Preview

Научно-практическая ревматология

Расширенный поиск

Иммунопатология и иммунофармакотерапия коронавирусной болезни 2019 (COVID-19): фокус на интерлейкин 6

https://doi.org/10.14412/1995-4484-2020-245-261

Аннотация

Пандемия коронавирусной болезни 2019 (COVID-19) привлекла более пристальное, чем прежде, внимание к проблемам иммунопатологии болезней человека, многие из которых нашли свое отражение при изучении иммуновоспалительных ревматических заболеваний (ИВРЗ). Развитие гипериммунной патологии, получившей название «синдром цитокинового шторма», к патогенетическим субтипам которого относят гемофагоцитарный лимфогистиоцитоз, синдром активации макрофагов и синдром высвобождения цитокинов, входит в число наиболее тяжелых осложнений иммуновоспалительных заболеваний или терапии злокачественных новообразований и может быть стадией прогрессирования COVID-19. В спектре цитокинов, принимающих участие в патогенезе синдрома цитокинового шторма, большое значение придается интерлейкину 6 (ИЛ6). Внедрение в клиническую практику моноклональных антител (мАТ), ингибирующих активность этого цитокина (тоцилизумаб, сарилумаб и др.), относится к числу крупных достижений в лечении ИВРЗ и критических состояний в рамках синдрома цитокинового шторма при COVID-19. В обзоре обсуждаются данные, касающиеся клинического и прогностического значения ИЛ6 и эффективности мАТ к ИЛ6-рецепторам и ИЛ6 и перспективы персонифицированной терапии синдрома цитокинового шторма при COVID-19.

Об авторе

Е. Л. Насонов
ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой»; ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский Университет)
Россия

Евгений Львович Насонов

115522, Москва, Каширское шоссе, 34А;

2119991, Москва, ул. Трубецкая, 8, стр. 2



Список литературы

1. Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020 Mar;579(7798):265-9. doi: 10.1038/s41586-020-2008-3

2. World Health Organization. Coronavirus disease (COVID-19) outbreak. Available at: https://www.who.int (accessed 18.04.2020).

3. Насонов ЕЛ. Коронавирусная болезнь 2019 (COVID-19): размышления ревматолога. Научно-практическая ревматология. 2020;58(2):123-32. doi: 10.14412/1995-4484-2020-123-132 [Nasonov EL. Coronavirus disease 2019 (COVID-19): a rheumatologist’s thoughts. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2020;58(2):123-32. doi: 10.14412/1995-4484-2020-123-132 (In Russ.)].

4. Sarzi-Puttini P, Giorgi V, Sirotti S, et al. COVID-19, cytokines and immunosuppression: what can we learn from severe acute respiratory syndrome? Clin Exp Rheumatol. 2020 Mar–Apr;38(2):337-42.

5. Ferro F, Elefante E, Baldini C, et al. COVID-19: the new challenge for rheumatologists. Clin Exp Rheumatol. 2020;38:175-80.

6. Jackson SP, Darbousset R, Schoenwaelder SM. Thromboinflammation: challenges of therapeutically targeting coagulation and other host defense mechanisms. Blood. 2019 Feb 28;133(9):906-18. doi: 10.1182/blood-2018-11-882993

7. Guo L, Rondina MT. The era of thromboinflammation: platelets are dynamic sensors and effector cells during infectious diseases. Front Immunol. 2019 Sep 13;10:2204. doi: 10.3389/fimmu.2019.02204

8. Pedersen SF, Ho YC. A storm is raging. J Clin Invest. 2020 Apr 13. pii: 137647. doi: 10.1172/JCI137647

9. Henderson LA, Canna SW, Schulert GS, et al. On the alert for cytokine storm: Immunopathology in COVID-19. Arthritis Rheum. 2020 Apr 15. doi: 10.1002/art.41285

10. Moore JB, June CH. Cytokine release syndrome in severe COVID-19. Science. 2020 May 1;368(6490):473-4. doi: 10.1126/science

11. Violi F, Pastori D, Cangemi R, et al. Hypercoagulation and antithrombotic treatment in Coronavirus 2019: A new challenge. Thromb Haemost. 2020 Apr 29. doi: 10.1055/s-0040-1710317

12. Jose RJ, Manuel A. COVID-19 cytokine storm: the interplay between inflammation and coagulation. Lancet Respir Med. 2020 Apr 27. pii: S2213-2600(20)30216-2. doi: 10.1016/S2213-2600(20)30216-2

13. Ramos-Casals M, Brito-Zeron P, Lopez-Guillermo A, et al. Adult haemophagocytic syndrome. Lancet. 2014;383:1503-16. doi: 10.1016/S0140-6736(13)61048-X

14. Behrens EM, Koretzky GA. Review: Cytokine storm syndrome: looking toward the precision medicine era. Arthritis Rheum. 2017;69(6):1135-43. doi: 10.1002/art.40071

15. Carter SJ, Tattersall RS, Ramanan AV. Macrophage activation syndrome in adults: recent advances in pathophysiology, diagnosis and treatment. Rheumatology (Oxford). 2019 Jan 1;58(1):5-17. doi: 10.1093/rheumatology/key006

16. Crayne CB, Albeituni S, Nichols KE, Cron RQ. The immunology of macrophage activation syndrome. Front Immunol. 2019 Feb 1;10:119. doi: 10.3389/fimmu.2019.00119

17. Shimabukuro-Vornhagen A, Gö del P, Subklewe M, et al. Cytokine release syndrome. J Immunother Cancer. 2018;6(1):56. doi: 10.1186/s40425-018-0343-9

18. Gupta KK, Khan MA, Singh SK. Constitutive inflammatory cytokine storm: a major threat to human health. J Interferon Cytokine Res. 2020;40(1):19-23. doi: 10.1089/jir.2019.0085

19. Karakike E, Giamarellos-Bourboulis EJ. Macrophage activationlike syndrome: a distinct entity leading to early death in sepsis. Front Immunol. 2019 Jan 31;10:55. doi: 10.3389/fimmu.2019.00055

20. Sun X, Wang T, Cai D, et al. Cytokine storm intervention in the early stages of COVID-19 pneumonia. Cytokine Growth Factor Rev. 2020 Apr 25. pii: S1359-6101(20)30048-4. doi: 10.1016/j.cytogfr

21. Mehta P. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020. Available at: https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(20)30628-0

