Preview

Научно-практическая ревматология

Расширенный поиск

Новые лабораторные биомаркеры ревматоидного артрита

https://doi.org/10.47360/1995-4484-2021-201-207

Полный текст:

Аннотация

В обзоре представлены данные о новых биомаркерах ревматоидного артрита (РА), включая антитела к карбамилированным белкам (анти-Карб), пептидил-аргининдезаминазе (анти-ПАД), гомоцистеинилированному α1-антитрипсину (гц-α1АТ), макрофагальный растворимый скавенджер-рецептор А (sSR-A), 14-3-3η. Исследование новых биомаркеров может позволить улучшить диагностику РА на ранних стадиях и стратифицировать пациентов в отношении прогноза и выбора терапии.

Об авторе

Д. А. Дибров
ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой»
Россия

Дибров Данил Алексеевич, ординатор 2-го года

115522, Москва, Каширское шоссе, 34а



Список литературы

1. Насонов ЕЛ (ред.). Российские клинические рекомендации. Ревматология. М.;ГЭОТАР-Медиа;2019:17-57.

2. Goekoop-Ruiterman YP, de Vries-Bouwstra JK, Allaart CF, van Zeben D, Kerstens PJ, Hazes JM, et al. Clinical and radiographic outcomes of four different treatment strategies in patients with early rheumatoid arthritis (the BeSt study): A randomized, controlled trial. Arthritis Rheum. 2005;52(11):3381-3390. doi: 10.1002/art.21405

3. Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO 3rd, et al. 2010 rheumatoid arthritis classification criteria: An American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 2010;62:2569-2581. doi: 10.1002/art.27584

4. Nishimura K, Sugiyama D, Kogata Y, Tsuji G, Nakazawa T, Kawano S, et al. Meta-analysis: Diagnostic accuracy of anti-cyclic citrullinated peptide antibody and rheumatoid factor for rheumatoid arthritis. Ann Intern Med. 2007;146(11):797-808. doi: 10.7326/0003-4819-146-11-200706050-00008

5. Sun J, Zhang Y, Liu L, Liu G. Diagnostic accuracy of combined tests of anti cyclic citrullinated peptide antibody and rheumatoid factor for rheumatoid arthritis: A meta-analysis. Clin Exp Rheumatol. 2014;32(1):11-21.

6. Coffey CM, Crowson CS, Myasoedova E. Evidence of diagnostic and treatment delay in seronegative rheumatoid arthritis: Missing the window of opportunity. Mayo Clin Proc. 2019;94(11):2241-2248. doi: 10.1016/j.mayocp.2019.05.023

7. Nordberg LB, Lillegraven S, Aga AB, Sexton J, Olsen IC, Lie E, et al. Comparing the disease course of patients with seronegative and seropositive rheumatoid arthritis fulfilling the 2010 ACR/ EULAR classification criteria in a treat-to-target setting: 2-year data from the ARCTIC trial. RMD Open. 2018;4(2):e000752. doi: 10.1136/rmdopen-2018-000752

8. Насонов ЕЛ. Проблемы иммунопатологии ревматоидного артрита: эволюция болезни. Научно-практическая ревматология. 2017;55(3):277-294. doi: 10.14412/1995-4484-2017-277-294

9. Cantagrel A, Degboe Y. New autoantibodies associated with rheumatoid arthritis recognize posttranslationally modified selfprotein. Joint Bone Spain. 2016;83:11-17. doi: 10.1016/j.jbspin.2015.10.003

10. Shi J, van Veelen PA, Mahler M, Janssen GM, Drijfhout JW, Huizinga TW, et al. Carbamylation and antibodies against carbamylated proteins in autoimmunity and other pathologies. Autoimmun Rev. 2014;13(3):225-230. doi: 10.1016/j.autrev.2013.10.008

