Preview

Научно-практическая ревматология

Расширенный поиск

Болезнь депонирования кристаллов пирофосфата кальция как фактор риска сердечно-сосудистых заболеваний

https://doi.org/10.14412/1995-4484-2020-80-86

Полный текст:

Аннотация

Болезнь депонирования кристаллов пирофосфата кальция (БДПК) — воспалительное заболевание суставов, связанное с патологическим отложением неорганического пирофосфата. Зачастую БДПК ассоциирована с метаболическими нарушениями, такими как гиперпаратиреоз, гемохроматоз, гипомагниемия, гиперфос-фатазия. Важно, что процесс патологической кальцификации может развиваться как в суставах, так и в сосудистой стенке. Предполагается, что отложение кальцификатов в эндотелии, а также характерное для БДПК кристалл-индуцированное хроническое воспаление и сопровождающий его окислительный стресс, а также метаболические нарушения, являющиеся причиной вторичной БДПК, могут значительно повышать риск сердечно-сосудистых заболеваний.

Об авторе

А. М. Новикова
ФГБНУ «Научноисследовательский институт ревматологии им. В.А. Насоновой
Россия

Александра Михайловна Новикова - младший научный сотрудник лаборатории микрокристаллических артритов.

115522, Москва, Каширское шоссе, 34А



Список литературы

1. Барскова ВГ, Ильина АЕ, Семенова ЛА и др. Пирофосфатная артропатия ревматологический синдром «айсберга»: время для переоценки значения в патологии суставов. Современная ревматология. 2010;4(2):5-11. doi: 10.14412/1996-7012-2010-595

2. Kohn NN, Hughes RE, McCarty DJ Jr, Faires JS. The significance of calcium phosphate crystals in the synovial fluid of arthritic patients: the «pseudogout syndrome». II. Identification of crystals. Ann Intern Med. 1962;56:738-45.

3. McCarty DJ. Pseudogout, articular chondrocalcinosis. In: Hollander JL, ed. Arthritis and Allied Conditions. 7th ed. Philadelphia: Lea & Febiger; 1966. P. 947-63.

4. Richette P, Bardin T, Doherty M. An update on the epidemiology of calcium pyrophosphate dihydrate crystal deposition disease. Rheumatology. 2009;48(7):711-5. doi: 10.1093/rheumatology/kep081

5. Ivorra J, Rosas J, Pascual E. Most calcium pyrophosphate crystals appear as non-birefringent. Ann Rheum Dis. 1999;58:582-4. doi: 10.1136/ard.58.9.582

6. Fuerst M, Bertrand J, Lammers L, et al. Calcification of articular cartilage inhuman osteoarthritis. Arthritis Rheum. 2009;60:2694-703. doi: 10.1002/art.24774

7. Rosenthal AK, Ryan LM. Calcium Pyrophosphate Deposition Disease. N Engl J Med. 2016;374(26):2575-84. doi: 10.1056/nejm-ra1511117

8. Wilkins E, Dieppe P, Maddison P, Evison G. Osteoarthritis and articular chondrocalcinosis in the elderly. Ann Rheum Dis. 1983;42:280-4. doi: 10.1136/ard.42.3.280

9. Masuda I, Ishikawa K. Clinical features of pseudogout attack: a survey of 50 cases. Clin Orthop Relat Res. 1988;229:173-81.

10. Abhishek A. Calcium pyrophosphate deposition disease. Curr Opinion Rheum. 2016;28(2):133-9. doi: 10.1097/bor.0000000000000246

11. Shirazian H, Chang EY, Wolfson T, et al. Prevalence of sternoclavicular joint calcium pyrophosphate dihydrate crystal deposition on computed tomography. Clin Imag. 2014;38:380-3. doi: 10.1016/j.clinimag.2014.02.016

12. Filippou G, Adinolfi A, Iagnocco A, at al. Ultrasound in the diagnosis of calcium pyrophosphate dihydrate deposition disease. A systematic literature review and a meta-analysis. Osteoarthritis Cartilage. 2016;24(6):973-81. doi: 10.1016/j.joca.2016.01.136

13. Ryan LM, McCarty DJ. Calcium pyrophosphate crystal deposition disease, pseudogout, and articular chondrocalcinosis. In: Koopman W, ed. Arthritis and Allied Conditions: A textbook of Rheumatology. Baltimore, MD: Williams and Wilkins; 1997. P. 2103-26.