22. Schulert GS, Grom AA. Pathogenesis of macrophage activation syndrome and potential for cytokine-directed therapies. Ann Rev Med. 2015;66:145-59. doi: 10.1146/annurev-med-061813-012806

23. Fardet L, Galicier L, Lambotte O, et al. Development and validation of the HScore, a score for the diagnosis of reactive hemophagocytic syndrome. Arthritis Rheum. 2014 Sep;66(9):2613-20. doi: 10.1002/art.38690

24. Tay MZ, Poh CM, Renia L, et al. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol. 2020 Apr 28. doi: 10.1038/s41577-020-0311-8

25. Li G, Fan Y, Lai Y, et al. Coronavirus infections and immune responses. J Med Virol. 2020 Apr;92(4):424-32. doi: 10.1002/jmv.25685

26. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. doi: 10.1016/S0140-6736(20)30183-5

27. Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet. 2020;395(10223):507-13. doi: 10.1016/S0140-6736(20)30211-7

28. Wang Z, Yang B, Li Q, et al. Clinical features of 69 cases with coronavirus disease 2019 in Wuhan. China. Clin Infect Dis. 2020. doi: 10.1093/cid/ciaa272

29. Liu Y, Zhang C, Huang F, et al. Elevated plasma level of selective cytokines in COVID-19 patients reflect viral load and lung injury. Nat Sci Rev. 2020:nwaa037. doi: 10.1093/nsr/nwaa037

30. Liu J, Li S, Liu J, et al. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine. 2020 Apr 18;55:102763. doi: 10.1016/j.ebiom.2020.102763

31. Xu B, Fan CY, Wang AL, Zou YL, Yu YH, et al. Suppressed T cell-mediated immunity in patients with COVID-19: A clinical retrospective study in Wuhan, China. J Infect. 2020 Apr 18. pii: S0163-4453(20)30223-1. doi: 10.1016/j.jinf.2020.04.012

32. Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020 Apr;8(4):420-2. doi: 10.1016/S2213-2600(20)30076-X

33. Qin C, Zhou L, Hu Z, et al. Dysregulation of immune response in patients with COVID-19 in wuhan, china. Clin Infect Dis. 2020 Mar 12. pii: ciaa248. doi: 10.1093/cid/ciaa248

34. Shi Y, Tan M, Chen X, et al. Immunopathological characteristics of coronavirus disease 2019 cases in Guangzhou, China. medRxiv. 2020.03.12.20034736. doi: 10.1101/2020.03.12.20034736

35. Zhou Y, Fu B, Zheng X, et al. Pathogenic T cells and inflammatory monocytes incite inflammatory storm in severe COVID-19 patients. 2020. Available at: https://academic.oup.com/nsr/article-abstract/doi/10.1093/nsr/nwaa041/5804736

36. Zheng M, Gao Y, Wang G, et al. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell Mol Immunol. 2020 May;17(5):533-5. doi: 10.1038/s41423-020-0402-2

37. Zheng HY, Zhang M, Yang CX, Zhang N, Wang XC, et al. Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients. Cell Mol Immunol. 2020 May;17(5):541-3. doi: 10.1038/s41423-020-0401-3

38. Zhou Y, Fu B, Zheng X, et al. Abberant pathogenic GM-CSF+T cells and inflammatory CD14+CD16+ monocyte in severe pulmonary syndrome patients of a new coronavirus. bioRxiv. 2020. doi: 10.1101/2020.02.12.945576

39. Fox SE, Akmatbekov A, Harbert JL, et al. Pulmonary and cardiac pathology in COVID-19: The first autopsy series from New Orleans. medRxiv. 2020.04.06.20050575. doi: 10.1101/2020.04.06.20050575

40. Tanaka T, Narazaki M, Kishimoto T. Immunotherapeutic implications of IL-6 blockade for cytokine storm. Immunotherapy. 2016 Jul;8(8):959-70. doi: 10.2217/imt-2016-0

41. Grom AA, Horne A, De Benedetti F. Macrophage activation syndrome in the era of biologic therapy. Nat Rev Rheumatol. 2016 May;12(5):259-68. doi: 10.1038/nrrheum.2015.179

42. Choy EH, De Benedetti F, Takeuchi T, et al. Translating IL-6 biology into effective treatments. Nat Rev Rheumatol. 2020 Apr 23. doi: 10.1038/s41584-020-0419-z

43. McGonagle D, Sharif K, O'Regan A, Bridgewood C. The role of cytokines including interleukin-6 in COVID-19 induced pneumonia and macrophage activation syndrome-like disease. Autoimmun Rev. 2020 Apr 3:102537. doi: 10.1016/j.autrev.2020.102537

44. Zhang C, Wu Z, Li JW, et al. The cytokine release syndrome (CRS) of severe COVID-19 and Interleukin-6 receptor (IL-6R) antagonist Tocilizumab may be the key to reduce the mortality. Int J Antimicrob Agents. 2020 Mar 29:105954. doi: 10.1016/j.ijantimicag.2020

45. Calabrese LH, Rose-John S. IL-6 biology: implications for clinical targeting in rheumatic disease. Nat Rev Rheumatol. 2014;10:720-7. doi: 10.1038/nrrheum.2014.127

46. Насонов ЕЛ, Лила АМ. Ингибиция интерлейкина 6 при иммуновоспалительных ревматических заболеваниях: достижения, перспективы и надежды. Научно-практическая ревматология. 2017;55(6):590-9. doi: 10.14412/1995-4484-2017-590-599 [Nasonov EL, Lila AM. Inhibition of interleukin 6 in immune inflammatory rheumatic diseases: achievements, prospects, and hopes. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2017;55(6):590-9. doi: 10.14412/1995-4484-2017-590-599 (In Russ.)].

