggren O, Hagberg N, Weber G, et al. B lymphocytes enhance the interferon-alpha production by plasmacytoid dendritic cells. Arthritis Rheum. 2012;64:3409-19.

288. Somani A-K, Swick AR, Cooper KD, et al. Severe dermatomyositis triggered by interferon beta-1a therapy and associated with enhanced type I interferon signaling. Arch Dermatol. 2008;144:1341-9. doi: 10.1001/archderm.144.10.1341

289. doi: 10.1002/art.34599

290. Piper CJM, Wilkinson MGL, Deakin CT, et al. CD19+CD24hiCD38hi B Cells Are Expanded in Juvenile Dermatomyositis and Exhibit a Pro-Inflammatory Phenotype After Activation Through Toll-Like Receptor 7 and Interferon-α. Front Immunol. 2018;9. doi: 10.3389/fimmu.2018.01372

291. Leonard D, Eloranta ML, Hagberg N, et al. Activated T cells enhance interferon-alpha production by plasmacytoid dendritic cells stimulated with RNA-containing immune complexes. Ann Rheum Dis. 2016;75(9):1728-34. doi: 10.1136/annrheumdis-2015-208055

292. Oon S, Wilson NJ, Wicks I. Targeted therapeutics in SLE: emerging strategies to modulate the interferon pathway. Clin Transl Immunol. 2016;5:e79. doi: 10.1038/cti.2016.26

293. Skurkovich SV, Klinova EG, Eremkina EI, Levina NV. Immunosupressive effect of anti-interferon serum. Nature. 1974;247:551-2. doi: 10.1038/247551a0

294. Mathian A, Hie M, Cohen-Aubart F, et al. Targeting interferons in systemic lupus erythematosus: current and future prospects. Drugs. 2015;75:835-46. doi: 10.1007/s40265-015-0394-x

295. Skurkovich SV, Loukina GV, Sigidin YA, Skurkovich BS. Succesful first-time use of antibodies to interferon-gamma alone and combined with antibodies to tumor necrosis factor-alfa to treat rheumatic diseasers (rheumatoid arthritis, systemic lupus erythematosus, psoriatic arthritis, Behcet`s syndrome). Int J Immunother. 1998;14:23-32.

296. Bodewes ILA, Gottenberg JE, van Helden-Meeuwsen CG, et al. Hydroxychloroquine treatment downregulates systemic interferon activation in primary Sjö gren's syndrome in the JOQUER randomized trial. Rheumatology (Oxford). 2019 Jun 25. doi: 10.1093/rheumatology/kez242

297. Sigidin AY, Loukina GV, Skurkovich B, Skurkovich SV. Randomized double-blind trial of anti-interferob-gamma antibodies in rheumatoid arthritis. Scand J Rheumatol. 2001;30:203-7. doi: 10.1080/030097401316909530

298. Gardet A, Pellerin A, McCarl CA, et al. Effect of in vivo Hydroxychloroquine and ex vivo Anti-BDCA2 mAb Treatment on pDC IFNγ Production From Patients Affected With Cutaneous Lupus Erythematosus. Front Immunol. 2019;10:275. doi: 10.3389/fimmu.2019.00275

299. Baker KF, Isaacs JD. Novel therapies for immune-mediated inflammatory diseases: What can we learn from their use in rheumatoid arthritis, spondyloarthritis, systemic lupus erythematosus, psoriasis, Crohn's disease and ulcerative colitis? Ann Rheum Dis. 2018;77(2):175-87. doi: 10.1136/annrheumdis-2017-211555

300. Olsen NJ, McAloose C, Carter J, et al. Clinical and Immunologic Profiles in Incomplete Lupus Erythematosus and Improvement with Hydroxychloroquine Treatment. Autoimmune Dis. 2016:8791629. doi: 10.1155/2016/8791629

