Calcium pyrophosphate crystal deposition disease as a risk factor for cardiovascular diseases
https://doi.org/10.14412/1995-4484-2020-80-86
Abstract
Calcium pyrophosphate crystal deposition disease (CPPD) is an inflammatory joint disease associated with abnormal accumulation of inorganic pyrophosphate. CPPD is frequently associated with metabolic disorders, such as hyperparathyroidism, hemochromatosis, hypomagnesemia, and hyperphosphatasia. It is important that pathological calcification can develop in both the joints and vessel wall. It is assumed that the deposition of calcifications in the endothelium, the crystal-induced chronic inflammation characteristic of CPPD, and its accompanying oxidative stress, as well as metabolic disorders that are a cause of secondary CPPD, can significantly increase the risk of cardiovascular diseases.
About the Author
A. M. NovikovaRussian Federation
Aleksandra Novikova
34A, Kashirskoe Shosse, Moscow 115522
Competing Interests: not
References
1. Barskova VG, Ilyina AE, Semenova LA, et al. Pyrophosphate arthropathy is a rheumatolog-ical iceberg syndrome: time to reassess its importance in joint diseases. Sovremennaya Revmatologiya = Modern Rheumatology Journal. 2010;4(2):5-11 (In Russ.). doi: 10.14412/1996-7012-2010-595
2. Kohn NN, Hughes RE, McCarty DJ Jr, Faires JS. The significance of calcium phosphate crystals in the synovial fluid of arthritic patients: the «pseudogout syndrome». II. Identification of crystals. Ann Intern Med. 1962;56:738-45.
3. McCarty DJ. Pseudogout, articular chondrocalcinosis. In: Hollander JL, ed. Arthritis and Allied Conditions. 7th ed. Philadelphia: Lea & Febiger; 1966. P. 947-63.
4. Richette P, Bardin T, Doherty M. An update on the epidemiology of calcium pyrophosphate dihydrate crystal deposition disease. Rheumatology. 2009;48(7):711-5. doi: 10.1093/rheumatology/kep081
5. Ivorra J, Rosas J, Pascual E. Most calcium pyrophosphate crystals appear as non-birefringent. Ann Rheum Dis. 1999;58:582-4. doi: 10.1136/ard.58.9.582
6. Fuerst M, Bertrand J, Lammers L, et al. Calcification of articular cartilage inhuman osteoarthritis. Arthritis Rheum. 2009;60:2694-703. doi: 10.1002/art.24774
7. Rosenthal AK, Ryan LM. Calcium Pyrophosphate Deposition Disease. N Engl J Med. 2016;374(26):2575-84. doi: 10.1056/nejm-ra1511117
8. Wilkins E, Dieppe P, Maddison P, Evison G. Osteoarthritis and articular chondrocalcinosis in the elderly. Ann Rheum Dis. 1983;42:280-4. doi: 10.1136/ard.42.3.280
9. Masuda I, Ishikawa K. Clinical features of pseudogout attack: a survey of 50 cases. Clin Orthop Relat Res. 1988;229:173-81.
10. Abhishek A. Calcium pyrophosphate deposition disease. Curr Opinion Rheum. 2016;28(2):133-9. doi: 10.1097/bor.0000000000000246
11. Shirazian H, Chang EY, Wolfson T, et al. Prevalence of sternoclavicular joint calcium pyrophosphate dihydrate crystal deposition on computed tomography. Clin Imag. 2014;38:380-3. doi: 10.1016/j.clinimag.2014.02.016
12. Filippou G, Adinolfi A, Iagnocco A, at al. Ultrasound in the diagnosis of calcium pyrophosphate dihydrate deposition disease. A systematic literature review and a meta-analysis. Osteoarthritis Cartilage. 2016;24(6):973-81. doi: 10.1016/j.joca.2016.01.136
13. Ryan LM, McCarty DJ. Calcium pyrophosphate crystal deposition disease, pseudogout, and articular chondrocalcinosis. In: Koopman W, ed. Arthritis and Allied Conditions: A textbook of Rheumatology. Baltimore, MD: Williams and Wilkins; 1997. P. 2103-26.