47. Kang S, Tanaka T, Narazaki M, Kishimoto T. Targeting Interleukin-6 Signaling in Clinic. Immunity. 2019 Apr 16;50(4):1007-23. doi: 10.1016/j.immuni.2019.03.026

48. Koch C, Barrett D, Teachey T. Tocilizumab for the treatment of chimeric antigen receptor T cell-induced cytokine release syndrome. Exp Rev Clin Immunol. 2019;15:813-22. doi: 10.1080/1744666X.2019.1629904

49. Maude SL, Frey N, Shaw PA, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014 Oct 16;371(16):1507-17. doi: 10.1056/NEJMoa1407222

50. Liu B, Li M, Zhou Z, et al. Can we use interleukin-6 (IL-6) blockade for coronavirus disease 2019 (COVID-19)-induced cytokine release syndrome (CRS)? J Autoimmun. 2020 Apr 10:102452. doi: 10.1016/j.jaut.2020.102452

51. Garbers C, Heink S, Korn T, Rose-John S. Interleukin-6: designing specific therapeutics for a complex cytokine. Nat Rev Drug Discov. 2018 Jun;17(6):395-412. doi: 10.1038/nrd.2018.45

52. Murakami M, Kamimura D, Hirano T. Pleiotropy and Specificity: Insights from the Interleukin 6 Family of Cytokines. Immunity. 2019 Apr 16;50(4):812-31. doi: 10.1016/j.immuni.2019.03.027

53. Jones SA, Jenkins BJ. Recent insights into targeting the IL-6 cytokine family in inflammatory diseases and cancer. Nat Rev Immunol. 2018 Dec;18(12):773-89. doi: 10.1038/s41577-018-0066-7

54. Huang Y, Tu M, Wang S, et al. Clinical characteristics of laboratory confirmed positive cases of SARS-CoV-2 infection in Wuhan, China: A retrospective single center analysis. Travel Med Infect Dis. 2020:101606. doi: 10.1016/j.tmaid.2020.101606

55. Lui T, Zhang J, Yang Y, et al. The potential role of IL-6 in monitoring severe case of coronavirus disease 2019. medRxiv. 2020. doi: 10.1101/2020.03.01.20029769

56. Ruan Q, Yang K, Wang W, et al. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020. doi: 10.1007/s00134-020-05991

57. Diao B, Wang C, Tan Y, et al. Reduction and functional exhaustion of T Cells in patients with coronavirus disease 2019 (COVID-19). medRxiv. 2020. doi: 10.1101/2020.02.18.20024364

58. Wu C, Chen X, Cai Y, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med. 2020 Mar:1-10. doi: 10.1001/jamainternmed.2020.0994

59. Zhu W, Xie K, Lu H, et al. Initial clinical features of suspected coronavirus disease 2019 in two emergency departments outside of Hubei, China. J Med Virol. 2020. doi: 10.1002/jmv.25763

60. Zhou Y, Han T, Chen J, et al. Clinical and autoimmune characteristics of severe and critical cases with COVID-19. Clin Transl Sci. doi: 10.1111/CTS.12805

61. Wenjun W, Xiaoqing L, Lie P, et al. The definition and risk of cytokine release syndrome-like in 11 COVID-19 infected pneumonia critically ill patients: disease characteristics and retrospective analysis. medRxiv. doi: 10.1101/2020.02.26.20026989

62. Chen G, Wu D, Guo W, et al. Clinical and immunologic features in severe and moderate Coronavirus Disease 2019. J Clin Invest. 2020;(1095):2020.02.16.20023903. doi: 10.1172/JCI137244

63. Li Y, Hu Y, Yu J, Ma T. Retrospective analysis of laboratory testing in 54 patients with severer critical type 2019 novel coronavirus pneumonia. Lab Invest. doi: 10.1038/s41374-020-0431-6

64. Zhu Z, Cai T, Fan L, et al. Clinical value of immune-inflammatory parameters to assess the severity of coronavirus disease 2019. Int J Infect Dis. 2020. doi: 10.1016/j.ijid.2020.04.041

65. Wan S, Yi Q, Fan S, et al. Relationships among lymphocyte subsets, cytokines, and the pulmonary inflammation index in coronavirus (COVID-19) infected patients. Br J Haematol. 2020 May;189(3):428-37. doi: 10.1111/bjh.16659

66. Herold T, Jurinovic V, Arnreixh C, et al. Level pf IL-6 predicrs respiratory failure in hospiralized symptomatic COVID-19 patients. medRxiv. doi: 10.1101/2020.04.01.20047381

67. Coomes EA, Haghbayan H. Interleukin-6 in COVID-19: a systemic review and meta-analysis. medRxiv. doi: 10.1101/2020.03.30.200448058

68. Aziz M, Fatima R, Assaly R. Elevated interleukin-6 and severe COVID-19: A meta-analysis. J Med Virol. 2020 Apr 28. doi: 10.1002/jmv.25948

69. Song C-Y, Xu J, He J-Q, Lu Y-Q. COVID-19 early warning score: a multi- parameter screening tool to identify highly suspected patients. medRxiv. 2020:2020.03.05.20031906. doi: 10.1101/2020.03.05.20031906

70. Zhang H, Wang X, Fu Z, et al. Potential factors for prediction of disease severity of COVID-19 patients. medRxiv. 2020.03.20.20039818. doi: 10.1101/2020.03.20.20039818

71. Zhang B, Zhou X, Zhu C, et al. Immune phenotyping based on neutrophil-to-lymphocyte ratio and IgG predicts disease severity and outcome for patients with COVID-19. medRxiv. 2020.03.12.20035048. doi: 10.1101/2020.03.12.20035048

72. Lagunas-Rangel FA, Chavez-Valencia V. High IL-6/IFN-γ ratio could be associated with severe disease in COVID-19 patients. J Med Virol. 2020 Apr 16. doi: 10.1002/jmv.25900

73. Ranucci M, Ballotta A, Di Dedda U, et al. The procoagulant patter of patients with COVID-19 acute respiratory distress syndrome. medRxiv. 2020. doi: 10.111/JTH.14854

74. Zou L, Ruan F, Huang M, et al. SARS-CoV-2 Viral load in upper respiratory specimens of infected patients. N Engl J Med. 2020 Mar 19;382(12):1177-9. doi: 10.1056/NEJMc2

75. Chen X, Zhao B, Qu Y, et al. Detectable serum SASR-CoV-2 viral load (RNAaemia) is closely correlated witn drastically elevated interleukin 6 (IL-6) level in critically ill COVID-19 patients. Clin Infect Dis. 2020. Available at: https://academic.oup/cid/

76. Li H, Liu L, Zhang D, et al. SARS-CoV-2 and viral sepsis: observations and hypotheses. Lancet. 2020 Apr 17. pii: S0140-6736(20)30920-X. doi: 10.1016/S0140-6736(20)30920

77. Gao Y, Li T, Han M, et al. Diagnostic utility of clinical laboratory data determinations for patients with the severe COVID-19. J Med Virol. 2020 Mar 17. doi: 10.1002/jmv.25770