301. Yao Y, Higgs BW, Morehouse C, et al. Development of potential pharmacodynamic and diagnostic markers for anti-IFN-alpha monoclonal antibody trials in systemic lupus erythematosus. Hum Genom Proteom. 2009:Article ID 374312. doi: 10.4061/2009/37431210.4061/2009/374312

302. Eloranta ML, Lö vgren T, Finke D, et al. Regulation of the interferon-alpha production induced by RNA-containing immune complexes in plasmacytoid dendritic cells. Arthritis Rheum. 2009;60:2418-27. doi: 10.1002/art.24686

303. Merrill JT, Wallace DJ, Petri M, et al. Safety profile and clinical activity of sifalimumab, a fully human anti-interferon alpha monoclonal antibody, in systemic lupus erythematosus: a phase I, multicentre, double-blind randomised study. Ann Rheum Dis. 2011;70:1905-13. doi: 10.1136/ard.2010.144485

304. Berggren O, Hagberg N, Weber G, et al. B lymphocytes enhance the interferon-alpha production by plasmacytoid dendritic cells. Arthritis Rheum. 2012;64:3409-19.

305. Petri M, Wallace DJ, Spindler A, et al. Sifalimumab, a human anti-interferon-alpha monoclonal antibody, in systemic lupus erythematosus: a phase I randomized, controlled, dose-escalation study. Arthritis Rheum. 2013;65:1011-21. doi: 10.1002/art.37824

306. doi: 10.1002/art.34599

307. Khamashta M, Merrill JT, Werth VP, et al. Sifalimumab, an antiinterferon-α monoclonal antibody, in moderate to severe systemic lupus erythematosus: a randomised, double-blind, placebo-controlled study. Ann Rheum Dis. 2016;75:1909-16. doi: 10.1136/annrheumdis-2015-208562

308. Leonard D, Eloranta ML, Hagberg N, et al. Activated T cells enhance interferon-alpha production by plasmacytoid dendritic cells stimulated with RNA-containing immune complexes. Ann Rheum Dis. 2016;75(9):1728-34. doi: 10.1136/annrheumdis-2015-208055

309. Tcherepanova I, Curtis M, Sale M, et al. SAT0193 Results of a randomized placebo controlled phase ia study of AGS-009, a humanized anti-interferon-α monoclonal antibody in subjects with systemic lupus erythematosus. Ann Rheum Dis. 2013;71(Suppl 3):536.3-7. doi: 10.1136/annrheumdis-2012-eular.3140

310. Skurkovich SV, Klinova EG, Eremkina EI, Levina NV. Immunosupressive effect of anti-interferon serum. Nature. 1974;247:551-2. doi: 10.1038/247551a0

311. Kalunian KC, Merrill JT, Maciuca R, et al. A phase II study of the efficacy and safety of rontalizumab (rhuMAb interferon-α) in patients with systemic lupus erythematosus (ROSE). Ann Rheum Dis. 2016;75:196-202. doi: 10.1136/annrheumdis-2014-206090

312. Skurkovich SV, Loukina GV, Sigidin YA, Skurkovich BS. Succesful first-time use of antibodies to interferon-gamma alone and combined with antibodies to tumor necrosis factor-alfa to treat rheumatic diseasers (rheumatoid arthritis, systemic lupus erythematosus, psoriatic arthritis, Behcet`s syndrome). Int J Immunother. 1998;14:23-32.

313. Peng L, Oganesyan V, Wu H, et al. Molecular basis for antagonistic activity of anifrolumab, an anti-interferon-α receptor 1 antibody. MAbs. 2015;7:428-39. doi: 10.1080/19420862.2015.1007810

314. Sigidin AY, Loukina GV, Skurkovich B, Skurkovich SV. Randomized double-blind trial of anti-interferob-gamma antibodies in rheumatoid arthritis. Scand J Rheumatol. 2001;30:203-7. doi: 10.1080/030097401316909530

