Барицитиниб: новые возможности фармакотерапии ревматоидного артрита и других иммуновоспалительных ревматических заболеваний
https://doi.org/10.14412/1995-4484-2020-304-316
Аннотация
Расшифровка механизмов патогенеза иммуновоспалительных ревматических заболеваний (ИВРЗ) в сочетании с разработкой широкого спектра генно-инженерных биологических препаратов относится к числу крупных достижений медицины XXI в. Новое перспективное направление фармакотерапии ИВРЗ связано с созданием так называемых «таргетных» пероральных лекарственных препаратов, к которым в первую очередь относятся ингибиторы Янус-киназ (JAK). В обзоре представлены новые данные, касающиеся эффективности и безопасности нового ингибитора JAK – барицитиниба – при ревматоидном артрите и других ИВРЗ.
Об авторах
Е. Л. НасоновРоссия
Евгений Львович Насонов
115522, Москва, Каширское шоссе, 34А
119991, Москва, ул. Трубецкая, 8, стр. 2
А. М. Лила
Россия
115522, Москва, Каширское шоссе, 34А
125993, Москва, ул. Баррикадная, 2/1, стр.1
Список литературы
1. Baker KF, Isaacs JD. Novel therapies for immune-mediated inflammatory diseases: What can we learn from their use in rheumatoid arthritis, spondyloarthritis, systemic lupus erythematosus, psoriasis, Crohn's disease and ulcerative colitis? Ann Rheum Dis. 2018;77(2):175-87. doi: 10.1136/annrheumdis-2017-211555
2. Насонов ЕЛ. Фармакотерапия ревматоидного артрита: новая стратегия, новые мишени. Научно-практическая ревматология. 2017;55(4):409-19. doi: 10.14412/1995-4484-2017-409-19 [Nasonov EL. Pharmacotherapy for rheumatoid arthritis: New strategy, new targets. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2017;55(4):409-19. doi: 10.14412/1995-4484-2017-409-419 (In Russ.)].
3. Burmester GR, Bijlsma JWJ, Cutolo M, McInnes IB. Managing rheumatic and musculoskeletal diseases – past, present and future. Nat Rev Rheumatol. 2017;13(7):443-8. doi: 10.1038/nrrheum.2017.95
4. Schwartz DM, Kanno Y, Villarino A, et al. JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat Rev Drug Discov. 2017;16(12):843-62. doi: 10.1038/rd.2017.201
5. Насонов ЕЛ, Лила АМ. Ингибиторы Янус-киназ при иммуновоспалительных ревматических заболеваниях: новые возможности и перспективы. Научно-практическая ревматология. 2019;57(1):8-16. doi: 10.14412/1995-4484-2019-8-16 [Nasonov EL, Lila AM. Janus kinase inhibitors in immunoinflammatory rheumatic diseases: new opportunities and prospects. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2019;57(1):8-16. doi: 10.14412/1995-4484-2019-8-16 (In Russ.)].
6. Насонов ЕЛ. Новые подходы к фармакотерапии ревматоидного артрита: тофацитиниб. Научно-практическая ревматология. 2014;52(2):209-21. doi: 10.14412/1995-4484-2014-209-221 [Nasonov EL. New approaches to pharmacotherapy of rheumatoid arthritis: tofacitinib. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2014;52(2):209-21. doi: 10.14412/1995-4484-2014-209-221 (In Russ.)].
7. Насонов ЕЛ, Авдеева АС, Лила АМ. Эффективность и безопасность тофацитиниба при иммуновоспалительных ревматических заболеваниях (часть I). Научно-практическая ревматология. 2020;58(1):62-79. doi: 10.14412/1995-4484-2020-62-79 [Nasonov EL, Avdeeva AS, Lila AM. Efficacy and safety of tofacitinib for immune-mediated inflammatory rheumatic diseases (Part I). Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2020;58(1):62-79. doi: 10.14412/1995-4484-2020-62-79 (In Russ.)].
8. Markham A. Baricitinib: first global approval. Drugs. 2017;77(6):697-704. doi: 10.1007/s40265-017-0723-3
9. Al-Salama ZT, Scott LJ. Baricitinib: A review in rheumatoid arthritis. Drugs. 2018;78(7):761-72. doi: 10.1007/s40265-018-0908-4
10. Choy EHS, Miceli-Richard C, Gonzalez-Gay MA, et al. The effect of JAK1/JAK2 inhibition in rheumatoid arthritis: efficacy and safety of baricitinib. Clin Exp Rheumatol. 2019;37(4):694-704.
11. Duggan S, Keam SJ. Upadacitinib: first approval. Drugs. 2019;79(16):1819-28. doi: 10.1007/s40265-019-01211-z
12. Serhal L, Edwards CJ. Upadacitinib for the treatment of rheumatoid arthritis. Expert Rev Clin Immunol. 2019;15(1):13-25. doi: 10.1080/1744666X.2019.1544892
13. Smolen JS, Landewe RBM, Bijlsma JWJ, et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2019 update. Ann Rheum Dis. 2020 Jan 22. doi: 10.1136/annrheumdis- 2019-216655
14. Клинические рекомендации. Ревматоидный артрит. Доступно по ссылке: http://rheumatolog.ru [Klinicheskie rekomendatsii. Revmatoidnyy artrit [Clinical recommendations. Rheumatoid arthritis]. Available at: http://rheumatolog.ru].