78. Liu F, Li L, Xu M, et al. Prognostic value of interleukin-6, Creactive protein, and procalcitonin in patients with COVID-19. J Clin Virol. 2020 Apr 14;127:104370. doi: 10.1016/j.jcv.2020.104370

79. Yun H, Sun Z, Wu J, et al. Laboratory data analysis of novel coronavirus (COVID-19) screening in 2510 patients. Clin Chim Acta. 2020 Apr 18;507:94-7. doi: 10.1016/j.cca.2020.04.018

80. Zheng Y, Xu H, Yang M, et al. Epidemiological characteristics and clinical features of 32 critical and 67 noncritical cases of COVID-19 in Chengdu. J Clin Virol. 2020 Apr 10;127:104366. doi: 10.1016/j.jcv.2020.104366

81. Zhu J, Ji P, Pang J, et al. Clinical characteristics of 3,062 COVID-19 patients: a meta-analysis. J Med Virol. 2020 Apr 15. doi: 10.1002/jmv.25884

82. Tan C, Huang Y, Shi F, et al. C-reactive protein correlates with computed tomographic findings and predicts severe COVID-19 early. J Med Virol. 2020 Apr 13. doi: 10.1002/jmv.25871

83. Wang L. C-reactive protein levels in the early stage of COVID-19. Med Mal Infect. 2020 Mar 31. pii: S0399-077X(20)30086-X. doi: 10.1016/j.medmal

84. Li H, Xiang X, Ren H, et al. Serum amyloid A is a biomarker of severe Coronavirus Disease and poor prognosis. J Infect. 2020 Apr 8. pii: S0163-4453(20)30162-6. doi: 10.1016/j.jinf.2020.03.035

85. Насонов ЕЛ, редактор. Генно-инженерные биологические препараты в лечении ревматоидного артрита. Москва, ИМА-ПРЕСС; 2013. 549 c. [Nasonov EL, editor. Genno-inzhenernye biologicheskie preparaty v lechenii revmatoidnogo artrita [Genetically engineered biologicals in the treatment of rheumatoid arthritis]. Moscow: IMA-PRESS; 2013. 549 p. (In Russ.)].

86. Насонов ЕЛ. Применение тоцилизумаба при ревматоидном артрите: новые данные. Научно-практическая ревматология. 2011;49(6):46-56. doi: 10.14412/1995-4484-2011-521 [Nasonov EL. Use of tocilizumab for rheumatoid arthritis: new evidence. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2011;49(6):46-56. doi: 10.14412/1995-4484-2011-521 (In Russ.)].

87. Насонов ЕЛ, Лила АМ. Эффективность и безопасность сарилумаба (полностью человеческие моноклональные антитела к рецептору интерлейкина 6) при ревматоидном артрите: новые данные. Научно-практическая ревматология. 2019;57(5):564-77. doi: 10.14412/1995-4484-2019-564-57 [Nasonov EL, Lila AM. The efficacy and safety of sarilumab, fully human monoclonal antibodies against interleukin 6 receptor, in rheumatoid arthritis: new evidence. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2019;57(5):564-77. doi: 10.14412/1995-4484-2019-564-57 (In Russ.)].

88. Luo P, Liu Y, Qiu L, et al. Tocilizumab treatment in COVID-19: a single center experience. J Med Virol. 2020 Apr 6. doi: 10.1002/jmv.25801

89. Xu X, Han M, Li T, et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci U S A. 2020 Apr 29. pii: 202005615. doi: 10.1073/pnas.2005615117

90. Roumier M, Paule R, Groh M, et al. Interleukin-6 blockade for severe COVID-19. BMJ. 2020 Apr. doi: 10.1101/2020.04.20.20061861

91. Klopfenstein T, Zayet S, Lohse A, et al. Tocilizumab therapy reduced intensive care unit admissions and/or mortality in COVID-19 patients. Med Mal Infect. 2020 May 6. pii: S0399-077X(20)30129-3. doi: 10.1016/j.medmal.2020.05.001

92. Quartuccio L, Sonaglia A, McGonagle D, et al. Profiling COVID-19 pneumonia progressing into the cytokine storm syndrome: results from a single Italian Centre study on tocilizumab versus standard of care. medRxiv. 2020.05.01.20078360. doi: 10.1101/2020.05.01.20078360

93. Toniati P, Piva S, Cattalini M, et al. Brescia International Research and Training HUB (BIRTH). Tocilizumab for the treatment of severe COVID-19 pneumonia with hyperinflammatory syndrome and acute respiratory failure: A single center study of 100 patients in Brescia, Italy. Autoimmun Rev. 2020 May 3:102568. doi: 10.1016/j.autrev.2020.102568

94. Alattar R, Ibrahim TBH, Shaar SH, et al. Tocilizumab for the treatment of severe COVID-19. J Med Virol. 2020 May 5. doi: 10.1002/jmv.25964

95. Sciascia S, Apra F, Baffa A, et al. Pilot prospective open, singlearm multicentre study on off-label use of tocilizumab in severe patients with COVID-19. Clin Exp Rheumatol. 2020;8 May 1.

96. Colaneri M, Bogliolo L, Valsecchi P, et al. The Covid Irccs San Matteo Pavia Task Force. Tocilizumab for Treatment of Severe COVID-19 Patients: Preliminary Results from SMAtteo COvid19 REgistry (SMACORE). Microorganisms. 2020 May 9;8(5). pii: E695. doi: 10.3390/microorganisms8050695

97. Odievre MH, de Marcellus C, Ducou Le Pointe H, et al. Dramatic improvement after Tocilizumab of a severe COVID-19 in a child with sickle cell disease and acute chest syndrome. Am J Hematol. 2020 May 1. doi: 10.1002/ajh.25855

98. Alberici F, Delbarba E, Manenti C, et al. A single center observational study of the clinical characteristics and short-term outcome of 20 kidney transplant patients admitted for SARS-CoV2 pneumonia. Kidney Int. 2020 Apr 9. pii: S0085-2538(20)30365-3. doi: 10.1016/j.kint.2020.04.002

99. Radbel J, Narayanan N, Bhatt PJ. Use of tocilizumab for COVID-19 infection-induced cytokine release syndrome: A cautionary case report. Chest. 2020 Apr 25. pii: S0012-3692(20)30764-9. doi: 10.1016/j.chest.2020.04.024

