Новые возможности фармакотерапии системной красной волчанки: перспективы применения анифролумаба (моноклональные антитела к рецепторам интерферона типа I)
https://doi.org/10.47360/1995-4484-2021-537-546
Аннотация
Системная красная волчанка (СКВ) – системное аутоиммунное ревматическое заболевание неизвестной этиологии, характеризующееся гиперпродукцией органонеспецифических аутоантител к различным молекулам клеточного ядра и развитием иммуновоспалительного повреждения внутренних органов. По современным представлениям, один из ключевых механизмов иммунопатогенеза СКВ связан с нарушениями регуляции синтеза интерферона (ИФН) типа I. Комплекс данных, полученных в процессе фундаментальных и клинических исследований, послужил основанием для разработки нового подхода к фармакотерапии СКВ, связанного с использованием моноклональных антител (мАТ), блокирующих активность ИФН типа I или его рецепторов. В ряду этих препаратов особое место занимает анифролумаб (АФМ) (ранее известный как MEDI-546), представляющий собой человеческие IgG1 к мАТ, связывающиеся с клеточными рецепторами для ИФН-α. В статье рассматриваются материалы основных исследований, касающихся эффективности и безопасности АФМ при СКВ, и перспективы применения этого препарата в лечении данного заболевания.
Об авторах
Е. Л. НасоновРоссия
Насонов Евгений Львович
115522, Российская Федерация, Москва, Каширское шоссе, 34а;
119991, Российская Федерация, Москва, ул. Трубецкая, 8, стр. 2
А. С. Авдеева
Россия
115522, Российская Федерация, Москва, Каширское шоссе, 34а
Т. В. Попкова
Россия
115522, Российская Федерация, Москва, Каширское шоссе, 34а
Список литературы
1. Kaul A, Gordon C, Crow MK, Touma Z, Urowitz MB, van Vollenhoven R, et al. Systemic lupus erythematosus. Nat Rev Dis Primers. 2016;2:16039. doi: 10.1038/nrdp.2016.39
2. Tsokos GC. Autoimmunity and organ damage in systemic lupus erythematosus. Nat Immunol. 2020;21(6):605-614. doi: 10.1038/s41590-020-0677-6
3. Fanouriakis A, Bertsias G. Changing paradigms in the treatment of systemic lupus erythematosus. Lupus Sci Med. 2019;6(1):e000310. doi: 10.1136/lupus-2018-000310
4. Durcan L, O’Dwyer T, Petri M. Management strategies and future directions for systemic lupus erythematosus in adults. Lancet. 2019;393(10188):2332-2343. doi: 10.1016/S0140-6736(19)30237-5
5. Соловьев СК, Асеева ЕА, Попкова ТВ, Лила АМ, Мазуров ВИ, Насонов ЕЛ. Системная красная волчанка: новые горизонты диагностики и терапии. Научно-практическая ревматология. 2020;58(1):5-14. doi: 10.14412/1995-4484-2020-5-14
6. Jorge AM, Lu N, Zhang Y, Rai SK, Choi HK. Unchanging premature mortality trends in systemic lupus erythematosus: A general population-based study (1999–2014). Rheumatology (Oxford). 2018;57(2):337-344. doi: 10.1093/rheumatology/kex412
7. Gatto M, Zen M, Iaccarino L, Doria A. New therapeutic strategies in systemic lupus erythematosus management. Nat Rev Rheumatol. 2019;15(1):30-48. doi: 10.1038/s41584-018-0133-2
8. Dörner T, Furie R. Novel paradigms in systemic lupus erythematosus. Lancet. 2019;393(10188):2344-2358. doi: 10.1016/S0140-6736(19)30546-X
9. Crow MK, Olferiev M, Kirou KA. Type I interferons in autoimmune disease. Annu Rev Pathol. 2019;14:369-393. doi: 10.1146/annurev-pathol-020117-043952
10. Насонов ЕЛ, Авдеева АС. Иммуновоспалительные ревматические заболевания, связанные с интерфероном типа I: новые данные. Научно-практическая ревматология. 2019;57(4):452-461. doi: 10.14412/1995-4484-2019-452-461