14. Huaux JP, Geubel A, Koch MC, et al. The arthritis of hemochromatosis. A review of 25 cases with special reference to chondrocal-cinosis, and a comparison with patients with primary hyperparathyroidism and controls. Clin Rheumatol. 1986;5:317-24. doi: 10.1007/bf02054248

15. Yashiro T, Okamoto T, Tanaka R, et al. Prevalence of chondrocal-cinosis in patients with primary hyperparathyroidism in Japan. Endocrinol Jpn. 1991;38:457-64. doi: 10.1507/endocrj1954.38.457

16. Jones AC, Chuck AJ, Arie EA, et al. Diseases associated with calcium pyrophosphate deposition disease. Semin Arthritis Rheum. 1992;22:188-202. doi: 10.1016/0049-0172(92)90019-a

17. Zhang W, Doherty M, Bardin T, et al. European League Against Rheumatism recommendations for calcium pyrophosphate deposition. Part I: terminology and diagnosis. Ann Rheum Dis. 2011;70(4):563-70. doi: 10.1136/ard.2010.139105

18. Meulenbelt I, Min JL, van Duijn CM, et al. Strong linkage on 2q33.3 to familial early-onset generalized osteoarthritis and a consideration of two positional candidate genes. Eur J Hum Genet. 2006;14(12):1280-7. doi: 10.1038/sj.ejhg.5201704

19. Ramos YF, Bos SD, van der Breggen R, et al. A gain of function mutation in TNFRSF11B encoding osteoprotegerin causes osteoarthritis with chondrocalcinosis. Ann Rheum Dis. 2015;74(9):1756-62. doi: 10.1136/annrheumdis-2013-205149

20. Costello JC, Rosenthal AK, Kurup IV, et al. Parallel regulation of extracellular ATP and inorganic pyrophosphate: roles of growth factors, transduction modulators, and ANK. Connect Tissue Res. 2011;52:139-46. doi: 10.3109/03008207.2010.491928

21. Rosenthal AK, Gohr CM, Mitton-Fitzgerald E, et al. The progressive ankylosis gene product ANK regulates extracellular ATP levels in primary articular chondrocytes. Arthritis Res Ther. 2013;15(5):R154. doi: 10.1186/ar4337

22. Kiec-Wilk B, Stolarz-Skrzypek K, Sliwa A, et al. Peripheral blood concentrations of TGF-P1, IGF-1 and bFGF and remodelling of the left ventricle and blood vessels in hypertensive patients. KardiolPol. 2010;68:996-1002.

23. Yue Y, Meng K, Pu Y, et al. Transforming growth factor beta (TGF-P) mediates cardiac fibrosis and induces diabetic cardiomyopathy. Diabetes Res Clin Pract. 2017;133:124-30. doi: 10.1016/j.diabres.2017.08.018

24. Higashi Y, Gautam S, Delafontaine P, et al. IGF-1 and cardiovascular disease. Growth Horm IGF Res. 2019 Apr;45:6-16. doi: 10.1016/j.ghir.2019.01.002

25. Petit H, Marcellin L, Chatelus E. Lumbar spine chondrocalci-nosis. J Rheumatol. 2017;44(8):1288-9. doi: 10.3899/jrheum.161452

26. Abhishek A, Doherty S, Maciewicz R, et al. Association between low cortical bone mineral density, soft-tissue calcification, vascular calcification and chondrocalcinosis: a case-control study. Ann Rheum Dis. 2013;73(11):1997-2002. doi: 10.1136/annrheumdis-2013-203400

27. McCarty DJ. Calcium pyrophosphate dihydrate crystal deposition disease: nomenclature and diagnostic criteria. Ann Intern Med. 1977;87(2):241-2. doi: 10.7326/0003-4819-87-2-240

28. Martinon F, Petrilli V, Mayor A, et al. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature. 2006;440:237-41 doi: 10.1038/nature04516

29. Schlee S, Bollheimer LC. Bertsch T, et al. Crystal arthritides -gout and calcium pyrophosphate arthritis. Zeitschrift Fu r Gerontologie UndGeriatrie. 2017;51(4):453-60. doi: 10.1007/s00391-017-1197-3

30. Sharma AA, Jen R, Kan B, et al. Impaired NLRP3 infammasome activity during fetal development regulates IL-1beta production in human monocytes. Eur J Immunol. 2015;45:238-49. doi: 10.1002/eji.201444707

31. Насонов ЕЛ, Елисеев МС. Роль интерлейкина 1 в развитии заболеваний человека. Научно-практическая ревматология. 2016;54(1):60-77. doi: 10.14412/1995-4484-2016-60-77

32. Franchi L, Nunez G. Immunology. Orchestrating infammasomes. Science. 2012;337:1299-300. doi: 10.1126/science.1229010

33. Chen GY, Nunez G. Sterile infammation: sensing and reacting to damage. Nat Rev Immunol. 2010;10:826-37. doi: 10.1038/nri2873

34. Broz P, Dixit VM. Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol. 2016;16(7):407-20. doi: 10.1038/nri.2016.58

35. Liu D, Zeng X, Li X, et al. Role of NLRP3 inflammasome in the pathogenesis of cardiovascular diseases. Basic Res Cardiol. 2017;113(1). doi: 10.1007/s00395-017-0663-9