14. Huaux JP, Geubel A, Koch MC, et al. The arthritis of hemochromatosis. A review of 25 cases with special reference to chondrocal-cinosis, and a comparison with patients with primary hyperparathyroidism and controls. Clin Rheumatol. 1986;5:317-24. doi: 10.1007/bf02054248
15. Yashiro T, Okamoto T, Tanaka R, et al. Prevalence of chondrocal-cinosis in patients with primary hyperparathyroidism in Japan. Endocrinol Jpn. 1991;38:457-64. doi: 10.1507/endocrj1954.38.457
16. Jones AC, Chuck AJ, Arie EA, et al. Diseases associated with calcium pyrophosphate deposition disease. Semin Arthritis Rheum. 1992;22:188-202. doi: 10.1016/0049-0172(92)90019-a
17. Zhang W, Doherty M, Bardin T, et al. European League Against Rheumatism recommendations for calcium pyrophosphate deposition. Part I: terminology and diagnosis. Ann Rheum Dis. 2011;70(4):563-70. doi: 10.1136/ard.2010.139105
18. Meulenbelt I, Min JL, van Duijn CM, et al. Strong linkage on 2q33.3 to familial early-onset generalized osteoarthritis and a consideration of two positional candidate genes. Eur J Hum Genet. 2006;14(12):1280-7. doi: 10.1038/sj.ejhg.5201704
19. Ramos YF, Bos SD, van der Breggen R, et al. A gain of function mutation in TNFRSF11B encoding osteoprotegerin causes osteoarthritis with chondrocalcinosis. Ann Rheum Dis. 2015;74(9):1756-62. doi: 10.1136/annrheumdis-2013-205149
20. Costello JC, Rosenthal AK, Kurup IV, et al. Parallel regulation of extracellular ATP and inorganic pyrophosphate: roles of growth factors, transduction modulators, and ANK. Connect Tissue Res. 2011;52:139-46. doi: 10.3109/03008207.2010.491928
21. Rosenthal AK, Gohr CM, Mitton-Fitzgerald E, et al. The progressive ankylosis gene product ANK regulates extracellular ATP levels in primary articular chondrocytes. Arthritis Res Ther. 2013;15(5):R154. doi: 10.1186/ar4337
22. Kiec-Wilk B, Stolarz-Skrzypek K, Sliwa A, et al. Peripheral blood concentrations of TGF-P1, IGF-1 and bFGF and remodelling of the left ventricle and blood vessels in hypertensive patients. KardiolPol. 2010;68:996-1002.
23. Yue Y, Meng K, Pu Y, et al. Transforming growth factor beta (TGF-P) mediates cardiac fibrosis and induces diabetic cardiomyopathy. Diabetes Res Clin Pract. 2017;133:124-30. doi: 10.1016/j.diabres.2017.08.018
24. Higashi Y, Gautam S, Delafontaine P, et al. IGF-1 and cardiovascular disease. Growth Horm IGF Res. 2019 Apr;45:6-16. doi: 10.1016/j.ghir.2019.01.002
25. Petit H, Marcellin L, Chatelus E. Lumbar spine chondrocalci-nosis. J Rheumatol. 2017;44(8):1288-9. doi: 10.3899/jrheum.161452
26. Abhishek A, Doherty S, Maciewicz R, et al. Association between low cortical bone mineral density, soft-tissue calcification, vascular calcification and chondrocalcinosis: a case-control study. Ann Rheum Dis. 2013;73(11):1997-2002. doi: 10.1136/annrheumdis-2013-203400
27. McCarty DJ. Calcium pyrophosphate dihydrate crystal deposition disease: nomenclature and diagnostic criteria. Ann Intern Med. 1977;87(2):241-2. doi: 10.7326/0003-4819-87-2-240
28. Martinon F, Petrilli V, Mayor A, et al. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature. 2006;440:237-41 doi: 10.1038/nature04516
29. Schlee S, Bollheimer LC. Bertsch T, et al. Crystal arthritides -gout and calcium pyrophosphate arthritis. Zeitschrift Fu r Gerontologie UndGeriatrie. 2017;51(4):453-60. doi: 10.1007/s00391-017-1197-3
30. Sharma AA, Jen R, Kan B, et al. Impaired NLRP3 infammasome activity during fetal development regulates IL-1beta production in human monocytes. Eur J Immunol. 2015;45:238-49. doi: 10.1002/eji.201444707
31. Nasonov EL, Eliseev MS. Role of interleukin 1 in the development of human diseases. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2016;54(1):60-77 (In Russ.). doi: 10.14412/1995-4484-2016-60-77
32. Franchi L, Nunez G. Immunology. Orchestrating infammasomes. Science. 2012;337:1299-300. doi: 10.1126/science.1229010
33. Chen GY, Nunez G. Sterile infammation: sensing and reacting to damage. Nat Rev Immunol. 2010;10:826-37. doi: 10.1038/nri2873
34. Broz P, Dixit VM. Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol. 2016;16(7):407-20. doi: 10.1038/nri.2016.58
35. Liu D, Zeng X, Li X, et al. Role of NLRP3 inflammasome in the pathogenesis of cardiovascular diseases. Basic Res Cardiol. 2017;113(1). doi: 10.1007/s00395-017-0663-9
36. Nasonov EL, Popkova TV. Role of interleukin 1 in the development of atherosclerosis. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2018;56(Suppl. 4):28-34 (In Russ.). doi: 10.14412/1995-4484-2018-28-34
37. Jahng JWS, Song E, Sweeney G. Crosstalk between the heart and peripheral organs in heart failure. Exper Mol Med. 2016;48(3):e217. doi: 10.1038/emm.2016.20
38. Dinarello CA. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood. 2011;117:3720-32. doi: 10.1182/blood-2010-07-273417
39. Tfelt-Hansen J, Brown EM. The calcium-sensing receptor in normal physiology and pathophysiology: a review. Crit Rev Clin Lab Sci. 2005;42:35-70. doi: 10.1080/10408360590886606