100. Ferrey AJ, Choi G, Hanna RM, et al. A case of novel coronavirus disease 19 in a chronic hemodialysis patient presenting with gastroenteritis and developing severe pulmonary disease. Am J Nephrol. 2020;1-6. doi: 10.1159/000507417

101. Michot JM, Albiges L, Chaput N, et al. Tocilizumab, an anti-IL6 receptor antibody, to treat COVID-19-related respiratory failure: a case report. Ann Oncol. 2020. doi: 10.1016/j.annonc.2020.03.300

102. Zhang X, Song K, Tong F, et al. First case of COVID-19 in a patient with multiple myeloma successfully treated with tocilizumab. Blood Adv. 2020;4(7):1307-10. doi: 10.1182/bloodadvances.2020001907

103. Fontana F, Alfano G, Mori G, et al. COVID-19 pneumonia in a kidney transplant recipient successfully treated with Tocilizumab and Hydroxychloroquine. Am J Transplant. 2020 Apr 23. doi: 10.1111/ajt.15935

104. Blanco JL, Ambrosioni J, Garcia F, et al. COVID-19 in patients with HIV: clinical case series. Lancet HIV. 2020 Apr. doi: 10.1016/S2352-3018(20)30111-9. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32304642

105. Cellina M, Orsi M, Bombaci F, et al. Favorable changes of CT findings in a patient with COVID-19 pneumonia after treatment with tocilizumab. Diagn Interv Imaging. 2020. doi: 10.1016/j.diii.2020.03.010. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32278585

106. De Luna G, Habibi A, Deux JF, et al. Rapid and severe COVID-19 pneumonia with severe acute chest syndrome in a sickle cell patient successfully treated with Tocilizumab. Am J Hematol. 2020 Apr. doi: 10.1002/ajh.25833. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32282956

107. Di Giambenedetto S, Ciccullo A, Borghetti A, et al. Off-label use of Tocilizumab in patients with SARS-CoV-2 infection. J Med Virol. 2020 Apr. doi: 10.1002/jmv.25897. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32297987

108. Hartman ME, Hernandez RA, Patel K, et al. COVID-19 respiratory failure: targeting inflammation on VV-ECMO support. ASAIO J. 2020 Apr. doi: 10.1097/MAT.0000000000001177. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32304395

109. Treon SP, Castillo J, Skarbnik AP, et al. The BTK-inhibitor ibrutinib may protect against pulmonary injury in COVID-19 infected patients. Blood. 2020 Apr. doi: 10.1182/blood.2020006288. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32302379

110. Wong SY, Leong KH, Ng KS, et al. An elderly couple with COVID-19 pneumonia treated in Singapore: contrasting clinical course and management. Singapore Med J. 2020 Apr. doi: 10.11622/smedj.2020064. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32312026

111. Holzhauser L, Lourenco L, Sarswat N, et al. Early experience of COVID-19 in two heart transplant recipients: case reports and review of treatment options. Am J Transplant. 2020 May 7. doi: 10.1111/ajt.15982

112. Alzghari SK, Acuna VS. Supportive treatment with Tocilizumab for COVID-19: A systematic review. J Clin Virol. 2020 Apr 21;127:104380. doi: 10.1016/j.jcv.2020.104380

113. Khan F, Fabbri L, Stewart I, et al. A systematic review of Anakinra, Tocilizumab, Sarilumab and Siltuximab for coronavirus-related infections. medRxiv. 2020.04.23.20076612. doi: 10.1101/2020.04.23.20076612

114. Assistance Publique Hopitaux de Paris. Tocilizumab improves significantly clinical outcomes of patients with moderate or severe COVID-19 pneumonia. April 2020. Available at: https://www.aphp.fr/contenu/tocilizumab-improves-significantly-clinical-outcomes-patients-moderate-or-severe-covid-19 (accessed 27.04.2020).

115. World Health Organization. WHO R&D Blueprint. COVID-19. Informal consultation on the potential role of IL-6/IL-1 antagonists in the clinical management of COVID 19 infection. March 2020. Available at: https://www.who.int/blueprint/priority-diseases/key-action/Expert_group_IL6_IL1_call_25_mar2020.pdf (accessed 04.04.2020).

116. Regeneron and Sanofi Begin Global Kevzara (Sarilumab) Clinical Trial Program in Patients with Severe COVID-19. Regeneron/Sanofi. 2020 Mar 16. Available at: https://investor.regeneron.com/news-releases/news-releasedetails/regeneron-and-sanofi-begin-global-kevzarar-sarilumabclinical

117. Gritti G, Raimondi F, Ripamonti D, et al. Use of siltuximab in patients with COVID-19 pneumonia requiring ventilatory support. medRxiv. 2020.04.01.20048561. doi: 10.1101/2020.04.01.20048561

118. Marfella R, Paolisso P, Sardu C, et al. Negative impact of hyperglycemia on Tocilizumab therapy in COVID-19 patients. medRxiv. 2020.04.29.20076570. doi: 10.1101/2020.04.29.20076570

119. ICNARC report on COVID-19 in clinical care – 10 Apr 2020. Available at: https://www.icnarc/ouraudit/audit/com

120. Russell B, Moss C, George G, et al. Associations between immune-suppressive and stimulating drugs and novel COVID-19- a systematic review of current evidence. Ecancer. 2020 Mar 27;14:1022. doi: 10.3332/ecancer.2020.1022

121. Nicastri E, Petrosillo N, Bartoli TA, et al. National Institute for the Infectious Diseases «L. Spallanzani», IRCCS. Recommendations for COVID-19 clinical management. Infect Dis Rep. 2020 Mar 16;12(1):8543. doi: 10.4081/idr.2020.8543

122. Bergin C. Interim Recommendations for the use of Tocilizumab in the Management of Patients who have Severe COVID-19 with Suspected Hyperinflammation. Available at: https://www.hse.ie/eng/about/who/acute-hospitalsdivision/drugs-management-programme/interim-recommendations-for-the-use-of-tocilizumab-in-the-management-ofpatients-with-severe-covid-19.pdf

123. Zhang S, Li L, Shen A, et al. Rational use of Tocilizumab in the treatment of novel coronavirus pneumonia. Clin Drug Investig. 2020 Apr 26. doi: 10.1007/s40261-020-00917-3

124. Michigan Medicine. University of Michigan. Inpatient guidance for treatment of COVID-19 in adults and children. Available at: Michigan.gov

125. Diagnosis and Treatment Protocol for Novel Coronavirus Pneumonia (Trial Version 7). People’s Republic of China: National Health Commission & State Administration of Traditional Chinese Medicine; 2020.