36. Насонов ЕЛ, Попкова ТВ. Роль интерлейкина 1 в развитии атеросклероза. Научно-практическая ревматология. 2018;56(Ghbk/ 4):28-34. doi: 10.14412/1995-4484-2018-28-34

37. Jahng JWS, Song E, Sweeney G. Crosstalk between the heart and peripheral organs in heart failure. Exper Mol Med. 2016;48(3):e217. doi: 10.1038/emm.2016.20

38. Dinarello CA. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood. 2011;117:3720-32. doi: 10.1182/blood-2010-07-273417

39. Tfelt-Hansen J, Brown EM. The calcium-sensing receptor in normal physiology and pathophysiology: a review. Crit Rev Clin Lab Sci. 2005;42:35-70. doi: 10.1080/10408360590886606

40. Schmid C, Kiowski W. Hyperparathyroidism in congestive heart failure. Am J Med. 1998;104:508-9.

41. Kamalov G, Deshmukh PA, Baburyan NY, et al. Coupled calcium and zinc dyshomeostasis and oxidative stress in cardiac myocytes and mitochondria of rats with chronic aldosteronism. JCardiovasc Pharmacol. 2009;53:414-23 doi: 10.1097/FJC.0b013e3181a15e77

42. Sugimoto T, Dohi K, Onishi K, et al. Interrelationship between haemodynamic state and serum intact parathyroid hormone levels in patients with chronic heart failure. Heart. 2012;99(2):111-5. doi: 10.1136/heartjnl-2012-302779

43. Pilz S, Tomaschitz A, Drechsler C, et al. Parathyroid hormone level is associated with mortality and cardiovascular events in patients undergoing coronary angiography. Eur Heart J. 2010;31(13):1591-8. doi: 10.1093/eurheartj/ehq109

44. Tai C, Oh H, Seet J, et al. Pseudogout — a rare manifestation of hungry bone syndrome after focused parathyroidectomy. Ann Royal Coll SurgEngl. 2018;100(5):e106-e108. doi: 10.1308/rcsann.2018.0028

45. Miura S, Yoshihisa A, Takiguchi M, et al. Association of hypocalcemia with mortality in hospitalized patients with heart failure and chronic kidney disease. J Cardiac Failure. 2015;21(8):621-7. doi: 10.1016/j.cardfail.2015.04.015

46. Heiland GR, Aigner E, Dallos T, et al. Synovial immunopathology in haemochromatosis arthropathy. Ann Rheum Dis. 2009;69(6):1214-9. doi: 10.1136/ard.2009.120204

47. Dallos T, Sahinbegovic E, Aigner E, et al. Validation of a radiographic scoring system for haemochromatosis arthropathy. Ann Rheum Dis. 2010;69:2145-51. doi: 10.1136/ard.2009122119

48. Salonen JT, Nyysso nen K, Korpela H, et al. High store iron levels are associated with excess risk of myocardial infarction in eastern Finnish men. Circulation. 1992;Sep;86(3):803-11. doi: 10.1161/01.cir.86.3.803

49. Tuomainen TP, Punnonen K, Nyysso nen K, et al. Association between body iron stores and risk of acute myocardial infarction in men. Circulation. 1998;97:1461-6. doi: 10.1161/01.cir.97.15.1461

50. Zhu Y, Pandya BJ, Choi HK. Prevalence of gout and hyperuricemia in the US general population: The National Health and Nutrition Examination Survey 2007-2008. Arthritis Rheum. 2011;63(10):3136-41. doi: 10.1002/art.3052048.

51. Zhu Y, Pandya BJ, Choi HK. Comorbidities of gout and hyperuricemia in the US general population: NHANES 2007-2008. Am J Med. 2012;125:679-87.e1. doi: 10.1016/j.amjmed.2011.09.033

52. Corry DB, Eslami P, Yamamoto K, et al. Uric acid stimulates vascular smooth muscle cell proliferation and oxidative stress via the vascular renin-angiotensin system. JHypertens. 2008;26:269-75. doi: 10.1097/HJH.0b013e3282f240bf]

53. Елисеев МС, Насонов ЕЛ. Применение канакинумаба при подагре. Научно-практическая ревматология. 2018;56(Прил. 4):41-8. doi: 10.14412/1995-4484-2018-41-48

54. Cheng TH, Lin JW, Chao HH, et al. Uric acid activates extracellular signalregulated kinases and thereafter endothelin-1 expression in rat cardiac fibroblasts. Int J Cardiol. 2010;139:42-9. doi: 10.1016/j.ijcard.2008.09.004

55. Rabelink TJ, Luscher TF. Endothelial nitric oxide synthase: host defense enzyme of the endothelium? Arterioscler Thromb Vasc Biol. 2006;26:267-71. doi: 10.1161/01.ATV.0000196554.85799.77