315. Riggs JM, Hanna RN, Rajan B, et al. Characterisation of anifrolumab, a fully human anti-interferon receptor antagonist antibody for the treatment of systemic lupus erythematosus. Lupus Sci Med. 2018;5:e000261. doi: 10.1136/lupus-2018-000261

316. Baker KF, Isaacs JD. Novel therapies for immune-mediated inflammatory diseases: What can we learn from their use in rheumatoid arthritis, spondyloarthritis, systemic lupus erythematosus, psoriasis, Crohn's disease and ulcerative colitis? Ann Rheum Dis. 2018;77(2):175-87. doi: 10.1136/annrheumdis-2017-211555

317. Felten R, Scher F, Sagez F, et al. Spotlight on anifrolumab and its potential for the treatment of moderate-to-severe systemic lupus erythematosus: evidence to date. Drug Des Devel Ther. 2019;13:1535-43. doi: 10.2147/DDDT.S170969

318. Yao Y, Higgs BW, Morehouse C, et al. Development of potential pharmacodynamic and diagnostic markers for anti-IFN-alpha monoclonal antibody trials in systemic lupus erythematosus. Hum Genom Proteom. 2009:Article ID 374312. doi: 10.4061/2009/37431210.4061/2009/374312

319. Furie R, Khamashta M, Merrill JT, et al. Anifrolumab, an antiinterferon-α receptor monoclonal antibody, in moderate-to-severe systemic lupus erythematosus. Arthritis Rheum. 2017;69:376-86. doi: 10.1002/art.39962

320. Merrill JT, Wallace DJ, Petri M, et al. Safety profile and clinical activity of sifalimumab, a fully human anti-interferon alpha monoclonal antibody, in systemic lupus erythematosus: a phase I, multicentre, double-blind randomised study. Ann Rheum Dis. 2011;70:1905-13. doi: 10.1136/ard.2010.144485

321. Merrill JT, Furie R, Werth VP, et al. Anifrolumab effects on rash and arthritis: impact of the type I interferon gene signature in the phase IIb MUSE study in patients with systemic lupus erythematosus. Lupus Sci Med. 2018;5(1):e000284. doi: 10.1136/lupus-2018-000284

322. Petri M, Wallace DJ, Spindler A, et al. Sifalimumab, a human anti-interferon-alpha monoclonal antibody, in systemic lupus erythematosus: a phase I randomized, controlled, dose-escalation study. Arthritis Rheum. 2013;65:1011-21. doi: 10.1002/art.37824

323. Casey KA, Guo X, Smith MA, et al. Type I interferon receptor blockade with anifrolumab corrects innate and adaptive immune perturbations of SLE. Lupus Sci Med. 2018;5(1):e000286. doi: 10.1136/lupus-2018-000286

324. Khamashta M, Merrill JT, Werth VP, et al. Sifalimumab, an antiinterferon-α monoclonal antibody, in moderate to severe systemic lupus erythematosus: a randomised, double-blind, placebo-controlled study. Ann Rheum Dis. 2016;75:1909-16. doi: 10.1136/annrheumdis-2015-208562

325. Goldberg A, Geppert T, Schiopu E, et al. Dose-escalation of human anti-interferon-α receptor monoclonal antibody MEDI-546 in subjects with systemic sclerosis: a phase 1, multicenter, open label study. Arthritis Res Ther. 2014;16:R57.

326. Tcherepanova I, Curtis M, Sale M, et al. SAT0193 Results of a randomized placebo controlled phase ia study of AGS-009, a humanized anti-interferon-α monoclonal antibody in subjects with systemic lupus erythematosus. Ann Rheum Dis. 2013;71(Suppl 3):536.3-7. doi: 10.1136/annrheumdis-2012-eular.3140

327. doi: 10.1186/ar4492

328. Kalunian KC, Merrill JT, Maciuca R, et al. A phase II study of the efficacy and safety of rontalizumab (rhuMAb interferon-α) in patients with systemic lupus erythematosus (ROSE). Ann Rheum Dis. 2016;75:196-202. doi: 10.1136/annrheumdis-2014-206090

329. Update on TULIP 1 phase III trial for anifrolumab in systemic lupus erythematosus. Available from: https://www.astrazeneca.com/media-centre/press-releases/2018/update-on-tulip-1-phase-iii-trial-for-anifrolumab-insystemic-lupus-erythematosus-31082018.html. Accessed January 10, 2019.