11. Rönnblom L, Leonard D. Interferon pathway in SLE: One key to unlocking the mystery of the disease. Lupus Sci Med. 2019;6(1):e000270. doi: 10.1136/lupus-2018-000270
12. Schoggins JW. Interferon-stimulated genes: What do they all do? Annu Rev Virol. 2019;6(1):567-584. doi: 10.1146/annurev-virology-092818-015756
13. Schneider WM, Chevillotte MD, Rice CM. Interferon-stimulated genes: A complex web of host defenses. Annu Rev Immunol. 2014;32:513-545. doi: 10.1146/annurev-immunol-032713-120231
14. Rodero MP, Decalf J, Bondet V, Hunt D, Rice GI, Werneke S, et al. Detection of interferon alpha protein reveals differential levels and cellular sources in disease. J Exp Med. 2017;214(5):1547-1555. doi: 10.1084/jem.20161451
15. Mathian A, Mouries-Martin S, Dorgham K, Devilliers H, Yssel H, Garrido Castillo L, et al. Ultrasensitive serum interferon-alpha quantification during SLE remission identifies patients at risk for relapse. Ann Rheum Dis. 2019;78(12):1669-1676. doi: 10.1136/annrheumdis-2019-215571
16. Bondet V, Rodero MP, Posseme C, Bost P, Decalf J, Haljasmägi L, et al. Differential levels of IFNα subtypes in autoimmunity and viral infection. Cytokine. 2021;144:155533. doi: 10.1016/j.cyto.2021.155533
17. Lambers WM, Westra J, Bootsma H, de Leeuw K. From incomplete to complete systemic lupus erythematosus; A review of the predictive serological immune markers. Semin Arthritis Rheum. 2021;51(1):43-48. doi: 10.1016/j.semarthrit.2020.11.006
18. Насонов ЕЛ, Попкова ТВ, Панафидина ТА. Проблемы ранней системной красной волчанки в период пандемии COVID-19. Научно-практическая ревматология. 2021;59(2):119-128. doi: 10.47360/1995-4484-2021-119-128
19. Mai L, Asaduzzaman A, Noamani B, Fortin PR, Gladman DD, Touma Z, et al. The baseline interferon signature predicts disease severity over the subsequent 5 years in systemic lupus erythematosus. Arthritis Res Ther. 2021;23(1):29. doi: 10.1186/s13075-021-02414-0
20. Kirou KA, Lee C, George S, Louca K, Peterson MG, Crow MK. Activation of the interferon-alpha pathway identifies a subgroup of systemic lupus erythematosus patients with distinct serologic features and active disease. Arthritis Rheum. 2005;52(5):1491-1503. doi: 10.1002/art.21031
21. Weckerle CE, Franek BS, Kelly JA, Kumabe M, Mikolaitis RA, Green SL, et al. Network analysis of associations between serum interferon-alpha activity, autoantibodies, and clinical features in systemic lupus erythematosus. Arthritis Rheum. 2011;63(4):1044-1053. doi: 10.1002/art.30187
22. Feng X, Wu H, Grossman JM, Hanvivadhanakul P, FitzGerald JD, Park GS, et al. Association of increased interferon-inducible gene expression with disease activity and lupus nephritis in patients with systemic lupus erythematosus. Arthritis Rheum. 2006;54(9):2951-2962. doi: 10.1002/art.22044
23. Oke V, Gunnarsson I, Dorschner J, Eketjäll S, Zickert A, Niewold TB, et al. High levels of circulating interferons type I, type II and type III associate with distinct clinical features of active systemic lupus erythematosus. Arthritis Res Ther. 2019;21(1):107. doi: 10.1186/s13075-019-1878-y
24. Landolt-Marticorena C, Bonventi G, Lubovich A, Ferguson C, Unnithan T, Su J, et al. Lack of association between the interferon-alpha signature and longitudinal changes in disease activity in systemic lupus erythematosus. Ann Rheum Dis. 2009;68(9):1440-1446. doi: 10.1136/ard.2008.093146