56. Ellman MH. Chondrocalcinosis and hypomagnesemia. New Engl J Med. 2009;360(1):71. doi: 10.1056/nejmicm050004

57. Zeng C, Wei J, Terkeltaub R, et al. Dose-response relationship between lower serum magnesium level and higher prevalence of knee chondrocalcinosis. Arthritis Res Ther. 2017;19(1). doi: 10.1186/s13075-017-1450-6

58. Zeng C, Wei J, Li H, et al. Relationship between serum magnesium concentration and radiographic knee osteoarthritis. JRheumatol. 2015;42(7):1231-6. doi: 10.3899/jrheum.141414

59. Wei M, Esbaei K, Bargman J, et al. Relationship between serum magnesium, parathyroid hormone, and vascular calcification in patients on dialysis: A literature review. Perit Dial Int. 2006;26:366-73.

60. Dousdampanis P, Trigka K, Fourtounas C. Hypomagnesemia, chronic kidney disease and cardiovascular mortality: Pronounced association but unproven causation. Hemodial Int. 2014;18(4):730-9. doi: 10.1111/hdi.12159

61. Tzanakis I, Pras A, Kounali D, et al. Mitral annular calcifications in haemodialysis patients: a possible protective role of magnesium. Nephrol Dial Transplant. 1997;12:2036-7. doi: 10.1093/ndt/12.9.2036

62. Ishimura E, Okuno S, Kitatani K, et al. Significant association between the presence of peripheral vascular calcification and lower serum magnesium in hemodialysis patients. Clin Nephrol. 2007;68:222-7. doi: 10.5414/cnp68222

63. Tzanakis I, Virvidakis K, Tsomi A, et al. Intra- and extracellular magnesium levels and atheromatosis in haemodialysis patients. Magnes Res. 2004;17:102-8.

64. Tamura T, Unagami K, Okazaki M, et al. Serum magnesium levels and mortality in Japanese maintenance hemodialysis patients. BloodPurif. 2019;47 Suppl 2:88-94. doi: 10.1159/000496659. Epub 2019 Apr 3.

65. Pham PC, Pham PA, Pham S, et al. Hypomagnesemia: a clinical perspective. Int J Nephrol Renovasc Dis. 2014;219. doi: 10.2147/ijnrd.s42054

66. Allgrove J. Physiology of calcium, phosphate, magnesium and vitamin D. In: Allgrove J, Shaw NJ, eds. Calcium and Bone Disorders in Children and Adolescents. 2nd, revised edition. Endocr Dev. Basel: Karger; 2015. Vol. 28. P. 7-32. doi: 10.1159/000380990

67. Shapiro JR, Lewiecki EM. Hypophosphatasia in adults: clinical assessment and treatment considerations. J Bone Mineral Res. 2017;32(10):1977-80. doi: 10.1002/jbmr.3226

68. Berkseth KE, Tebben PJ, Drake MT, et al. Clinical spectrum of hypophosphatasia diagnosed in adults. Bone. 2013;54(1):21-7. doi: 10.1016/j.bone.2013.01.024

69. Vliegenthart RM, Oudkerk A, Hofman HH, et al. Coronary calcification improves cardiovascular risk prediction in the elderly. Circulation. 2005;112(4):572-7. doi: 10.1161/CIRCULATIONA-HA.104.488916

70. Bessueille L, Magne D. Inflammation: a culprit for vascular calcification in atherosclerosis and diabetes. Cell Mol Life Sci. 2015;72:2475-89. doi: 10.1007/s00018-015-1876-4

71. Bessueille L, Fakhry M, Hamade E, et al. Glucose stimulates chondrocyte differentiation of vascular smooth muscle cells and calcification: A possible role for IL-1p. FEBSLett. 2015;589(19 PartB):2797-804. doi: 10.1016/j.febslet.2015.07.045

72. Елисеев МС, Желябина ОВ, Чикина МН, Новикова АМ. Факторы риска сердечно-сосудистых заболеваний у пациентов с болезнью депонирования кристаллов пирофосфата кальция. Научно-практическая ревматология. 2019;57(5):545-52 doi: 10.14412/1995-4484-2019-545-552


Для цитирования:


Новикова А.М. Болезнь депонирования кристаллов пирофосфата кальция как фактор риска сердечно-сосудистых заболеваний. Научно-практическая ревматология. 2020;58(1):80-86. https://doi.org/10.14412/1995-4484-2020-80-86

For citation:


Novikova A.M. Calcium pyrophosphate crystal deposition disease as a risk factor for cardiovascular diseases. Rheumatology Science and Practice. 2020;58(1):80-86. (In Russ.) https://doi.org/10.14412/1995-4484-2020-80-86

Просмотров: 227


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1995-4484 (Print)
ISSN 1995-4492 (Online)