15. Jamilloux Y, El Jammal T, Vuitton L, et al. JAK inhibitors for the treatment of autoimmune and inflammatory diseases. Autoimmun Rev. 2019;18(11):102390. doi: 10.1016/j.autrev.2019.102390
16. Fragoulis GE, McInnes IB, Siebert S. JAK-inhibitors. New players in the field of immune-mediated diseases, beyond rheumatoid arthritis. Rheumatology (Oxford). 2019 Feb 1;58(Suppl 1):i43-i54. doi: 10.1093/rheumatology/key276
17. Virtanen A, Haikarainen T, Raivola J, Silvennoinen O. Selective JAKinibs: prospects in inflammatory and autoimmune diseases. BioDrugs. 2019;33(1):15-32. doi: 10.1007/s40259-019-00333-w
18. Fridman JS, Scherle PA, Collins R, et al. Selective inhibition of JAK1 and JAK2 is efficacious in rodent models of arthritis: preclinical characterization of INCB028050. J Immunol. 2010;184(9):5298-307. doi: 10.4049/jimmunol.0902819
19. Zhang X, Chua L, Ernest C 2nd, et al. Dose/exposure-response modeling to support dosing recommendation for phase III development of Baricitinib in patients with rheumatoid arthritis. CPT Pharmacometrics Syst Pharmacol. 2017;6(12):804-13. doi: 10.1002/psp4.12251
20. Shi JG, Chen X, Lee F, et al. The pharmacokinetics, pharmacodynamics, and safety of baricitinib, an oral JAK 1/2 inhibitor, in healthy volunteers. J Clin Pharmacol. 2014;54(12):1354-61. doi: 10.1002/jcph.354
21. Yaekura A, Morii K, Oketani Y, et al. Chronotherapy using Baricitinib attenuates collagen-induced arthritis in mice [abstract]. Arthritis Rheum. 2019;71 Suppl 10. Available at: https://acrabstracts.org/abstract/chronotherapy-using-baricitinib-attenuatescollagen-induced-arthritis-in-mice/ (accessed 08.04.2020).
22. Genovese MC, Kremer J, Zamani O, et al. Baricitinib in patients with refractory rheumatoid arthritis. N Engl J Med. 2016;374(13):1243-52. doi: 10.1056/NEJMoa1507247
23. Genovese MC, Kremer JM, Kartman CE, et al. Response to baricitinib based on prior biologic use in patients with refractory rheumatoid arthritis. Rheumatology. 2018;57(5):900-8. doi: 10.1093/rheumatology/kex489
24. Smolen JS, Kremer JM, Gaich CL, et al. Patient-reported outcomes from a randomised phase III study of baricitinib in patients with rheumatoid arthritis and an inadequate response to biological agents (RA-BEACON). Ann Rheum Dis. 2017;76(4):694-700. doi: 10.1136/annrheumdis-2016-209821
25. Dougados M, van der Heijde D, Chen Y-C, et al. Baricitinib in patients with inadequate response or intolerance to conventional synthetic DMARDs: results from the RA-BUILD study. Ann Rheum Dis. 2017;76(1):88-95. doi: 10.1136/annrheumdis-2016-210094
26. Emery P, Blanco R, Maldonado Cocco J, et al. Patient-reported outcomes from a phase III study of baricitinib in patients with conventional synthetic DMARD-refractory rheumatoid arthritis. RMD Open. 2017;3(1):e000410. doi: 10.1136/rmdopen-2016-000410
27. Taylor PC, Keystone EC, van der Heijde D, et al. Baricitinib versus placebo or adalimumab in rheumatoid arthritis. N Engl J Med. 2017;376(7):652-62. doi: 10.1056/NEJMoa1608345
28. Keystone EC, Taylor PC, Tanaka Y, et al. Patient-reported outcomes from a phase 3 study of baricitinib versus placebo or adalimumab in rheumatoid arthritis: secondary analyses from the RA-BEAM study. Ann Rheum Dis. 2017;76(11):1853-61. doi: 10.1136/annrheumdis-2017-211259
29. Fleischmann R, Schiff M, van der Heijde D, et al. Baricitinib, methotrexate, or combination in patients with rheumatoid arthritis and no or limited prior disease-modifying antirheumatic drug treatment. Arthritis Rheum. 2017;69(3):506-17. doi: 10.1002/art.39953
30. Schiff M, Takeuchi T, Fleischmann R, et al. Patient-reported outcomes of baricitinib in patients with rheumatoid arthritis and no or limited prior disease-modifying antirheumatic drug treatment. Arthritis Res Ther. 2017;19(1):208. doi: 10.1186/s13075-017-1410-1
31. Van der Heijde D, Durez P, Schett G, et al. Structural damage progression in patients with early rheumatoid arthritis treated with methotrexate, baricitinib, or baricitinib plus methotrexate based on clinical response in the phase 3 RA-BEGIN study. Clin Rheumatol. 2018;37(9):2381-90. doi: 10.1007/s10067-018-4221-0