25. Petri M, Singh S, Tesfasyone H, Dedrick R, Fry K, Lal P, et al. Longitudinal expression of type I interferon responsive genes in systemic lupus erythematosus. Lupus. 2009;18(11):980-989. doi: 10.1177/0961203309105529
26. Banchereau R, Hong S, Cantarel B, Baldwin N, Baisch J, Edens M, et al. Personalized immunomonitoring uncovers molecular networks that stratify lupus patients. Cell. 2016;165(3):551-565. doi: 10.1016/j.cell.2016.03.008
27. Chiche L, Jourde-Chiche N, Whalen E, Presnell S, Gersuk V, Dang K, et al. Modular transcriptional repertoire analyses of adults with systemic lupus erythematosus reveal distinct type I and type II interferon signatures. Arthritis Rheumatol. 2014;66(6):1583-1595. doi: 10.1002/art.38628
28. Petri M, Fu W, Ranger A, Allaire N, Cullen P, Magder LS, et al. Association between changes in gene signatures expression and disease activity among patients with systemic lupus erythematosus. BMC Med Genomics. 2019;12(1):4. doi: 10.1186/s12920-018-0468-1
29. Wither J, Johnson SR, Liu T, Noamani B, Bonilla D, Lisnevskaia L, et al. Presence of an interferon signature in individuals who are anti-nuclear antibody positive lacking a systemic autoimmune rheumatic disease diagnosis. Arthritis Res Ther. 2017;19(1):41. doi: 10.1186/s13075-017-1243-y
30. Hua J, Kirou K, Lee C, Crow MK. Functional assay of type I interferon in systemic lupus erythematosus plasma and association with anti-RNA binding protein autoantibodies. Arthritis Rheum. 2006;54(6):1906-1916. doi: 10.1002/art.21890
31. Kennedy WP, Maciuca R, Wolslegel K, Tew W, Abbas AR, Chaivorapol C, et al. Association of the interferon signature metric with serological disease manifestations but not global activity scores in multiple cohorts of patients with SLE. Lupus Sci Med. 2015;2(1):e000080. doi: 10.1136/lupus-2014-000080
32. Menon M, Bradford HF, Haljasmagi L, Vanker M, Peterson P, Wincup C, et al. Inactive disease in lupus patients is linked to autoantibodies to type-I interferons that normalize blood IFNα and B cell subsets. medRxiv. 2021;04.07.21255049. doi: 10.1101/2021.04.07.21255049
33. Bastard P, Rosen LB, Zhang Q, Michailidis E, Hoffmann HH, Zhang Y, et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science. 2020;370(6515):eabd4585. doi: 10.1126/science.abd4585
34. Sarkar MK, Hile GA, Tsoi LC, Xing X, Liu J, Liang Y, et al. Photosensitivity and type I IFN responses in cutaneous lupus are driven by epidermal-derived interferon kappa. Ann Rheum Dis. 2018;77(11):1653-1664. doi: 10.1136/annrheumdis-2018-213197
35. Braunstein I, Klein R, Okawa J, Werth VP. The interferon-regulated gene signature is elevated in subacute cutaneous lupus erythematosus and discoid lupus erythematosus and correlates with the cutaneous lupus area and severity index score. Br J Dermatol. 2012;166(5):971-975. doi: 10.1111/j.1365-2133.2012.10825.x
36. Nzeusseu Toukap A, Galant C, Theate I, Maudoux AL, Lories RJ, Houssiau FA, et al. Identification of distinct gene expression profiles in the synovium of patients with systemic lupus erythematosus. Arthritis Rheum. 2007;56:1579-1588. doi: 10.1002/art.22578