11. Wang Z, Nicholls SJ, Rodriguez ER, Kummu O, Hörkkö S, Barnard J, et al. Protein carbamylation links inflammation, smoking, uremia and atherogenesis. Nat Med. 2007;13(10):1176-1184. doi: 10.1038/nm1637

12. Mydel P, Wang Z, Brisslert M, Hellvard A, Dahlberg LE, Hazen SL, et al. Carbamylation-dependent activation of T cells: A novel mechanism in the pathogenesis of autoimmune arthritis. J Immunol. 2010;184(12):6882-6890. doi: 10.4049/jimmunol.1000075

13. Shi J, Knevel R, Suwannalai P, van der Linden MP, Janssen GM, van Veelen PA, et al. Autoantibodies recognizing carbamylated proteins are present in sera of patients with rheumatoid arthritis and predict joint damage. Proc Natl Acad Sci USA. 2011;108(42):17372-17377. doi: 10.1073/pnas.1114465108

14. Li X, Wang Z, Yi H. Diagnostic accuracy of anti-carbamylated protein antibodies in rheumatoid arthritis: A systematic review and meta-analysis. Clin Lab. 2019;65(12). doi: 10.7754/Clin.Lab.2019.190419

15. Bergum B, Koro C, Delaleu N, Solheim M, Hellvard A, Binder V, et al. Antibodies against carbamylated proteins are present in primary Sjogren’s syndrome and are associated with disease severity. Ann Rheum Dis. 2016;75(8):1494-1500. doi: 10.1136/annrheumdis-2015-207751

16. Ziegelasch M, van Delft MA, Wallin P, Skogh T, Magro-Checa C, Steup-Beekman GM, et al. Antibodies against carbamylated proteins and cyclic citrullinated peptides in systemic lupus erythematosus: results from two well-defined European cohorts. Arthritis Res Ther. 2016;18(1):289. doi: 10.1186/s13075-016-1192-x

17. Pecani A, Alessandri C, Spinelli FR, Priori R, Riccieri V, Di Franco M, et al. Prevalence, sensitivity and specificity of antibodies against carbamylated proteins in a monocentric cohort of patients with rheumatoid arthritis and other autoimmune rheumatic diseases. Arthritis Res Ther. 2016;18(1):276. doi: 10.1186/s13075-016-1173-0

18. Shi J, van de Stadt LA, Levarht EW, Huizinga TW, Hamann D, van Schaardenburg D, et al. Anti-carbamylated protein (anti-CarP) antibodies precede the onset of rheumatoid arthritis. Ann Rheum Dis. 2014;73(4):780-783. doi: 10.1136/annrheumdis-2013-204154

19. Brink M, Verheul MK, Rönnelid J, Berglin E, Holmdahl R, Toes RE, et al. Anti-carbamylated protein antibodies in the pre-symptomatic phase of rheumatoid arthritis, their relationship with multiple anti-citrulline peptide antibodies and association with radiological damage. Arthritis Res Ther. 2015;17(1):25. doi: 10.1186/s13075-015-0536-2

20. Verheul MK, Böhringer S, van Delft MAM. Triple positivity for anti-citrullinated protein autoantibodies, rheumatoid factor, and anti-carbamylated protein antibodies conferring high specificity for rheumatoid arthritis: Implications for very early identification of at-risk individuals. Arthritis Rheumatol. 2018;70(11):1721-1731. doi: 10.1002/art.40562

21. Boeters DM, Trouw LA, van der Helm-van Mil AHM, van Steenbergen HW. Does information on novel identified autoantibodies contribute to predicting the progression from undifferentiated arthritis to rheumatoid arthritis: A study on anti-CarP antibodies as an example. Arthritis Res Ther. 2018;20(1):94. doi: 10.1186/s13075-018-1591-2

22. Ponchel F, van Delft MAM, Xie X, Burska AN, Duquenne L, Trouw LA, et al. Anti-carbamylated protein antibodies: are they useful for the diagnosis of rheumatoid arthritis? Clin Exp Rheumatol. 2021;39(1):146-150.