32. Fleischmann R, Takeuchi T, Schiff M, et al. Efficacy and safety of long-term baricitinib with and without methotrexate for the treatment of rheumatoid arthritis: experience with baricitinib monotherapy continuation or after switching from methotrexate monotherapy or baricitinib plus methotrexate. Arthritis Care Res (Hoboken). 2019 Jun 24. doi: 10.1002/acr.24007
33. Fleischmann R, Schiff M, Kvein TK, et al. THU0075 Early versus delayed start of baricitinib in patients with rheumatoid arthritis in a phase 3 trial of patients naХve to methotrexate treatment. Ann Rheum Dis. 2019;78:306-7. doi: 10.1136/annrheumdis-2019-eular.975
34. Tanaka Y, Fautrel B, Keystone EC, et al. Clinical outcomes in patients switched from adalimumab to baricitinib due to nonresponse and/or study design: phase III data in patients with rheumatoid arthritis. Ann Rheum Dis. 2019;78(7):890-8. doi: 10.1136/annrheumdis-2018-214529
35. Weinblatt ME, Taylor PC, Keystone EC, et al. Efficacy and safety of switching from Adalimumab to Baricitinib: Long-term data from phase 3 extension study in patients with rheumatoid arthritis [abstract]. Arthritis Rheum. 2018;70 Suppl. 10. Available at: https://acrabstracts.org/abstract/efficacy-and-safety-of-switching-from-adalimumab-to-baricitinib-long-term-data-fromphase-3-extension-study-in-patients-with-rheumatoid-arthritis/ (accessed 08.04.2020).
36. Van der Heijde D, Dougados M, Chen YC, et al. Effects of baricitinib on radiographic progression of structural joint damage at 1 year in patients with rheumatoid arthritis and an inadequate response to conventional synthetic disease-modifying antirheumatic drugs. RMD Open. 2018;4(1):e000662. doi: 10.1136/rmdopen-2018-000662
37. Van Vollenhoven R, Helt C, Arora V, et al. Safety and efficacy of baricitinib in patients receiving conventional synthetic diseasemodifying antirheumatic drugs or corticosteroids. Rheumatol Ther. 2018;5(2):525-36. doi: 10.1007/s40744-018-0128-0
38. Genovese M, Weinblatt M, Wu J, et al. Patient disease trajectories in baricitinib-2 mg-treated patients with rheumatoid arthritis and inadequate response to biologic DMARDs [abstract]. Arthritis Rheum. 2019;71 Suppl. 10). Available at: https://acrabstracts.org/abstract/patient-disease-trajectories-inbaricitinib-2-mg-treated-patients-with-rheumatoid-arthritis-andinadequate-response-to-biologic-dmards/ (accessed 08.04.2020).
39. Takeuchi T, Genovese MC, Haraoui B, et al. Dose reduction of baricitinib in patients with rheumatoid arthritis achieving sustained disease control: results of a prospective study. Ann Rheum Dis. 2019;78(2):171-8. doi: 10.1136/annrheumdis-2018-213271
40. Emery P, Tanaka Y, Cardillo T, et al. Temporary interruption of baricitinib: characterization of interruptions and effect on clinical outcomes in patients with rheumatoid arthritis. Arthritis Res Ther. 2020;22:115. Published online 2020 May 15. doi: 10.1186/s13075-020-02199-8
41. Keystone EC, Taylor PC, Drescher E, et al. Safety and efficacy of baricitinib at 24 weeks in patients with rheumatoid arthritis who have had an inadequate response to methotrexate. Ann Rheum Dis. 2015;74(2):333-40. doi: 10.1136/annrheumdis-2014-206478
42. Tanaka Y, Emoto K, Cai Z, et al. Efficacy and safety of baricitinib in Japanese patients with active rheumatoid arthritis receiving background methotrexate therapy: a 12-week, double-blind, randomized placebo-controlled study. J Rheumatol. 2016;43(3):504- 11. doi: 10.3899/jrheum.150613
43. Keystone EC, Genovese MC, Schlichting DE, et al. Safety and efficacy of baricitinib through 128 weeks in an open-label, longterm extension study in patients with rheumatoid arthritis. J Rheumatol. 2018;45(1):14-21. doi: 10.3899/jrheum.161161
44. Genovese MC, Smolen JS, Takeuchi T, et al. THU0075 Safety profile of baricitinib for the treatment of rheumatoid arthritis up to 7 eears: an update integrated safety analysis. Ann Rheum Dis. 2019;78:308-9. doi: 10.1136/annrheumdis-2019-eular.691
45. Smolen JS, Genovese MC, Takeuchi T, et al. Safety profile of baricitinib in patients with active rheumatoid arthritis with over 2 years median time in treatment. J Rheumatol. 2019;46(1):7-18. doi: 10.3899/jrheum.171361
46. Dougados M. Comorbidities in rheumatoid arthritis. Curr Opin Rheumatol. 2016;28(3):282-8. doi: 10.1097/BOR.0000000000000267