37. Castellano G, Cafiero C, Divella C, Sallustio F, Gigante M, Pontrelli P, et al. Local synthesis of interferon-alpha in lupus nephritis is associated with type I interferons signature and LMP7 induction in renal tubular epithelial cells. Arthritis Res Ther. 2015;17(1):72. doi: 10.1186/s13075-015-0588-3
38. Shiozawa S, Kuroki Y, Kim M, Hirohata S, Ogino T. Interferon-alpha in lupus psychosis. Arthritis Rheum. 1992;35(4):417-422. doi: 10.1002/art.1780350410
39. Paredes JL, Niewold TB. Type I interferon antagonists in clinical development for lupus. Expert Opin Investig Drugs. 2020;29(9):1025-1041. doi: 10.1080/13543784.2020.1797677
40. Chaichian Y, Strand V. Interferon-directed therapies for the treatment of systemic lupus erythematosus: a critical update. Clin Rheumatol. 2021;40(8):3027-3037. doi: 10.1007/s10067-020-05526-1
41. Goulden B, Isenberg D. Anti-IFNαR MAbs for the treatment of systemic lupus erythematosus. Expert Opin Biol Ther. 2021;21(4):519-528. doi: 10.1080/14712598.2021.1841164
42. Peng L, Oganesyan V, Wu H, Dall’Acqua WF, Damschroder MM. Molecular basis for antagonistic activity of anifrolumab, an anti-interferon-α receptor 1 antibody. MAbs. 2015;7(2):428-439. doi: 10.1080/19420862.2015.1007810
43. Riggs JM, Hanna RN, Rajan B, Zerrouki K, Karnell JL, Sagar D, et al. Characterisation of anifrolumab, a fully human anti-interferon receptor antagonist antibody for the treatment of systemic lupus erythematosus. Lupus Sci Med. 2018;5(1):e000261. doi: 10.1136/lupus-2018-000261
44. Lin Chia Y, Santiago L, Wang B, Kuruvilla D, Wang S, Tummala R, et al. Exposure-response analysis for selection of optimal dosage regimen of anifrolumab in patients with systemic lupus erythematosus. Rheumatology (Oxford). 2021 Feb 25:keab176. doi: 10.1093/rheumatology/keab176
45. Casey KA, Guo X, Smith MA, Wang S, Sinibaldi D, Sanjuan MA, et al. Type I interferon receptor blockade with anifrolumab corrects innate and adaptive immune perturbations of SLE. Lupus Sci Med. 2018;5(1):e000286. doi: 10.1136/lupus-2018-000286
46. Lub-de Hooge MN, de Vries EG, de Jong S, Bijl M. Soluble TRAIL concentrations are raised in patients with systemic lupus erythematosus. Ann Rheum Dis. 2005;64(6):854-858. doi: 10.1136/ard.2004.029058
47. Tanaka A, Tsukamoto H, Mitoma H, Kiyohara C, Ueda N, Ayano M, et al. Serum progranulin levels are elevated in patients with systemic lupus erythematosus, reflecting disease activity. Arthritis Res Ther. 2012;14(6):R244. doi: 10.1186/ar4087
48. Bauer JW, Petri M, Batliwalla FM, Koeuth T, Wilson J, Slattery C, et al. Interferon-regulated chemokines as biomarkers of systemic lupus erythematosus disease activity: A validation study. Arthritis Rheum. 2009;60(10):3098-3107. doi: 10.1002/art.24803
49. Sjöstrand M, Johansson A, Aqrawi L, Olsson T, Wahren-Herlenius M, Espinosa A. The expression of BAFF is controlled by IRF transcription factors. J Immunol. 2016;196(1):91-96. doi: 10.4049/jimmunol.1501061
50. Насонов ЕЛ, Попкова ТВ, Лила АМ. Белимумаб в лечении системной красной волчанки: 20 лет фундаментальных исследований, 10 лет клинической практики. Научно-практическая ревматология. 2021;59(4):367-383. doi: 10.47360/1995-4484-2021-367-383
51. Jacobi AM, Huang W, Wang T, Freimuth W, Sanz I, Furie R, et al. Effect of long-term belimumab treatment on B cells in systemic lupus erythematosus: Extension of a phase II, double-blind, placebo-controlled, dose-ranging study. Arthritis Rheum. 2010;62(1):201-210. doi: 10.1002/art.27189.