23. Regueiro C, Rodríguez-Martínez L, Nuño L, Ortiz AM, Villalba A, Pascual-Salcedo D, et al. Improved RA classification among early arthritis patients with the concordant presence of three RA autoantibodies: Analysis in two early arthritis clinics. Arthritis Res Ther. 2019;21(1):280. doi: 10.1186/s13075-019-2079-4

24. van Dijk BT, Trouw LA, van der Helm-van Mil AHM, Huizinga TWJ. Substitution of the quantitative serological component in the 2010 criteria for RA with qualitative presence of three autoantibodies yields similar performance: Response to the article by Regueiro et al. Arthritis Res Ther. 2020;22(1):85. doi: 10.1186/s13075-020-02182-3

25. Jiang X, Trouw LA, van Wesemael TJ, Shi J, Bengtsson C, Källberg H, et al. AntiCarP antibodies in two large cohorts of patients with rheumatoid arthritis and their relationship to genetic risk factors, cigarette smoking and other autoantibodies. Ann Rheum Dis. 2014;73(10):1761-1768. doi: 10.1136/annrheumdis-2013-205109

26. Ajeganova S, van Steenbergen HW, Verheul MK, Forslind K, Hafström I, Toes RE, et al. The association between anti-carbamylated protein (anti-CarP) antibodies and radiographic progression in early rheumatoid arthritis: A study exploring replication and the added value to ACPA and rheumatoid factor. Ann Rheum Dis. 2017;76(1):112-118. doi: 10.1136/annrheumdis-2015-208870

27. Truchetet ME, Dublanc S, Barnetche T, Vittecoq O, Mariette X, Richez C, et al. Association of the presence of anti-carbamylated protein antibodies in early arthritis with a poorer clinical and radiologic outcome: Data from the French ESPOIR cohort. Arthritis Rheumatol. 2017;69(12):2292-2302. doi: 10.1002/art.40237

28. Sidiras P, Spruyt D, Gangji V, Imbault V, Sokolova T, Durez P, et al. Antibodies against carbamylated proteins: Prevalence and associated disease characteristics in Belgian patients with rheumatoid arthritis or other rheumatic diseases. Scand J Rheumatol. 2020;7:1-6. doi: 10.1080/03009742.2020.1798500

29. Zhang B, Lei Y, Li X, Gao Z, Xia L, Lu J, et al. Elevated levels of anti-carbamylated protein antibody in patients with rheumatoid arthritis: association with disease activity and bone destruction. J Investig Med. 2020;68(6):1186-1192. doi: 10.1136/jim-2019-001249

30. Elsayed SA, Esmail MA, Ali RM, Mohafez OM. Diagnostic and prognostic value of anti-CarP antibodies in a sample of Egyptian rheumatoid arthritis patients. Clin Rheumatol. 2019;38(10):2683-2689. doi: 10.1007/s10067-019-04616-z

31. Humphreys J, Verheul M, Barton A, Fu B, Toes R, Symmons D, Trouw L, et al. Association of anti-carbamylated protein antibodies with long-term disability and increased disease activity in patients with early inflammatory arthritis: results from the Norfolk Arthritis Register. Lancet. 2015;385(Suppl 1):S44. doi: 10.1016/S0140-6736(15)60359-2

32. Derksen VFAM, Trouw LA, Huizinga TWJ, van der Helmvan Mil AHM, Knevel R, Westerlind H, et al. Anti-carbamylated protein antibodies and higher baseline disease activity in rheumatoid arthritis – A replication study in three cohorts: Comment on the Article by Truchetet et al. Arthritis Rheumatol. 2018;70(12):2096-2097. doi: 10.1002/art.40678

33. Zhu H, Zhao LJ, Zhou Y, Chen Y. Significance of anti-carbamylated protein antibodies in patients with rheumatoid arthritis-associated intersitial lung disease. Beijing Da Xue Xue Bao Yi Xue Ban. 2019;51(6):1003-1007. doi: 10.19723/j.issn.1671-167X.2019.06.004