330. Peng L, Oganesyan V, Wu H, et al. Molecular basis for antagonistic activity of anifrolumab, an anti-interferon-α receptor 1 antibody. MAbs. 2015;7:428-39. doi: 10.1080/19420862.2015.1007810

331. Schwartz DM, Kanno Y, Villarino A, et al. JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat Rev Drug Discov. 2017;16(12):843-62. doi: 10.1038/nrd.2017.201

332. Riggs JM, Hanna RN, Rajan B, et al. Characterisation of anifrolumab, a fully human anti-interferon receptor antagonist antibody for the treatment of systemic lupus erythematosus. Lupus Sci Med. 2018;5:e000261. doi: 10.1136/lupus-2018-000261

333. Nasonov EL, Lila AM. Janus kinase inhibitors in immuno-inflammatory rheumatic diseases: new opportunities and prospects. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2019;57(1):8-16 (In Russ.). doi: 10.14412/1995-4484-2019-8-16

334. Felten R, Scher F, Sagez F, et al. Spotlight on anifrolumab and its potential for the treatment of moderate-to-severe systemic lupus erythematosus: evidence to date. Drug Des Devel Ther. 2019;13:1535-43. doi: 10.2147/DDDT.S170969

335. Mok CC. The Jakinibs in systemic lupus erythematosus: progress and prospects. Expert Opin Investig Drugs. 2019;28(1):85-92. doi: 10.1080/13543784.2019.1551358

336. Furie R, Khamashta M, Merrill JT, et al. Anifrolumab, an antiinterferon-α receptor monoclonal antibody, in moderate-to-severe systemic lupus erythematosus. Arthritis Rheum. 2017;69:376-86. doi: 10.1002/art.39962

337. Sanchez GAM, Reinhardt A, Ramsey S, et al. JAK1/2 inhibition with baricitinib in the treatment of autoinflammatory interferonopathies. J Clin Invest. 2018;128(7):3041-52. doi: 10.1172/JCI98814

338. Merrill JT, Furie R, Werth VP, et al. Anifrolumab effects on rash and arthritis: impact of the type I interferon gene signature in the phase IIb MUSE study in patients with systemic lupus erythematosus. Lupus Sci Med. 2018;5(1):e000284. doi: 10.1136/lupus-2018-000284

339. Kö nig N, Fiehn C, Wolf C, et al. Familial chilblain lupus due to a gain-of-function mutation in STING. Ann Rheum Dis. 2017;76(2):468-72.

340. Casey KA, Guo X, Smith MA, et al. Type I interferon receptor blockade with anifrolumab corrects innate and adaptive immune perturbations of SLE. Lupus Sci Med. 2018;5(1):e000286. doi: 10.1136/lupus-2018-000286

341. Rodero MP, Fremond M-L, Rice GI, et al. JAK inhibition in STING-associated interferonopathy. Ann Rheum Dis. 2016;75(12):e75. doi: 10.1136/annrheumdis-2016-210504

342. Goldberg A, Geppert T, Schiopu E, et al. Dose-escalation of human anti-interferon-α receptor monoclonal antibody MEDI-546 in subjects with systemic sclerosis: a phase 1, multicenter, open label study. Arthritis Res Ther. 2014;16:R57.