52. Furie R, Morand EF, Bruce IN, Manzi S, Kalunian K, Vital EM, et al. Type I interferon inhibitor anifrolumab in active systemic lupus erythematosus (TULIP-1): A randomised, controlled, phase 3 trial. Lancet Rheumatol. 2019;1(4):e208–e219. doi: 10.1016/S2665-9913(19)30076-1
53. Furie R, Khamashta M, Merrill JT, Werth VP, Kalunian K, Brohawn P, et al.; CD1013 Study Investigators. Anifrolumab, an anti-interferon-α receptor monoclonal antibody, in moderate-to-severe systemic lupus erythematosus. Arthritis Rheumatol. 2017;69(2):376-386. doi: 10.1002/art.39962
54. Chatham WW, Furie R, Saxena A, Brohawn P, Schwetje E, Abreu G, et al. Long-term safety and efficacy of anifrolumab in adults with systemic lupus erythematosus: Results of a phase II open-label extension study. Arthritis Rheumatol. 2021;73(5):816-825. doi: 10.1002/art.41598
55. Morand EF, Furie R, Tanaka Y, Bruce IN, Askanase AD, Richez C, et al.; TULIP-2 Trial Investigators. Trial of anifrolumab in active systemic lupus erythematosus. N Engl J Med. 2020;382(3):211-221. doi: 10.1056/NEJMoa1912196
56. Jayne D, Rovin BH, Mysler E, Furie R, Houssiau F, Trasieva T, et al. POS0690 Randomized, controlled, phase 2 trial of type 1 IFN inhibitor anifrolumab in patients with active proliferative lupus nephritis. Ann Rheum Dis. 2021;80:592.
57. Tummala R, Rouse T, Berglind A, Santiago L. Safety, tolerability and pharmacokinetics of subcutaneous and intravenous anifrolumab in healthy volunteers. Lupus Sci Med. 2018;5(1):e000252. doi: 10.1136/lupus-2017-000252
58. Tanaka Y, Takeuchi T, Okada M, Ishii T, Nakajima H, Kawai S, et al. Safety and tolerability of anifrolumab, a monoclonal antibody targeting type I interferon receptor, in Japanese patients with systemic lupus erythematosus: A multicenter, phase 2, open-label study. Mod Rheumatol. 2020;30(1):101-108. doi: 10.1080/14397595.2019.1583833
59. Felten R, Scher F, Sagez F, Chasset F, Arnaud L. Spotlight on anifrolumab and its potential for the treatment of moderate-to-severe systemic lupus erythematosus: evidence to date. Drug Des Devel Ther. 2019;13:1535-1543. doi: 10.2147/DDDT.S170969
60. Tanaka Y, Tummala R. Anifrolumab, a monoclonal antibody to the type I interferon receptor subunit 1, for the treatment of systemic lupus erythematosus: An overview from clinical trials. Mod Rheumatol. 2021;31(1):1-12. doi: 10.1080/14397595.2020.1812201
61. Koh JWH, Ng CH, Tay SH. Biologics targeting type I interferons in SLE: A meta-analysis and systematic review of randomised controlled trials. Lupus. 2020;29(14):1845-1853. doi: 10.1177/0961203320959702.
62. Lee YH, Song GG. Anifrolumab for the treatment of active systemic lupus erythematosus: A meta-analysis of randomized controlled trials. Z Rheumatol. 2020 Nov 20. doi: 10.1007/s00393-020-00928-7
63. Abdul Razzack A, Abdul Razzack S, Shenasan P, Shenasan N, Mishra S, Zarrar R, et al. POS0701 Anifrolumab, an anti-interferon-α receptor monoclonal antibody in systemic lupus erythematosus – A meta-analysis. Ann Rheum Dis. 2021;80:600. doi: 10.1136/annrheumdis-2021-eular.2782
64. Furie R, Morand EF, Askanase AD, Vital EM, Merrill JT, Kalyani RN, et al. Anifrolumab reduces flare rates in patients with moderate to severe systemic lupus erythematosus. Lupus. 2021;30(8):1254-1263. doi: 10.1177/09612033211014267