34. Castellanos-Moreira R, Rodríguez-García SC, Gomara MJ, RuizEsquide V, Cuervo A, Casafont-Solé I, et al. Anti-carbamylated proteins antibody repertoire in rheumatoid arthritis: evidence of a new autoantibody linked to interstitial lung disease. Ann Rheum Dis. 2020;79(5):587-594. doi: 10.1136/annrheumdis-2019-216709

35. Vidal-Bralo L, Perez-Pampin E, Regueiro C, Montes A, Varela R, Boveda MD, et al. Anti-carbamylated protein autoantibodies associated with mortality in Spanish rheumatoid arthritis patients. PLoS One. 2017;12(7):e0180144. doi: 10.1371/journal.pone.0180144

36. Spinelli FR, Pecani A, Ciciarello F, Colasanti T, Di Franco M, Miranda F, et al. Association between antibodies to carbamylated proteins and subclinical atherosclerosis in rheumatoid arthritis patients. BMC Musculoskelet Disord. 2017;18(1):214. doi: 10.1186/s12891-017-1563-8

37. Harrold LR, Litman HJ, Connolly SE, Kelly S, Hua W, Alemao E, et al. Effect of anticitrullinated protein antibody status on response to abatacept or antitumor necrosis factor-α therapy in patients with rheumatoid arthritis: A US national observational study. J Rheumatol. 2018;45(1):32-39. doi: 10.3899/jrheum.170007

38. Kumar R, Piantoni S, Boldini M, Garrafa E, Bazzani C, Fredi M, et al. Anti-carbamylated protein antibodies as a clinical response predictor in rheumatoid arthritis patients treated with abatacept. Clin Exp Rheumatol. 2021;39(1):91-97.

39. Verheul MK, Yee A, Seaman A, Janssen GM, van Veelen PA, Drijfhout JW, et al. Identification of carbamylated alpha 1 anti-trypsin (A1AT) as an antigenic target of anti-CarP antibodies in patients with rheumatoid arthritis. J Autoimmun. 2017;80:77-84. doi: 10.1016/j.jaut.2017.02.008

40. Ehlers MR. Immune-modulating effects of alpha-1 antitrypsin. Biol Chem. 2014;395(10):1187-1193. doi: 10.1515/hsz-2014-0161

41. McCarthy C, Orr C, Fee LT, Carroll TP, Dunlea DM, Hunt DJL, et al. Brief report: Genetic variation of the α1 -antitrypsin gene is associated with increased autoantibody production in rheumatoid arthritis. Arthritis Rheumatol. 2017;69(8):1576-1579. doi: 10.1002/art.40127

42. Colasanti T, Sabatinelli D, Mancone C, Giorgi A, Pecani A, Spinelli FR, et al. Homocysteinylated alpha 1 antitrypsin as an antigenic target of autoantibodies in seronegative rheumatoid arthritis patients. J Autoimmun. 2020;113:102470. doi: 10.1016/j.jaut.2020.102470

43. Suzuki A, Yamada R, Yamamoto K. Citrullination by peptidylarginine deiminase in rheumatoid arthritis. Ann N Y Acad Sci. 2007;1108:323-39. doi: 10.1196/annals

44. Foulquier C, Sebbag M, Clavel C, Chapuy-Regaud S, Al Badine R, Méchin MC, et al. Peptidyl arginine deiminase type 2 (PAD-2) and PAD-4 but not PAD-1, PAD-3, and PAD-6 are expressed in rheumatoid arthritis synovium in close association with tissue inflammation. Arthritis Rheum. 2007;56(11):3541-3553. doi: 10.1002/art.22983

45. Khandpur R, Carmona-Rivera C, Vivekanandan-Giri A, Gizinski A, Yalavarthi S, Knight JS, et al. NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci Transl Med. 2013;5(178):178ra40. doi: 10.1126/scitranslmed.3005580