126. Tocilizumab (Actemra): Adult patients with moderately to severely active rheumatoid arthritis [Internet]. Ottawa (ON): Canadian Agency for Drugs and Technologies in Health; 2015 Aug. CDEC Final Recommendation. Available at: https://www.ncbi.nlm.nih.gov/books/NBK349506/

127. Насонов ЕЛ, Лила АМ, Мазуров ВИ и др.; по поручению президиума Общероссийской общественной организации «Ассоциация ревматологов России». Проект рекомендаций Общероссийской общественной организации «Ассоциация ревматологов России». Коронавирусная болезнь 2019 (COVID-19) и иммуновоспалительные (аутоиммунные) ревматические заболевания. Доступно по ссылке: https://rheumatolog.ru [Nasonov EL, Lila AM, Mazurov VI, et al; on behalf of the Presidium of the All-Russian Public Organization «Association of Rheumatologists of Russia». Proekt rekomendatsiy Obshcherossiyskoy obshchestvennoy organizatsii «Assotsiatsiya revmatologov Rossii». Koronavirusnaya bolezn' 2019 (COVID-19) i immunovospalitel'nye (autoimmunnye) revmaticheskie zabolevaniya [Draft recommendations of the All-Russian public organization «Association of Rheumatologists of Russia». Coronavirus disease 2019 (COVID-19) and immuno-inflammatory (autoimmune) rheumatic diseases]. Available at: https://rheumatolog.ru (In Russ.)].

128. Scott LJ. Tocilizumab: A review in rheumatoid arthritis. Drugs. 2017;77:1865-79. doi: 10.1007/s40265-017-0829-7

129. Rello J, Storti E, Belliato M, Serrano R. Clinical phenotypes of SARS-CoV-2: Implications for clinicians and researchers. Eur Respir J. 2020 Apr 27. pii: 2001028. doi: 10.1183/13993003.01028-2020

130. Jamilloux Y, Henry T, Belot A, et al. Should we stimulate or suppress immune responses in COVID-19? Cytokine and anticytokine interventions. Autoimmun Rev. 2020 May 3:102567. doi: 10.1016/j.autrev.2020.102567

131. Zheng Z, Peng F, Xu B, et al. Risk factors of critical & mortal COVID-19 cases: A systematic literature review and meta-analysis. J Infect. 2020 Apr 23. pii: S0163-4453(20)30234-6. doi: 10.1016/j.jinf.2020.04.021

132. Chen X, Hu W, Ling J, et al. Hypertension and diabetes delay the viral clearance in COVID-19 patients. medRxiv 2020. doi: 10.1101/2020.03.22.20040774

133. Smolen JS, Aletaha D, Barton A, et al. Rheumatoid arthritis. Nat Rev Dis Primers. 2018;4:18001. doi: 10.1038/nrdp.2018

134. Schwartz DM, Kanno Y, Villarino A, et al. JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat Rev Drug Discov. 2017;16(12):843-62. doi: 10.1038/nrd.2017.201

135. Насонов ЕЛ, Лила АМ. Ингибиторы Янус-киназ при иммуновоспалительных ревматических заболеваниях: новые возможности и перспективы. Научно-практическая ревматология. 2019;57(1):8-16. doi: 10.14412/1995-4484-2019-8-16 [Nasonov EL, Lila AM. Janus kinase inhibitors in immunoinflammatory rheumatic diseases: new opportunities and prospects. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2019;57(1):8-16. doi: 10.14412/1995-4484-2019-8-16 (In Russ.)].

136. Richardson P, Griffin I, Tucker C, et al. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet. 2020 Feb 15;395(10223):e30-e31. doi: 10.1016/S0140-6736(20)30304-4

137. Stebbing J, Phelan A, Griffin I, et al. COVID-19: combining antiviral and anti-inflammatory treatments. Lancet Infect Dis. 2020 Feb 27. doi: 10.1016/S1473-3099(20)30132-8

138. Cantini F, Niccoli L, Matarrese D, et al. Baricitinib therapy in COVID-19: A pilot study on safety and clinical impact. J Infect. 2020 Apr 22. pii: S0163-4453(20)30228-0. doi: 10.1016/j.jinf.2020.04.017

139. Jagasia M, Perales MA, Schroeder MA, et al. Ruxolitinib for the treatment of steroid-refractory acute GVHD (REACH1): a multicenter, open-label, phase 2 trial. Blood. 2020 Mar 5. pii: blood.2020004823. doi: 10.1182/blood.2020004823

140. Ahmed A, Merrill SA, Alsawah F, et al. Ruxolitinib in adult patients with secondary haemophagocytic lymphohistiocytosis: an open-label, single-centre, pilot trial. Lancet Haematol. 2019;6(12):e630-e637. doi: 10.1016/S2352-3026(19)30156-5

141. Velazquez-Salinas L, Verdugo-Rodriguez A, Rodriguez LL, Borca MV. The role of interleukin 6 during viral infections. Front Microbiol. 2019 May 10;10:1057. doi: 10.3389/fmicb.2019.01057

142. Cifaldi L, Prencipe G, Caiello I, et al. Inhibition of natural killer cell cytotoxicity by interleukin-6: implications for the pathogenesis of macrophage activation syndrome. Arthritis Rheum. 2015 Nov;67(11):3037-46. doi: 10.1002/art.39295

143. Ingraham NE, Lotfi-Emran S, Thielen BK, et al. Immunomodulation in COVID-19. Lancet Respir Med. 2020 May 4. pii: S2213-2600(20)30226-5. doi: 10.1016/S2213-2600(20)30226-5

144. Schett G, Elewaut D, McInnes IB, et al. How cytokine networks fuel inflammation: Toward a cytokine-based disease taxonomy. Nat Med. 2013 Jul;19(7):822-4. doi: 10.1038/nm.3260

145. Schett G, Sticherling M, Neurath MF. COVID-19: risk for cytokine targeting in chronic inflammatory diseases? Nat Rev Immunol. 2020 May;20(5):271-2. doi: 10.1038/s41577-020-0312-7

146. Насонов ЕЛ. Роль интерлейкина 1 в развитии заболеваний человека. Научно-практическая ревматология. 2018;56(Прил. 1):19-27. doi: 10.14412/1995-4484-2018-19-27 [Nasonov EL. The role of interleukin 1 in the development of human diseases. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2018;56(Suppl. 4):19-27. doi: 10.14412/1995-4484-2018-19-27 (In Russ.)].