40. Schmid C, Kiowski W. Hyperparathyroidism in congestive heart failure. Am J Med. 1998;104:508-9.
41. Kamalov G, Deshmukh PA, Baburyan NY, et al. Coupled calcium and zinc dyshomeostasis and oxidative stress in cardiac myocytes and mitochondria of rats with chronic aldosteronism. JCardiovasc Pharmacol. 2009;53:414-23 doi: 10.1097/FJC.0b013e3181a15e77
42. Sugimoto T, Dohi K, Onishi K, et al. Interrelationship between haemodynamic state and serum intact parathyroid hormone levels in patients with chronic heart failure. Heart. 2012;99(2):111-5. doi: 10.1136/heartjnl-2012-302779
43. Pilz S, Tomaschitz A, Drechsler C, et al. Parathyroid hormone level is associated with mortality and cardiovascular events in patients undergoing coronary angiography. Eur Heart J. 2010;31(13):1591-8. doi: 10.1093/eurheartj/ehq109
44. Tai C, Oh H, Seet J, et al. Pseudogout — a rare manifestation of hungry bone syndrome after focused parathyroidectomy. Ann Royal Coll SurgEngl. 2018;100(5):e106-e108. doi: 10.1308/rcsann.2018.0028
45. Miura S, Yoshihisa A, Takiguchi M, et al. Association of hypocalcemia with mortality in hospitalized patients with heart failure and chronic kidney disease. J Cardiac Failure. 2015;21(8):621-7. doi: 10.1016/j.cardfail.2015.04.015
46. Heiland GR, Aigner E, Dallos T, et al. Synovial immunopathology in haemochromatosis arthropathy. Ann Rheum Dis. 2009;69(6):1214-9. doi: 10.1136/ard.2009.120204
47. Dallos T, Sahinbegovic E, Aigner E, et al. Validation of a radiographic scoring system for haemochromatosis arthropathy. Ann Rheum Dis. 2010;69:2145-51. doi: 10.1136/ard.2009122119
48. Salonen JT, Nyysso nen K, Korpela H, et al. High store iron levels are associated with excess risk of myocardial infarction in eastern Finnish men. Circulation. 1992;Sep;86(3):803-11. doi: 10.1161/01.cir.86.3.803
49. Tuomainen TP, Punnonen K, Nyysso nen K, et al. Association between body iron stores and risk of acute myocardial infarction in men. Circulation. 1998;97:1461-6. doi: 10.1161/01.cir.97.15.1461
50. Zhu Y, Pandya BJ, Choi HK. Prevalence of gout and hyperuricemia in the US general population: The National Health and Nutrition Examination Survey 2007-2008. Arthritis Rheum. 2011;63(10):3136-41. doi: 10.1002/art.3052048.