46. Harre U, Georgess D, Bang H, Bozec A, Axmann R, Ossipova E, et al. Induction of osteoclastogenesis and bone loss by human autoantibodies against citrullinated vimentin. J Clin Invest. 2012;122(5):1791-1802. doi: 10.1172/JCI609

47. Laurent L, Anquetil F, Clavel C, Ndongo-Thiam N, Offer G, Miossec P, et al. IgM rheumatoid factor amplifies the inflammatory response of macrophages induced by the rheumatoid arthritis-specific immune complexes containing anticitrullinated protein antibodies. Ann Rheum Dis. 2015;74(7):1425-1431. doi: 10.1136/annrheumdis-2013-204543

48. Nissinen R, Paimela L, Julkunen H, Tienari PJ, LeirisaloRepo M, Palosuo T, et al. Peptidylarginine deiminase, the arginine to citrulline converting enzyme, is frequently recognized by sera of patients with rheumatoid arthritis, systemic lupus erythematosus and primary Sjögren syndrome. Scand J Rheumatol. 2003;32(6):337-342. doi: 10.1080/03009740410004990

49. Ren J, Sun L, Zhao J. Meta-analysis: diagnostic accuracy of antibody against peptidylarginine deiminase 4 by ELISA for rheumatoid arthritis. Clinical Rheum. 2017;36(11):2431-2438. doi: 10.1007/s10067-017-3809-0

50. Kolfenbach JR, Deane KD, Derber LA, O’Donnell CI, Gilliland WR, Edison JD, et al. Autoimmunity to peptidyl arginine deiminase type 4 precedes clinical onset of rheumatoid arthritis. Arthritis Rheum. 2010;62(9):2633-2639. doi: 10.1002/art.27570

51. Martinez-Prat L, Lucia D, Ibarra C, Mahler M, Dervieux T. Antibodies targeting protein-arginine deiminase 4 (PAD4) demonstrate diagnostic value in rheumatoid arthritis. Ann Rheum Dis. 2019;78(3):434-436. doi: 10.1136/annrheumdis-2018-213818

52. Reyes-Castillo Z, Palafox-Sánchez CA, Parra-Rojas I, MartínezBonilla GE, del Toro-Arreola S, Ramírez-Dueñas MG, et al. Comparative analysis of autoantibodies targeting peptidylarginine deiminase type 4, mutated citrullinated vimentin and cyclic citrullinated peptides in rheumatoid arthritis: Associations with cytokine profiles, clinical and genetic features. Clin Exp Immunol. 2015;182(2):119-131. doi: 10.1111/cei.12677

53. Guderud K, Mæhlen MT, Nordang GBN, Viken MK, Andreassen BK, Molberg Ø, et al. Lack of association among peptidyl arginine deiminase type 4 autoantibodies, PADI4 polymorphisms, and clinical characteristics in rheumatoid arthritis. J Rheumatol. 2018;45(9):1211-1219. doi: 10.3899/jrheum.170769

54. Darrah E, Martinez-Prat L, Mahler M. Clinical utility of antipeptidyl arginine deiminase type 4 antibodies. J Rheumatol. 2019;46(3):329-330. doi: 10.3899/jrheum.180905

55. Martinez-Prat L, Palterer B, Vitiello G, Parronchi P, Robinson WH, Mahler M., et al. Autoantibodies to protein-arginine deiminase (PAD) 4 in rheumatoid arthritis: immunological and clinical significance, and potential for precision medicine. Expert Rev Clin Immunol. 2019;15(10):1073-1087. doi: 10.1080/1744666X.2020.1668778

56. Giles JT, Darrah E, Danoff S, Johnson C, Andrade F, Rosen A, et al. Association of cross-reactive antibodies targeting peptidyl-arginine deiminase 3 and 4 with rheumatoid arthritis-associated interstitial lung disease. PLoS One. 2014;9(6):e98794. doi: 10.1371/journal.pone.0098794