147. Dinarello CA. The IL-1 family of cytokines and receptors in rheumatic diseases. Nat Rev Rheumatol. 2019 Oct;15(10):612- 32. doi: 10.1038/s41584-019-0277-8

148. Feldmann M, Maini RN, Woody JN, et al. Trials of anti-tumour necrosis factor therapy for COVID-19 are urgently needed. Lancet. 2020 May 2;395(10234):1407-9. doi: 10.1016/S0140-6736(20)30858-8

149. Nemeth T, Sperandio M, Mocsai A. Neutrophils as emerging therapeutic targets. Nat Rev Drug Discov. 2020 Apr;19(4):253-75. doi: 10.1038/s41573-019-0054-z

150. Pacha O, Sallman MA, Evans SE. COVID-19: a case for inhibiting IL-17? Nat Rev Immunol. 2020 May 1. doi: 10.1038/s41577-020-0328-z

151. McClain KL, Allen CE. Fire behind the fury: IL-18 and MAS. Blood. 2018 Mar 29;131(13):1393-4. doi: 10.1182/blood-2018-02-828186

152. Weiss ES, Girard-Guyonvarch C, Holzinger D, et al. Interleukin-18 diagnostically distinguishes and pathogenically promotes human and murine macrophage activation syndrome. Blood. 2018;131(13):1442-55. doi: 10.1182/blood-2017-12-820852

153. Risitano AM, Mastellos DC, Huber-Lang M, et al. Complement as a target in COVID-19? Nat Rev Immunol. 2020 Apr 23. doi: 10.1038/s41577-020-0320-7

154. Marsh RA. Epstein-Barr virus and hemophagocytic lymphohistiocytosis. Front Immunol. 2017;8:1902. doi: 10.3389/fimmu.2017.01902

155. Baker KF, Isaacs JD. Novel therapies for immune-mediated inflammatory diseases: What can we learn from their use in rheumatoid arthritis, spondyloarthritis, systemic lupus erythematosus, psoriasis, Crohn’s disease and ulcerative colitis? Ann Rheum Dis. 2018;77(2):175-87. doi: 10.1136/annrheumdis- 2017-211555

156. Насонов ЕЛ. Фармакотерапия ревматоидного артрита: новая стратегия, новые мишени. Научно-практическая ревматология. 2017;55(4):409-19. doi: 10.14412/1995-4484-2017-409-419 [Nasonov EL. Pharmacotherapy for rheumatoid arthritis: new strategy, new targets. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2017;55(4):409-19. doi: 10.14412/1995-4484-2017-409-419 (In Russ.)].

157. Mantovani A, Dinarello CA, Molgora M, Garlanda C. Interleukin-1 and related cytokines in the regulation of inflammation and immunity. Immunity. 2019 Apr 16;50(4):778-95. doi: 10.1016/j.immuni.2019.03.012

158. Bettiol A, Lopalco G, Emmi G, et al. Unveiling the efficacy, safety, and tolerability of anti-interleukin-1 treatment in monogenic and multifactorial autoinflammatory diseases. Int J Mol Sci. 2019 Apr 17;20(8):1898. doi: 10.3390/ijms20081898

159. Shakoory B, Carcillo JA, Chatham WW, et al. Interleukin-1 receptor blockade is associated with reduced mortality in sepsis patients with features of macrophage activation syndrome: reanalysis of a prior phase iii trial. Crit Care Med. 2016;44:275-81. doi: 10.1097/CCM.0000000000001402

160. Eloseily EM, Weiser P, Crayne CB, et al. Benefit of anakinra in treating pediatric secondary hemophagocytic lymphohistiocytosis. Arthritis Rheum. 2020 Feb;72(2):326-34. doi: 10.1002/art.41103

161. Monteagudo LA, Boothby A, Gertner E. Continuous intravenous Anakinra infusion to calm the cytokine storm in macrophage activation syndrome. ACR Open Rheumatol. 2020 Apr 8. doi: 10.1002/acr2.11135

162. Mehta P, Cron RQ, Hartwell J, et al. Silencing the cytokine storm: the use of intravenous anakinra in haemophagocytic lymphohistiocytosis or macrophage activation syndrome. Lancet Rheumatol. 2020 May 4. doi: 10.1016/S2665-9913(20)30096-5

163. Aouba A, Baldolli A, Geffray L, et al. Targeting the inflammatory cascade with anakinra in moderate to severe COVID-19 pneumonia: case series. Ann Rheum Dis. 2020 May 6. pii: annrheumdis- 2020-217706. doi: 10.1136/annrheumdis-2020-217706

164. Hamilton JA. GM-CSF-Dependent Inflammatory Pathways. Front Immunol. 2019 Sep 4;10:2055. doi: 10.3389/fimmu.2019.02055.eCollection 2019.

165. Crotti C, Agape E, Becciolini A, et al. Targeting granulocytemonocyte colony-stimulating factor signaling in rheumatoid arthritis: future prospects. Drugs. 2019 Nov;79(16):1741-55. doi: 10.1007/s40265-019-01192-z

166. Temple Treats First Patient in the U.S. in Clinical Trial of Gimsilumab for Patients with COVID-19 and Acute Respiratory Distress Syndrome. News Release. Temple Health; April 15, 2020. Accessed April 16, 2020. Available at: https://www.templehealth.org/about/news/temple-universityhospital-treat

167. Lounder DT, Bin Q, de Min C, Jordan MB. Treatment of refractory hemophagocytic lymphohistiocytosis with emapalumab despite severe concurrent infections. Blood Adv. 2019 Jan 8;3(1):47-50. doi: 10.1182/bloodadvances.2018025858

168. Vallurupalli M, Berliner N. Emapalumab for the treatment of relapsed/refractory hemophagocytic lymphohistiocytosis. Blood. 2019 Nov 21;134(21):1783-6. doi: 10.1182/blood.2019002289

169. Canna SW, Girard C, Malle L, Gabay C. Life-threatening NLRC4-associated hyperinflammation successfully treated with IL-18 inhibition. J Allergy Clin Immunol. 2017;139:1698-701. doi: 10.1016/j.jaci.2016.10.022