47. Dougados M, Soubrier M, Antunez A, et al. Prevalence of comorbidities in rheumatoid arthritis and evaluation of their monitoring: results of an international, cross-sectional study (COMORA). Ann Rheum Dis. 2014;73(1):62-8. doi: 10.1136/annrheumdis-2013-204223
48. Ferguson LD, Siebert S, McInnes IB, Sattar N. Cardiometabolic comorbidities in RA and PsA: lessons learned and future directions. Nat Rev Rheumatol. 2019;15(8):461-74. doi: 10.1038/s41584-019-0256-0
49. Scott IC, Hider SL, Scott DL. Thromboembolism with Janus kinase (JAK) inhibitors for rheumatoid arthritis: How real is the risk? Drug Saf. 2018;41(7):645-53. doi: 10.1007/s40264-018-0651-5
50. Taylor PC, Weinblatt ME, Burmester GR, et al. Cardiovascular safety during treatment with baricitinib in rheumatoid arthritis. Arthritis Rheum. 2019;71(7):1042-55. doi: 10.1002/art.40841
51. Xie W, Huang Y, Xiao S, et al. Impact of Janus kinase inhibitors on risk of cardiovascular events in patients with rheumatoid arthritis: systematic review and meta-analysis of randomised controlled trials. Ann Rheum Dis. 2019;78:1048-54. doi: 10.1136/annrheumdis-2018-214846
52. Robertson J, Peters MJ, McInnes IB, et al. Changes in lipid levels with inflammation and therapy in RA: a maturing paradigm. Nat Rev Rheumatol. 2013;9:513-23. doi: 10.1038/nrrheum.2013
53. O'Neill F, Charakida M, Topham E, et al. Anti-inflammatory treatment improves high-density lipoprotein function in rheumatoid arthritis. Heart. 2017;103:766-73. doi: 10.1136/heartjnl-2015-308953
54. Navarro-Millan I, Charles-Schoeman C, Yang S, et al. Changes in lipoproteins associated with methotrexate or combination therapy in early rheumatoid arthritis: results from the treatment of early rheumatoid arthritis trial. Arthritis Rheum. 2013;65:1430-8. doi: 10.1002/art.37916
55. Genovese MC, McKay JD, Nasonov EL, et al. Interleukin-6 receptor inhibition with tocilizumab reduces disease activity in rheumatoid arthritis with inadequate response to disease-modifying antirheumatic drugs: the tocilizumab in combination with traditional disease-modifying antirheumatic drug therapy study. Arthritis Rheum. 2008;58:2968-80. doi: 10.1002/art.23940
56. Charles-Schoeman C, Fleischmann R, Davignon J, et al. Potential mechanisms leading to the abnormal lipid profile in patients with rheumatoid arthritis versus healthy volunteers and reversal by tofacitinib. Arthritis Rheum. 2015;67:616-25. doi: 10.1002/art.38974
57. Myasoedova E, Crowson CS, Kremers HM, et al. Lipid paradox in rheumatoid arthritis: the impact of serum lipid measures and systemic inflammation on the risk of cardiovascular disease. Ann Rheum Dis. 2011;70:482-7. doi: 10.1136/ard.2010.135871
58. Choy E, Ganeshalingam K, Semb AG, et al. Cardiovascular risk in rheumatoid arthritis: recent advances in the understanding of the pivotal role of inflammation, risk predictors and the impact of treatment. Rheumatology. 2014;53:2143-54. doi: 10.1093/rheumatology/keu224
59. Kremer JM, Genovese MC, Keystone E, et al. Effects of baricitinib on lipid, apolipoprotein, and lipoprotein particle profiles in a phase IIb study of patients with active rheumatoid arthritis. Arthritis Rheum. 2017;69(5):943-52. doi: 10.1002/art.40036
60. Taylor PC, Kremer JM, Emery P, et al. Lipid profile and effect of statin treatment in pooled phase II and phase III baricitinib studies. Ann Rheum Dis. 2018;77(7):988-95. doi: 10.1136/annrheumdis-2017-212461
61. Qiu C, Zhao X, She L, et al. Baricitinib induces LDL-C and HDL-C increases in rheumatoid arthritis: a meta-analysis of randomized controlled trials. Lipids Health Dis. 2019;18(1):54. doi: 10.1186/s12944-019-0994-7
62. Otvos JD, Shalaurova I, Wolak-Dinsmore J, et al. GlycA: a composite nuclear magnetic resonance biomarker of systemic inflammation. Clin Chem. 2015;61:714-23. doi: 10.1373/clinchem.2014.232918
63. Ormseth MJ, Chung CP, Oeser AM, et al. Utility of a novel inflammatory marker, GlycA, for assessment of rheumatoid arthritis disease activity and coronary atherosclerosis. Arthritis Res Ther. 2015;17:117. doi: 10.1186/s13075-015-0646-xed
64. Bartlett DB, Connelly MA, AbouAssi H, et al. A novel inflammatory biomarker, GlycA, associates with disease activity in rheumatoid arthritis and cardio-metabolic risk in BMI-matched controls. Arthritis Res Ther. 2016;18:86. doi: 10.1186/s13075-016-0982-5