57. Darrah E, Yu F, Cappelli LC, Rosen A, Rosen A, O’Dell JR, Mikuls TR. Association of baseline peptidylarginine deiminase 4 autoantibodies with favorable response to treatment escalation in rheumatoid arthritis. Arthritis Rheumatol. 2019;71(5):696-702. doi: 10.1002/art.40791

58. Moore BW, Perez VJ, Gehring M. Assay and regional distribution of a soluble protein characteristic of the nervous system. J Neurochem. 1968;15(4):265-272. doi: 10.1111/j.1471-4159.1968.tb11610.x

59. Muslin AJ, Tanner JW, Allen PM, Shaw AS. Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine. Cell. 1996;84(6):889-897. doi: 10.1016/s00928674(00)81067

60. Kilani RT, Maksymowych WP, Aitken A, Boire G, St-Pierre Y, Li Y, et al. Detection of high levels of 2 specific isoforms of 14-3-3 proteins in synovial fluid from patients with joint inflammation. J Rheumatol. 2007;34(8):1650-1657.

61. Trimova G, Yamagata K, Iwata S, Hirata S, Zhang T, Uemura F, et al. Tumour necrosis factor alpha promotes secretion of 14-3-3η by inducing necroptosis in macrophages. Arthritis Res Ther. 2020;22(1):24. doi: 10.1186/s13075-020-2110-9

62. Maksymowych WP, van der Heijde D, Allaart CF, Landewé R, Boire G, Tak PP, et al. 14-3-3η is a novel mediator associated with the pathogenesis of rheumatoid arthritis and joint damage. Arthritis Res Ther. 2014;16(2):R99. doi: 10.1186/ar4547

63. de Launay D, van de Sande MG, de Hair MJ, Grabiec AM, van de Sande GP, Lehmann KA, et al. Selective involvement of ERK and JNK mitogen-activated protein kinases in early rheumatoid arthritis (1987 ACR criteria compared to 2010 ACR/EULAR criteria): A prospective study aimed at identification of diagnostic and prognostic biomarkers as well as therapeutic targets. Ann Rheum Dis. 2012;71(3):415-423. doi: 10.1136/ard.2010.143529

64. Carrier N, de Brum-Fernandes AJ, Liang P, Masetto A, Roux S, Biln NK, et al. Impending radiographic erosive progression over the following year in a cohort of consecutive patients with inflammatory polyarthritis: Prediction by serum biomarkers. RMD Open. 2020;6(1):e001191. doi: 10.1136/rmdopen-2020-001191

65. Carrier N, Marotta A, de Brum-Fernandes AJ, Liang P, Masetto A, Ménard HA, et al. Serum levels of 14-3-3η protein supplement C-reactive protein and rheumatoid arthritis-associated antibodies to predict clinical and radiographic outcomes in a prospective cohort of patients with recent-onset inflammatory polyarthritis. Arthritis Res Ther. 2016;18:37. doi: 10.1186/s13075-0160935-z

66. Hirata S, Marotta A, Gui Y, Hanami K, Tanaka Y. Serum 14-3-3η level is associated with severity and clinical outcomes of rheumatoid arthritis, and its pretreatment level is predictive of DAS28 remission with tocilizumab. Arthritis Res Ther. 2015;17:280. doi: 10.1186/s13075-015-0799-7

67. Maksymowych WP, van der Heijde D, Landewe R, Bathon JM, Bingham CO, Bykerk VP, et al. Validation of prognostic biomarkers for RA: testing of 14-3-3 eta according to the omeract soluble biomarker criteria, Arthritis Rheum. 2012;64(Suppl 10):896.