170. Gabay C, Fautrel B, Rech J, et al. Open-label, multicentre, doseescalating phase II clinical trial on the safety and efficacy of tadekinig alfa (IL-18BP) in adult-onset Still’s disease. Ann Rheum Dis. 2018;77:840-7. doi: 10.1136/annrheumdis-2017-212608

171. Ricklin D, Mastellos DC, Lambris JD. Therapeutic targeting of the complement system. Nat Rev Drug Discov. 2019 Dec 9. doi: 10.1038/s41573-019-0055-y

172. Gao T, Hu M, Zhang X, et al. Highly pathogenic coronavirus N protein aggravates lung injury by MASP-2-mediated complement over-activation. medRxiv. 2020.03.29.20041962. doi: 10.1101/2020.03.29.20041962

173. Magro C, Mulvey JJ, Berlin D, et al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: a report of five cases. Transl Res. 2020 Apr 15. pii: S1931-5244(20)30070-0. doi: 10.1016/j.trsl.2020.04.007

174. Campbell CM, Kahwash R. Will complement inhibition be the new target in treating COVID-19 related systemic thrombosis? Circulation. 2020 Apr 9. doi: 10.1161/CIRCULATIONAHA.120.047419

175. McGonagle D, O’Donnel JS, Sharif K, et al. Immune mechanisms of pulmonary intravascular coagulopathy in COVID-19 pneumonia. Lancet Rheumatol. 2020 May 7. doi: 10.1016/S2665-9913(20)30121-1

176. Henry BM, Vikse J, Benoit S, et al. Hyperinflammation and derangement of renin-angiotensin-aldosterone system in COVID-19: A novel hypothesis for clinically suspected hypercoagulopathy and microvascular immunothrombosis. Clin Chim Acta. 2020 Apr 26;507:167-73. doi: 10.1016/j.cca.2020.04.027

177. Насонов ЕЛ, Решетняк ТМ, Алекберова ЗС. Тромботическая микроангиопатия в ревматологии: связь тромбовоспаления и аутоиммунитета. Терапевтический архив. 2020;92(5). doi: 10.26442/00403660.2020.05.000697 [Nasonov EL, Reshetnyak TM, Alekberova ZS. Thrombotic microangiopathy in rheumatology: the relationship of thrombosis and autoimmunity. Terapevticheskiy Arkhiv. 2020;92(5). doi: 10.26442/00403660.2020.05.000697 (In Russ.)].

178. Colafrancesco S, Alessandri C, Conti F, Priori R. COVID-19 gone bad: A new character in the spectrum of the hyperferritinemic syndrome? Autoimmun Rev. 2020 May 5:102573. doi: 10.1016/j.autrev.2020.102573

179. Diurno F, Numis FG, Porta G, et al. Eculizumab treatment in patients with COVID-19: preliminary results from real life ASL Napoli 2 Nord experience. Eur Rev Med Pharmacol Sci. 2020 Apr;24(7):4040-7. doi: 10.26355/eurrev_202004_20875

180. Mastaglio S, Ruggeri A, Risitano AM, et al. The first case of COVID-19 treated with the complement C3 inhibitor AMY-101. Clin Immunol. 2020 Apr 29:108450. doi: 10.1016/j.clim.2020.108450

181. Bekker P, Dairaghi D, Seitz L, et al. Characterization of pharmacologic and pharmacokinetic properties of CCX168, a potent and selective orally administered complement 5a receptor inhibitor, based on preclinical evaluation and randomized Phase 1 clinical study. PLoS One. 2016;11:e0164646. doi: 10.1371/journal.pone.0164646

182. Jayne DRW, Bruchfeld AN, Harper L, et al; CLEAR Study Group. Randomized Trial of C5a Receptor Inhibitor Avacopan in ANCA-Associated Vasculitis. J Am Soc Nephrol. 2017;28(9):2756- 67. doi: 10.1681/ASN.2016111179

183. Prete M, Favoino E, Catacchio G, et al. SARS-CoV-2 infection complicated by inflammatory syndrome. Could high-dose human immunoglobulin for intravenous use (IVIG) be beneficial? Autoimmun Rev. 2020 Apr 30:102559. doi: 10.1016/j.autrev.2020.102559

184. Perez EE, Orange JS, Bonilla F, et al. Update on the use of immunoglobulin in human disease: a review of evidence. J Allergy Clin Immun. 2017;139:S1-46.

185. Xie Y, Cao S, Dong H, et al. Effect of regular intravenous immunoglobulin therapy on prognosis of severe pneumonia in patients with COVID-19. J Infect. 2020 Apr 10. pii: S0163-4453(20)30172-9. doi: 10.1016/j.jinf.2020.03.044

186. Cao W, Liu X, Bai T, et al. High-dose intravenous immunoglobulin as a therapeutic option for deteriorating patients with Coronavirus Disease 2019. Open Forum Infect Dis. 2020 Mar 21;7(3):ofaa102. doi: 10.1093/ofid/ofaa102

187. Diez J-M, Romero C, Gajardo R. Currently available intravenous immunoglobulin (Gamunex®-C and Flebogamma® DIF) contains antibodies reacting against SARS-CoV-2 antigens. bioRxiv. 2020 Apr 07:029017. doi: 10.1101/2020.04.07.029017

188. Rojas M, Rodriguez Y, Monsalve DM, et al. Convalescent plasma in Covid-19: Possible mechanisms of action. Autoimmun Rev. 2020 May 4:102554. doi: 10.1016/j.autrev.2020.102554


Рецензия

Для цитирования:


Насонов Е.Л. Иммунопатология и иммунофармакотерапия коронавирусной болезни 2019 (COVID-19): фокус на интерлейкин 6. Научно-практическая ревматология. 2020;58(3):245-261. https://doi.org/10.14412/1995-4484-2020-245-261

For citation:


Nasonov E.L. IMMUNOPATHOLOGY AND IMMUNOPHARMACOTHERAPY OF CORONAVIRUS DISEASE 2019 (COVID-19): FOCUS ON INTERLEUKIN 6. Rheumatology Science and Practice. 2020;58(3):245-261. (In Russ.) https://doi.org/10.14412/1995-4484-2020-245-261

Просмотров: 5226


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1995-4484 (Print)
ISSN 1995-4492 (Online)