65. Connelly MA, Gruppen EG, Otvos JD, et al. Inflammatory glycoproteins in cardiometabolic disorders, autoimmune diseases and cancer. Clin Chim Acta. 2016;459:177-86. doi: 10.1016/j.cca.2016.06.012
66. Tanaka Y, McInnes IB, Taylor PC, et al. Characterization and changes of lymphocyte subsets in baricitinib-treated patients with rheumatoid arthritis: an integrated analysis. Arthritis Rheum. 2018;70(12):1923-32. doi: 10.1002/art.406
67. Waggoner SN, Reighard SD, Gyurova IE, et al. Roles of natural killer cells in antiviral immunity. Curr Opin Virol. 2016;16:15-23. doi: 10.1016/j.coviro.2015.10.008
68. Della Chiesa M, De Maria A, Muccio L, et al. Human NK cells and herpesviruses: mechanisms of recognition, response and adaptation. Front Microbiol. 2019;10:2297. doi: 10.3389/fmicb.2019.02297
69. Anjara P, Jiang M, Mundae M. Symptomatic elevation creatine kinase following treatment of rheumatoid arthritis with baricitinib. Clin Rheumatol. 2020;39(2):613-4. doi: 10.1007/s10067-019-04833-6
70. Serhal L, Lwin MN, Holroyd C, Edwards CJ. Rheumatoid arthritis in the elderly: Characteristics and treatment considerations. Autoimmun Rev. 2020 Mar 29:102528. doi: 10.1016/j.autrev.2020.102528
71. Fleischmann R, Alam J, Arora V, et al. Safety and efficacy of baricitinib in elderly patients with rheumatoid arthritis. RMD Open. 2017;3(2):e000546. doi: 10.1136/rmdopen-2017-000546
72. Kremer JM, Schiff M, Muram D, et al. Response to baricitinib therapy in patients with rheumatoid arthritis with inadequate response to csDMARDs as a function of baseline characteristics. RMD Open. 2018;4(1):e000581. doi: 10.1136/rmdopen-2017-000581
73. Combe B, Balsa A, Sarzi-Puttini P, et al. Efficacy and safety data based on historical or pre-existing conditions at baseline for patients with active rheumatoid arthritis who were treated with baricitinib. Ann Rheum Dis. 2019;78(8):1135-8. doi: 10.1136/annrheumdis-2018-214261
74. Huang F, Luo ZC. Risk of adverse drug events observed with baricitinib 2 mg versus baricitinib 4 mg once daily for the treatment of rheumatoid arthritis: a systematic review and metaanalysis of randomized controlled trials. BioDrugs. 2018;32(5):415-23. doi: 10.1007/s40259-018-0304-3
75. Kunwar S, Collins CE, Constantinescu F. Baricitinib, a Janus kinase inhibitor, in the treatment of rheumatoid arthritis: a systematic literature review and meta-analysis of randomized controlled trials. Clin Rheumatol. 2018;37(10):2611-20. doi: 10.1007/s10067-018-4199-7
76. Lee YH, Bae SC. Comparative efficacy and safety of baricitinib 2 mg and 4 mg in patients with active rheumatoid arthritis: A Bayesian network meta-analysis of randomized controlled trials. Z Rheumatol. 2018;77(4):335-42. doi: 10.1007/s00393-016-0254-4
77. Wu ZP, Zhang P, Bai JZ, et al. Efficacy and safety of baricitinib for active rheumatoid arthritis in patients with an inadequate response to conventional synthetic or biological disease-modifying anti-rheumatic drugs: A meta-analysis of randomized controlled trials. Exp Ther Med. 2018;16(3):2449-59. doi: 10.3892/etm.2018.6495
78. Honda S, Harigai M. The safety of baricitinib in patients with rheumatoid arthritis. Expert Opin Drug Saf. 2020 Mar 21:1-7. doi: 10.1080/14740338.2020.1743263
79. Bae SC, Lee YH. Comparison of the efficacy and safety of tofacitinib and baricitinib in patients with active rheumatoid arthritis: a Bayesian network meta-analysis of randomized controlled trials. Z Rheumatol. 2019;78(6):559-67. doi: 10.1007/s00393-018-0531-5
80. Jegatheeswaran J, Turk M, Pope JE. Comparison of Janus kinase inhibitors in the treatment of rheumatoid arthritis: a systemic literature review. Immunotherapy. 2019;11(8):737-54. doi: 10.2217/imt-2018-0178
81. Lee YH, Song GG. Relative efficacy and safety of tofacitinib, baricitinib, upadacitinib, and filgotinib in comparison to adalimumab in patients with active rheumatoid arthritis. Z Rheumatol. 2020 Feb 13. doi: 10.1007/s00393-020-00750-1
82. Ren S, Bermejo I, Simpson E, et al. Baricitinib for previously treated moderate or severe rheumatoid arthritis: an evidence review group perspective of a NICE Single Technology Appraisal. Pharmacoeconomics. 2018;36(7):769-78. doi: 10.1007/s40273-018-0616-7