343. Seo J, Kang J-A, Suh DI, et al. Tofacitinib relieves symptoms of stimulator of interferon genes (STING)-associated vasculopathy with onset in infancy caused by 2 de novo variants in TMEM173. J Allergy Clin Immunol. 2017;139(4):1396-9.e12. doi: 10.1016/j.jaci.2016.10.030

344. doi: 10.1186/ar4492

345. Volpi S, Insalaco A, Caorsi R, et al. Efficacy and Adverse Events During Janus Kinase Inhibitor Treatment of SAVI Syndrome. J Clin Immunol. 2019 Jul;39(5):476-85. doi: 10.1007/s10875-019-00645-0

346. Update on TULIP 1 phase III trial for anifrolumab in systemic lupus erythematosus. Available from: https://www.astrazeneca.com/media-centre/press-releases/2018/update-on-tulip-1-phase-iii-trial-for-anifrolumab-insystemic-lupus-erythematosus-31082018.html. Accessed January 10, 2019.

347. Ikeda K, Hayakawa K, Fujishiro M, et al. JAK inhibitor has the amelioration effect in lupus-prone mice: the involvement of IFN signature gene downregulation. BMC Immunol. 2017;18(1):41. doi: 10.1186/s12865-017-0225-9

348. Schwartz DM, Kanno Y, Villarino A, et al. JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat Rev Drug Discov. 2017;16(12):843-62. doi: 10.1038/nrd.2017.201

349. Furumoto Y, Smith CK, Blanco L, et al. Tofacitinib Ameliorates Murine Lupus and Its Associated Vascular Dysfunction. Arthritis Rheum. 2017;69(1):148-60. doi: 10.1002/art.39818

350. Nasonov EL, Lila AM. Janus kinase inhibitors in immuno-inflammatory rheumatic diseases: new opportunities and prospects. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2019;57(1):8-16 (In Russ.). doi: 10.14412/1995-4484-2019-8-16

351. Yamamoto M, Yokoyama Y, Shimizu Y, et al. Tofacitinib can decrease anti-DNA antibody titers in inactive systemic lupus erythematosus complicated by rheumatoid arthritis. Mod Rheumatol. 2016;26(4):633-4. doi: 10.3109/14397595.2015.1069473

352. Mok CC. The Jakinibs in systemic lupus erythematosus: progress and prospects. Expert Opin Investig Drugs. 2019;28(1):85-92. doi: 10.1080/13543784.2019.1551358

353. You H, Zhang G, Wang Q, et al. Successful treatment of arthritis and rash with tofacitinib in systemic lupus erythematosus: the experience from a single centre. Ann Rheum Dis. 2019 Apr 20. doi: 10.1136/annrheumdis-2019-215455

354. Sanchez GAM, Reinhardt A, Ramsey S, et al. JAK1/2 inhibition with baricitinib in the treatment of autoinflammatory interferonopathies. J Clin Invest. 2018;128(7):3041-52. doi: 10.1172/JCI98814

355. Wallace DJ, Furie RA, Tanaka Y, et al. Baricitinib for systemic lupus erythematosus: a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet. 2018;392(10143):222-31. doi: 10.1016/S0140-6736(18)31363-1

356. Kö nig N, Fiehn C, Wolf C, et al. Familial chilblain lupus due to a gain-of-function mutation in STING. Ann Rheum Dis. 2017;76(2):468-72.

357. Zhang LJ. Type 1 Interferons Potential Initiating Factors Linking Skin Wounds With Psoriasis Pathogenesis. Front Immunol. 2019;10:1440. doi: 10.3389/fimmu.2019.01440

358. Rodero MP, Fremond M-L, Rice GI, et al. JAK inhibition in STING-associated interferonopathy. Ann Rheum Dis. 2016;75(12):e75. doi: 10.1136/annrheumdis-2016-210504

359. Mylonas A, Conrad C. Psoriasis: Classical vs. Paradoxical. The Yin-Yang of TNF and Type I Interferon. Front Immunol. 2018;9:2746. doi: 10.3389/fimmu.2018.02746