51. Zhu Y, Pandya BJ, Choi HK. Comorbidities of gout and hyperuricemia in the US general population: NHANES 2007-2008. Am J Med. 2012;125:679-87.e1. doi: 10.1016/j.amjmed.2011.09.033
52. Corry DB, Eslami P, Yamamoto K, et al. Uric acid stimulates vascular smooth muscle cell proliferation and oxidative stress via the vascular renin-angiotensin system. JHypertens. 2008;26:269-75. doi: 10.1097/HJH.0b013e3282f240bf]
53. Eliseev MS, Nasonov EL. Therapy with canakinumab for gout. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2018;56(Suppl. 4):41-8 (In Russ.). doi: 10.14412/1995-4484-2018-41-48
54. Cheng TH, Lin JW, Chao HH, et al. Uric acid activates extracellular signalregulated kinases and thereafter endothelin-1 expression in rat cardiac fibroblasts. Int J Cardiol. 2010;139:42-9. doi: 10.1016/j.ijcard.2008.09.004
55. Rabelink TJ, Luscher TF. Endothelial nitric oxide synthase: host defense enzyme of the endothelium? Arterioscler Thromb Vasc Biol. 2006;26:267-71. doi: 10.1161/01.ATV.0000196554.85799.77
56. Ellman MH. Chondrocalcinosis and hypomagnesemia. New Engl J Med. 2009;360(1):71. doi: 10.1056/nejmicm050004
57. Zeng C, Wei J, Terkeltaub R, et al. Dose-response relationship between lower serum magnesium level and higher prevalence of knee chondrocalcinosis. Arthritis Res Ther. 2017;19(1). doi: 10.1186/s13075-017-1450-6
58. Zeng C, Wei J, Li H, et al. Relationship between serum magnesium concentration and radiographic knee osteoarthritis. JRheumatol. 2015;42(7):1231-6. doi: 10.3899/jrheum.141414
59. Wei M, Esbaei K, Bargman J, et al. Relationship between serum magnesium, parathyroid hormone, and vascular calcification in patients on dialysis: A literature review. Perit Dial Int. 2006;26:366-73.
60. Dousdampanis P, Trigka K, Fourtounas C. Hypomagnesemia, chronic kidney disease and cardiovascular mortality: Pronounced association but unproven causation. Hemodial Int. 2014;18(4):730-9. doi: 10.1111/hdi.12159
61. Tzanakis I, Pras A, Kounali D, et al. Mitral annular calcifications in haemodialysis patients: a possible protective role of magnesium. Nephrol Dial Transplant. 1997;12:2036-7. doi: 10.1093/ndt/12.9.2036
62. Ishimura E, Okuno S, Kitatani K, et al. Significant association between the presence of peripheral vascular calcification and lower serum magnesium in hemodialysis patients. Clin Nephrol. 2007;68:222-7. doi: 10.5414/cnp68222
63. Tzanakis I, Virvidakis K, Tsomi A, et al. Intra- and extracellular magnesium levels and atheromatosis in haemodialysis patients. Magnes Res. 2004;17:102-8.
64. Tamura T, Unagami K, Okazaki M, et al. Serum magnesium levels and mortality in Japanese maintenance hemodialysis patients. BloodPurif. 2019;47 Suppl 2:88-94. doi: 10.1159/000496659. Epub 2019 Apr 3.
65. Pham PC, Pham PA, Pham S, et al. Hypomagnesemia: a clinical perspective. Int J Nephrol Renovasc Dis. 2014;219. doi: 10.2147/ijnrd.s42054
66. Allgrove J. Physiology of calcium, phosphate, magnesium and vitamin D. In: Allgrove J, Shaw NJ, eds. Calcium and Bone Disorders in Children and Adolescents. 2nd, revised edition. Endocr Dev. Basel: Karger; 2015. Vol. 28. P. 7-32. doi: 10.1159/000380990
67. Shapiro JR, Lewiecki EM. Hypophosphatasia in adults: clinical assessment and treatment considerations. J Bone Mineral Res. 2017;32(10):1977-80. doi: 10.1002/jbmr.3226
68. Berkseth KE, Tebben PJ, Drake MT, et al. Clinical spectrum of hypophosphatasia diagnosed in adults. Bone. 2013;54(1):21-7. doi: 10.1016/j.bone.2013.01.024
69. Vliegenthart RM, Oudkerk A, Hofman HH, et al. Coronary calcification improves cardiovascular risk prediction in the elderly. Circulation. 2005;112(4):572-7. doi: 10.1161/CIRCULATIONA-HA.104.488916
70. Bessueille L, Magne D. Inflammation: a culprit for vascular calcification in atherosclerosis and diabetes. Cell Mol Life Sci. 2015;72:2475-89. doi: 10.1007/s00018-015-1876-4
71. Bessueille L, Fakhry M, Hamade E, et al. Glucose stimulates chondrocyte differentiation of vascular smooth muscle cells and calcification: A possible role for IL-1p. FEBSLett. 2015;589(19 PartB):2797-804. doi: 10.1016/j.febslet.2015.07.045
72. Eliseev MS, Zhelyabina OV, Chikina MN, Novikova AM. Cardiovascular risk factors in patients with calcium pyrophosphate crystal deposition disease. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2019;57(5):545-52(In Russ.). doi: 10.14412/1995-4484-2019-545-552
Review
For citations:
Novikova A.M. Calcium pyrophosphate crystal deposition disease as a risk factor for cardiovascular diseases. Rheumatology Science and Practice. 2020;58(1):80-86. (In Russ.) https://doi.org/10.14412/1995-4484-2020-80-86