68. Gong X, Xu SQ, Wu Y, Ma CC, Qi S, Liu W, et al. Elevated serum 14-3-3η protein may be helpful for diagnosis of early rheumatoid arthritis associated with secondary osteoporosis in Chinese population. Clin Rheumatol. 2017;36(11):2581-2587. doi: 10.1007/s10067-017-3807-2

69. Sun Y, Hong L, Gao C. The association among 14-3-3η protein, inflammation, bone remodeling and osteoporosis in patients with rheumatoid arthritis. Pak J Med Sci. 2020;36(5):872-876. doi: 10.12669/pjms.36.5.2403

70. Zeng T, Tan L, Wu Y, Yu J. 14-3-3η protein in rheumatoid arthritis: promising diagnostic marker and independent risk factor for osteoporosis. Lab Med. 2020;51(5):529-539. doi: 10.1093/labmed/lmaa001

71. Marotta A, Maksymowych W. SAT0070 levels of 14-3-3Eta predict good eular response to anti-TNF treatment in patients with rheumatoid arthritis. Ann Rheum Dis. 2014;73:615-616. doi: 10.1136/annrheumdis-2014-eular.3426

72. Wang D, Cui Y, Lei H, Cao D, Tang G, Huang H, et al. Diagnostic accuracy of 14-3-3η protein in rheumatoid arthritis: A meta-analysis. Int J Rheum Dis. 2020;23(11):1443-1451. doi: 10.1111/1756-185X.13921

73. Wu Y, Dai Z, Wang H, Wang H, Wu L, Ling H, et al. Serum 14-3-3η is a marker that complements current biomarkers for the diagnosis of RA: Evidence from a meta-analysis. Immunol Invest. 2020:1-17. doi: 10.1080/08820139.2020.1817069

74. Marotta A, van Kuijk AW, Maksymowych WP, Tak PP. Serum 14-3-3η: An independent biomarker associated with joint damage in psoriatic arthritis. Ann Rheum Dis. 2012;71(Suppl 3):576. doi: 10.1136/annrheumdis-2012-eular.3256

75. Salman E, Çetiner S, Boral B, Kibar F, Erken E, Ersözlü ED, et al. Importance of 14-3-3eta, anti-CarP, and anti-Sa in the diagnosis of seronegative rheumatoid arthritis. Turk J Med Sci. 2019;49(5):1498-1502. doi: 10.3906/sag-1812-137.

76. Maksymowych WP, Boire G, van Schaardenburg D, Wichuk S, Turk S, Boers M, et al. 14-3-3η autoantibodies: Diagnostic use in early rheumatoid arthritis. J Rheumatol. 2015;42(9):1587-1594. doi: 10.3899/jrheum.141385

77. van Beers-Tas MH, Marotta A, Boers M, Maksymowych WP, van Schaardenburg D. A prospective cohort study of 14-3-3η in ACPA and/or RF-positive patients with arthralgia. Arthritis Res Ther. 2016;18:76. doi: 10.1186/s13075-016-0975-4

78. Chakravarti R, Gupta K, Swain M, Willard B, Scholtz J, Svensson LG, et al. 14-3-3 in thoracic aortic aneurysms: Identification of a novel autoantigen in large vessel vasculitis. Arthritis Rheumatol. 2015;67(7):1913-1921. doi: 10.1002/art.39130

79. McGowan J, Peter C, Chattopadhyay S, Chakravarti R. 14-3-3ζ-A novel immunogen promotes inflammatory cytokine production. Front Immunol. 2019;10:1553. doi: 10.3389/fimmu.2019.01553

80. Huizinga TWJ, Amos CI, van der Helm-van Mil AHM, Chen W, van Gaalen FA, Jawaheer D, et al. Refining the complex rheumatoid arthritis phenotype based on specificity of the HLA-DRB1 shared epitope for antibodies to citrullinated proteins. Arthritis Rheum. 2005;52:3433-3438. doi: 10.1002/art.21385

81. Raychaudhuri S, Sandor C, Stahl EA, Chen W, van Gaalen FA, Jawaheer D, et al. Five amino acids in three HLA proteins explain most of the association between MHC and seropositive rheumatoid arthritis. Nat Genet. 2012;44:291-296. doi: 10.1038/ng.1076