360. Seo J, Kang J-A, Suh DI, et al. Tofacitinib relieves symptoms of stimulator of interferon genes (STING)-associated vasculopathy with onset in infancy caused by 2 de novo variants in TMEM173. J Allergy Clin Immunol. 2017;139(4):1396-9.e12. doi: 10.1016/j.jaci.2016.10.030

361. Robinson ES, Werth VP. The role of cytokines in the pathogenesis of cutaneous lupus erythematosus. Cytokine. 2015;73:326-34. doi: 10.1016/j.cyto.2015.01.031

362. Volpi S, Insalaco A, Caorsi R, et al. Efficacy and Adverse Events During Janus Kinase Inhibitor Treatment of SAVI Syndrome. J Clin Immunol. 2019 Jul;39(5):476-85. doi: 10.1007/s10875-019-00645-0

363. Rubin RL. Drug-induced lupus. Expert Opin Drug Safe. 2015;14:361-78. doi: 10.1517/14740338.2015.995089

364. Ikeda K, Hayakawa K, Fujishiro M, et al. JAK inhibitor has the amelioration effect in lupus-prone mice: the involvement of IFN signature gene downregulation. BMC Immunol. 2017;18(1):41. doi: 10.1186/s12865-017-0225-9

365. Ciechanowicz P, Rakowska A, Sikora M, Rudnicka L. JAKinhibitors in dermatology. Current evidence and future applications. J Dermatolog Treat. 2018 Nov;15:1-22. doi: 10.1080/09546634.2018.1546043

366. Furumoto Y, Smith CK, Blanco L, et al. Tofacitinib Ameliorates Murine Lupus and Its Associated Vascular Dysfunction. Arthritis Rheum. 2017;69(1):148-60. doi: 10.1002/art.39818

367. Yamamoto M, Yokoyama Y, Shimizu Y, et al. Tofacitinib can decrease anti-DNA antibody titers in inactive systemic lupus erythematosus complicated by rheumatoid arthritis. Mod Rheumatol. 2016;26(4):633-4. doi: 10.3109/14397595.2015.1069473

368. You H, Zhang G, Wang Q, et al. Successful treatment of arthritis and rash with tofacitinib in systemic lupus erythematosus: the experience from a single centre. Ann Rheum Dis. 2019 Apr 20. doi: 10.1136/annrheumdis-2019-215455

369. Wallace DJ, Furie RA, Tanaka Y, et al. Baricitinib for systemic lupus erythematosus: a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet. 2018;392(10143):222-31. doi: 10.1016/S0140-6736(18)31363-1

370. Zhang LJ. Type 1 Interferons Potential Initiating Factors Linking Skin Wounds With Psoriasis Pathogenesis. Front Immunol. 2019;10:1440. doi: 10.3389/fimmu.2019.01440

371. Mylonas A, Conrad C. Psoriasis: Classical vs. Paradoxical. The Yin-Yang of TNF and Type I Interferon. Front Immunol. 2018;9:2746. doi: 10.3389/fimmu.2018.02746

372. Robinson ES, Werth VP. The role of cytokines in the pathogenesis of cutaneous lupus erythematosus. Cytokine. 2015;73:326-34. doi: 10.1016/j.cyto.2015.01.031

373. Rubin RL. Drug-induced lupus. Expert Opin Drug Safe. 2015;14:361-78. doi: 10.1517/14740338.2015.995089

374. Ciechanowicz P, Rakowska A, Sikora M, Rudnicka L. JAKinhibitors in dermatology. Current evidence and future applications. J Dermatolog Treat. 2018 Nov;15:1-22. doi: 10.1080/09546634.2018.1546043


Review

For citations:


Nasonov E.L., Avdeeva A.S. IMMUNOINFLAMMATORY RHEUMATIC DISEASES ASSOCIATED WITH TYPE I INTERFERON: NEW EVIDENCE. Rheumatology Science and Practice. 2019;57(4):452-461. (In Russ.) https://doi.org/10.14412/1995-4484-2019-452-461

Views: 3121


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1995-4484 (Print)
ISSN 1995-4492 (Online)