83. Sepriano A, Kerschbaumer A, Smolen JS, et al. Safety of synthetic and biological DMARDs: a systematic literature review informing the 2019 update of the EULAR recommendations for the management of rheumatoid arthritis. Ann Rheum Dis. 2020 Feb 7. doi: 10.1136/annrheumdis-2019-216653
84. Kerschbaumer A, Sepriano A, Smolen JS, et al. Efficacy of pharmacological treatment in rheumatoid arthritis: a systematic literature research informing the 2019 update of the EULAR recommendations for management of rheumatoid arthritis. Ann Rheum Dis. 2020 Feb 7. doi: 10.1136/annrheumdis-2019-216656
85. Gossec L, Dougados M, Dixon W. Patient-reported outcomes as end points in clinical trials in rheumatoid arthritis. RMD Open. 2015;1(1):e000019. doi: 10.1136/rmdopen-2014-000019
86. Rendas-Baum R, Bayliss M, Kosinski M, et al. Measuring the effect of therapy in rheumatoid arthritis clinical trials from the patient's perspective. Curr Med Res Opin. 2014;30:1391-403. doi: 10.1185/03007995.2014.896328
87. Taylor PC, Manger B, Alvaro-Gracia J, et al. Patient perceptions concerning pain management in the treatment of rheumatoid arthritis. J Int Med Res. 2010;38:1213-24. doi: 10.1177/147323001003800402
88. Boyden SD, Hossain IN, Wohlfahrt A, Lee YC. Non-inflammatory causes of pain in patients with rheumatoid arthritis. Curr Rheumatol Rep. 2016;18:30. doi: 10.1007/s11926-016-0581-0
89. Lampa JB. Pain without inflammation in rheumatic diseases. Best Pract Res Clin Rheumatol. 2019;33(3):101439. doi: 10.1016/j.berh.2019.101439
90. Taylor PC, Moore A, Vasilescu R, et al. A structured literature review of the burden of illness and unmet needs in patients with rheumatoid arthritis: A current perspective. Rheumatol Int. 2016;36:685-95. doi: 10.1007/s00296-015-3415-x
91. Taylor PC, Lee YC, Fleischmann R, et al. Achieving pain control in rheumatoid arthritis with baricitinib or adalimumab plus methotrexate: results from the RA-BEAM trial. J Clin Med. 2019;8(6):831. doi: 10.3390/jcm8060831
92. Fautrel B, Kirkham B, Pope JE, et al. Effect of baricitinib and adalimumab in reducing pain and improving function in patients with rheumatoid arthritis in low disease activity: exploratory analyses from RA-BEAM. J Clin Med. 2019;8(9):1394. doi: 10.3390/jcm8091394
93. Taylor P, Pope J, Ikeda K, et al. Baricitinib provides better pain relief across all disease activity levels compared with placebo and adalimumab in rheumatoid arthritis [abstract]. Arthritis Rheum. 2019;71 Suppl. 10. Available at: https://acrabstracts.org/abstract/baricitinib-provides-better-painrelief-across-all-disease-activity-levels-compared-with-placeboand-adalimumab-in-rheumatoid-arthritis/ (accessed 08.04.2020).
94. Busch-Dienstfertig M, Gonzalez-Rodriguez S. IL-4, JAK-STAT signaling, and pain. JAK-STAT. 2013;2:e27638. doi: 10.4161/jkst.27638
95. Salaffi F, Giacobazzi G, Di Carlo M. Chronic pain in inflammatory arthritis: mechanisms, metrology, and emerging targets – a focus on the JAK-STAT Pathway. Pain Res Manag. 2018 Feb 7;2018:8564215. doi: 10.1155/2018/8564215
96. Cook AD, Pobjoy J, Steidl S, et al. Granulocyte-macrophage colony-stimulating factor is a key mediator in experimental osteoarthritis pain and disease development. Arthritis Res Ther. 2012;14:R199. doi: 10.1186/ar4037
97. Lee KM, Prasad V, Achuthan A, et al. Targeting GM-CSF for collagenase-induced osteoarthritis pain and disease in mice. Osteoarthritis Cartilage. 2020;28(4):486-91. doi: 10.1016/j.joca.2020.01.012
98. Choy EHS, Calabrese LH. Neuroendocrine and neurophysiological effects of interleukin 6 in rheumatoid arthritis. Rheumatology (Oxford). 2018;57(11):1885-95. doi: 10.1093/rheumatology/kex391
99. Лисицына ТА, Вельтищев ДЮ, Лила АМ, Насонов ЕЛ. Интерлейкин 6 как патогенетический фактор, опосредующий формирование клинических проявлений, и мишень для терапии ревматических заболеваний и депрессивных расстройств. Научно-практическая ревматология. 2019;57(3):318-27. doi: 10.14412/1995-4484-2019-318-327 [Lisitsyna TA, Veltishchev DYu, Lila AM, Nasonov EL. Interleukin 6 as a pathogenic factor mediating clinical manifestations and a therapeutic target for rheumatic diseases and depressive disorders. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2019;57(3):318-27. doi: 10.14412/1995-4484-2019-318-327 (In Russ.)].