82. Goldstein JL, Ho YK, Basu SK, Brown MS. Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc Natl Acad Sci USA. 1979;76(1):333-337. doi: 10.1073/pnas.76.1.333

83. Kelley JL, Ozment TR, Li C, Schweitzer JB, Williams DL. Scavenger receptor-A (CD204): a two-edged sword in health and disease. Crit Rev Immunol. 2014;34(3):241-261. doi: 10.1615/critrevimmunol.2014010267

84. Seimon TA, Obstfeld A, Moore KJ, Golenbock DT, Tabas I. Combinatorial pattern recognition receptor signaling alters the balance of life and death in macrophages. Proc Natl Acad Sci USA. 2006;103(52):19794-19799. doi: 10.1073/pnas.0609671104

85. Hsu HY, Hajjar DP, Khan KM, Falcone DJ. Ligand binding to macrophage scavenger receptor-A induces urokinase-type plasminogen activator expression by a protein kinase-dependent signaling pathway. J Biol Chem. 1998;273(2):1240-1246. doi: 10.1074/jbc.273.2.124

86. Hsu HY, Chiu SL, Wen MH, Chen KY, Hua KF. Ligands of macrophage scavenger receptor induce cytokine expression via differential modulation of protein kinase signaling pathways. J Biol Chem. 2001;276(31):28719-28730. doi: 10.1074/jbc.M011117200

87. Wang XY, Facciponte J, Chen X, Subjeck JR, Repasky EA. Scavenger receptor-A negatively regulates antitumor immunity. Cancer Res. 2007;67(10):4996-5002. doi: 10.1158/0008-5472.CAN-06-3138

88. Lin YL, de Villiers WJ, Garvy B, Post SR, Nagy TR, Safadi FF, et al. The effect of class a scavenger receptor deficiency in bone. J Biol Chem. 2007;282(7):4653-4660. doi: 10.1074/jbc.M608552200

89. Takemura K, Sakashita N, Fujiwara Y, Komohara Y, Lei X, Ohnishi K, et al. Class A scavenger receptor promotes osteoclast differentiation via the enhanced expression of receptor activator of NF-kappaB (RANK). Biochem Biophys Res Commun. 2010;391(4):1675-1680. doi: 10.1016/j.bbrc.2009.12.126

90. Hu F, Jiang X, Guo C, Li Y, Chen S, Zhang W, et al. Scavenger receptor-A is a biomarker and effector of rheumatoid arthritis: A large-scale multicenter study. Nat Commun. 2020;11(1):1911. doi: 10.1038/s41467-020-15700-3

91. Zhu JN, Nie LY, Lu XY, Wu HX. Meta-analysis: compared with anti-CCP and rheumatoid factor, could anti-MCV be the next biomarker in the rheumatoid arthritis classification criteria? Clin Chem Lab Med. 2019;57(11):1668-1679. doi: 10.1515/cclm-2019-0167

92. Nicaise Roland P, Grootenboer Mignot S, Bruns A, Hurtado M, Palazzo E, Hayem G, et al. Antibodies to mutated citrullinated vimentin for diagnosing rheumatoid arthritis in anti-CCP-negative patients and for monitoring infliximab therapy. Arthritis Res Ther. 2008;10(6):R142. doi: 10.1186/ar2570


Для цитирования:


Дибров Д.А. Новые лабораторные биомаркеры ревматоидного артрита. Научно-практическая ревматология. 2021;59(2):201-207. https://doi.org/10.47360/1995-4484-2021-201-207

For citation:


Dibrov D.A. New laboratory biomarkers of rheumatoid arthritis. Rheumatology Science and Practice. 2021;59(2):201-207. (In Russ.) https://doi.org/10.47360/1995-4484-2021-201-207

Просмотров: 143


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1995-4484 (Print)
ISSN 1995-4492 (Online)