100. Gadina M, Johnson C, Schwartz D, et al. Translational and clinical advances in JAK-STAT biology: The present and future of jakinibs. J Leukoc Biol. 2018;104(3):499-514. doi: 10.1002/JLB.5RI0218-084R
101. Choy EH. Clinical significance of Janus kinase inhibitor selectivity. Rheumatology (Oxford). 2018 Dec 1. doi: 10.1093/rheumatology/key339
102. McInnes IB, Byers NL, Higgs RE, et al. Comparison of baricitinib, upadacitinib, and tofacitinib mediated regulation of cytokine signaling in human leukocyte subpopulations. Arthritis Res Ther. 2019;21(1):183. doi: 10.1186/s13075-019-1964-1
103. Dowty ME, Lin TH, Jesson MI, et al. Janus kinase inhibitors for the treatment of rheumatoid arthritis demonstrate similar profiles of in vitro cytokine receptor inhibition. Pharmacol Res Perspect. 2019;7(6):e00537. doi: 10.1002/prp2.537
104. Насонов ЕЛ, Лила АМ. Ингибиция интерлейкина 6 при иммуновоспалительных ревматических заболеваниях: достижения, перспективы и надежды. Научно-практическая ревматология. 2017;55(6):590-9. doi: 10.14412/1995-4484-2017-590-599 [Nasonov EL, Lila AM. Inhibition of interleukin 6 in immune inflammatory rheumatic diseases: achievements, prospects, and hopes. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2017;55(6):590-9. doi: 10.14412/1995-4484-2017-590-599 (In Russ.)].
105. Kubo S, Nakayamada S, Sakata K, et al. Janus kinase inhibitor baricitinib modulates human innate and adaptive immune system. Front Immunol. 2018;9:1510. doi: 10.3389/fimmu.2018.01510
106. Nielsen MA, Lomholt S, Mellemkjaer A, et al. Responses to cytokine inhibitors associated with cellular composition in models of immune-mediated inflammatory arthritis. ACR Open Rheumatol. 2020;2(1):3-10. doi: 10.1002/acr2.11094
107. Temmoku J, Fujita Y, Matsuoka N, et al. Uric acid-mediated inflammasome activation in IL-6 primed innate immune cells is regulated by baricitinib. Mod Rheumatol. 2020 Mar 30:1-6. doi: 10.1080/14397595.2020.1740410
108. Murakami K, Kobayashi Y, Uehara S, et al. A Jak1/2 inhibitor, baricitinib, inhibits osteoclastogenesis by suppressing RANKL expression in osteoblasts in vitro. PLoS One. 2017;12(7):e0181126. doi: 10.1371/journal.pone.0181126
109. Adam S, Simon N, Steffen U, et al. JAK inhibition increases bone mass in steady-state conditions and ameliorates pathological bone loss by stimulating osteoblast function. Sci Transl Med. 2020;12(530). doi: 10.1126/scitranslmed.aay4447
110. McGonagle D, McDermott MF. A proposed classification of the immunological diseases. PLoS Med. 2006;3:e297. doi: 10.1371/journal.pmed.0030297
111. Kretschmer S, Lee-Kirsch MA. Type I interferon-mediated autoinflammation and autoimmunity. Curr Opin Immunol. 2017;49:96-102. doi: 10.1016/j.coi.2017.09.003
112. Sanchez GAM, Reinhardt A, Ramsey S, et al. JAK1/2 inhibition with baricitinib in the treatment of autoinflammatory interferonopathies. J Clin Invest. 2018;128(7):3041-52. doi: 10.1172/JCI98814
113. Meesilpavikkai K, Dik WA, Schrijver B, et al. Efficacy of Baricitinib in the treatment of chilblains associated with AicardiGoutieres syndrome, a type I interferonopathy. Arthritis Rheum. 2019;71(5):829-31. doi: 10.1002/art.40805
114. Psarras A, Emery P, Vital EM. Type I interferon-mediated autoimmune diseases: pathogenesis, diagnosis and targeted therapy. Rheumatology (Oxford). 2017;56(10):1662-75. doi: 10.1093/rheumatology/kew431
115. Насонов ЕЛ, Авдеева АС. Иммуновоспалительные ревматические заболевания, связанные с интерфероном типа I: новые данные. Научно-практическая ревматология. 2019;57(4):452-61. doi: 10.14412/1995-4484-2019-452-461 [Nasonov EL, Avdeeva AS. Immunoinflammatory rheumatic diseases associated with type I interferon: new evidence. NauchnoPrakticheskaya Revmatologiya = Rheumatology Science and Practice. 2019;57(4):452-61. doi: 10.14412/1995-4484-2019-452-461 (In Russ.)].
116. Wallace DJ, Furie RA, Tanaka Y, et al. Baricitinib for systemic lupus erythematosus: a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet. 2018;392(10143):222-31. doi: 10.1016/S0140-6736(18)31363-1
117. Dö rner T, Tanaka Y, Petri M, et al. Molecular profiling identifies immunologic subgroups and informs mechanism of action of baricitinib in SLE [abstract]. Arthritis Rheum. 2019;71 Suppl. 10. Available at: https://acrabstracts.org/abstract/molecular-profiling-identifies-immunologic-subgroups-and-informs-mechanismof-action-of-baricitinib-in-sle/ (accessed 09.04.2020).
118. Kim H, Dill S, O'Brien M, et al. Preliminary response to Janus kinase (JAK) inhibition with baricitinib in refractory juvenile dermatomyositis [abstract]. Arthritis Rheum. 2019;71 Suppl. 10. Available at: https://acrabstracts.org/abstract/preliminaryresponse-to-janus-kinase-jak-inhibition-with-baricitinib-inrefractory-juvenile-dermatomyositis/ (accessed 08.04.2020).
119. Авдеева АС. ИФНγ-индуцируемый белок 10 (IP-10) при ревматоидном артрите: обзор литературы и собственные данные. Научно-практическая ревматология. 2017;55(6):655-61. doi: 10.14412/1995-4484-2017-655-661 [Avdeeva AS. IFN-γ-induced protein 10 (IP-10) in rheumatoid arthritis: literature review and the authors' own data. NauchnoPrakticheskaya Revmatologiya = Rheumatology Science and Practice. 2017;55(6):655-61. doi: 10.14412/1995-4484-2017-655-661 (In Russ.)].
120. Larosa M, Zen M, Gatto M, et al. IL-12 and IL-23/Th17 axis in systemic lupus erythematosus. Exp Biol Med (Maywood). 2019;244(1):42-51. doi: 10.1177/1535370218824547
121. Lu H, Stratton CW, Tang YW. Outbreak of pneumonia of unknown etiology in Wuhan China: the mystery and the miracle. J Med Virol. 2020 Jan 16. doi: 10.1002/jmv.25678
122. Насонов ЕЛ. Коронавирусная болезнь 2019 (COVID-19): размышления ревматолога. Научно-практическая ревматология. 2020;58(2):123-32. doi: 10.14412/1995-4484-2020-123-132 [Nasonov EL. Coronavirus disease 2019 (COVID-19): a rheumatologist’s thoughts. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2020;58(2):123-32. doi: 10.14412/1995-4484-2020-123-132 (In Russ.)].
123. Behrens EM, Koretzky GA. Review: Cytokine storm syndrome: looking toward the precision medicine era. Arthritis Rheum. 2017;69(6):1135-43. doi: 10.1002/art.40071
124. Gupta KK, Khan MA, Singh SK. Constitutive inflammatory cytokine storm: a major threat to human health. J Interferon Cytokine Res. 2020;40(1):19-23. doi: 10.1089/jir.2019.0085
125. McGonagle D, Sharif K, O'Regan A, Bridgewood C. Interleukin-6 use in COVID-19 pneumonia related macrophage activation syndrome. Autoimmun Rev. 2020 Apr 3:102537. doi: 10.1016/j.autrev.2020.102537
126. Pedersen SF, Ho YC. SARS-CoV-2: A Storm is Raging. J Clin Invest. 2020 Mar 27. doi: 10.1172/JCI137647
127. Mehta P, McAuley DF, Brown M, et al; HLH Across Speciality Collaboration, UK. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020 Mar 28;395(10229):1033-4. doi: 10.1016/S0140-6736(20)30628-0
128. Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020 Jan 30. doi: 10.1016/S0140-6736(20)30251-8
129. Richardson P, Griffin I, Tucker C, et al. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet. 2020 Feb 15;395(10223):e30-e31. doi: 10.1016/S0140-6736(20)30304-4
130. Stebbing J, Phelan A, Griffin I, et al. COVID-19: combining antiviral and anti-inflammatory treatments. Lancet Infect Dis. 2020 Feb 27. doi: 10.1016/S1473-3099(20)30132-8
131. Насонов ЕЛ. Иммунопатология и иммунофармакотерапия коронавирусной болезни 2019 (COVID-19): фокус на интерлейкин 6. Научно-практическая ревматология. 2020;58(3):245-61. doi: 10.14412/1995-4484-2020-245-261 [Nasonov EL. Immunopathology and immunopharmacotherapy of coronavirus disease 2019 (COVID-19): focus on interleukin 6. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2020;58(3):245-61. doi: 10.14412/1995-4484-2020-245-261 (In Russ.)].
Рецензия
Для цитирования:
Насонов Е.Л., Лила А.М. Барицитиниб: новые возможности фармакотерапии ревматоидного артрита и других иммуновоспалительных ревматических заболеваний. Научно-практическая ревматология. 2020;58(3):304-316. https://doi.org/10.14412/1995-4484-2020-304-316
For citation:
Nasonov E.L., Lila A.M. BARICITINIB: NEW PHARMACOTHERAPY OPTIONS FOR RHEUMATOID ARTHRITIS AND OTHER IMMUNE-MEDIATED INFLAMMATORY RHEUMATIC DISEASES. Rheumatology Science and Practice. 2020;58(3):304-316. (In Russ.) https://doi.org/10.14412/1995-4484-2020-304-316