65. Merrill JT, Werth V, Furie R, Morand E, Kahlenberg J, Abreu G, et al. OP0131 Anifrolumab effects on rash and arthritis in patients with SLE and impact of interferon signal in pooled data from phase 3 trials. Ann Rheum Dis. 2021;80:75-76. doi: 10.1136/annrheumdis-2021-eular.1471
66. Isenberg D, Bruce IN, Furie R, Morand EF, Tanaka Y, Manzi S, et al. POS0683 Novel stringent outcome measures applied to the phase 2 and 3 anifrolumab trials. Ann Rheum Dis. 2021;80:586-587. doi: 10.1136/annrheumdis-2021-eular.702
67. Furie R, Morand EF, Bruce IN, Isenberg D, van Vollenhoven R, Abreu G, et al. What does it mean to be a british isles lupus assessment group-based composite lupus assessment responder? Post hoc analysis of 2 phase 3 trials. Arthritis Rheumatol. 2021 Apr 28. doi: 10.1002/art.41778
68. Furie R, Kalunian K, Merrill J, Abreu G, Tummala R. Lupus disease activity after cessation of anifrolumab treatment during the phase 2b MUSE trial follow-up period [abstract]. Arthritis Rheumatol. 2020; 72(Suppl 10). URL: https://acrabstracts.org/abstract/lupus-disease-activity-after-cessation-of-anifrolum-ab-treatment-during-the-phase-2b-muse-trial-follow-up-period
69. Morand EF, Furie R, Tanaka Y, Takeuchi T, Abreu G, Tummala R, et al. POS0691 Effects of anifrolumab on renal disease in patients with SLE. Ann Rheum Dis. 2021;80:592-593. doi: 10.1136/annrheumdis-2021-eular.1618
70. Liu Y, Kaplan MJ. Cardiovascular disease in systemic lupus erythematosus: An update. Curr Opin Rheumatol. 2018;30(5):441-448. doi: 10.1097/BOR.0000000000000528
71. Chen HJ, Tas SW, de Winther MPJ. Type-I interferons in atherosclerosis. J Exp Med. 2020;217(1):e20190459. doi: 10.1084/jem.20190459
72. Marieke C, Boshuizen S, de Winther MPJ. Interferons as essential modulators of atherosclerosis. Arterioscler Thromb Vasc Biol. 2015;35(7):1579-1588. doi: 10.1161/ATVBAHA.115.305464
73. Kirchler C, Husar-Memmer E, Rappersberger K, Thaler K, Fritsch-Stork R. Type I Interferon as cardiovascular risk factor in systemic and cutaneous lupus erythematosus: A systematic review. Autoimmun Rev. 2021;20(5):102794. doi: 10.1016/j.autrev.2021.102794
74. Casey KA, Smith MA, Sinibaldi D, Seto NL, Playford MP, Wang X, et al. Modulation of cardiometabolic disease markers by type I interferon inhibition in systemic lupus erythematosus. Arthritis Rheumatol. 2021;73(3):459-471. doi: 10.1002/art.41518
75. Carlucci PM, Purmalek MM, Dey AK, Temesgen-Oyelakin Y, Sakhardande S, Joshi AA, et al. Neutrophil subsets and their gene signature associate with vascular inflammation and coronary atherosclerosis in lupus. JCI Insight. 2018;3(8):e99276. doi: 10.1172/jci.insight.99276
76. Moore S, Juo HH, Nielsen CT, Tyden H, Bengtsson AA, Lood C. Neutrophil extracellular traps identify patients at risk of increased disease activity and cardiovascular comorbidity in systemic lupus erythematosus. J Rheumatol. 2019;47:1652-1660.
77. Purmalek MM, Carlucci PM, Dey AK, Sampson M, Temesgen-Oyelakin Y, Sakhardande S, et al. Association of lipoprotein subfractions and glycoprotein acetylation with coronary plaque burden in SLE. Lupus Sci Med. 2019;6(1):e000332. doi: 10.1136/lupus-2019-000332
78. Cates AM, Holden VI, Myers EM, Smith CK, Kaplan MJ, Kahlenberg JM. Interleukin 10 hampers endothelial cell differentiation and enhances the effects of interferon α on lupus endothelial cell progenitors. Rheumatology (Oxford). 2015;54(6):1114-1123. doi: 10.1093/rheumatology/keu431
79. Tummala R, Abreu G, Pineda L, Michaels MA, Kalyani RN, Furie RA, et al. Safety profile of anifrolumab in patients with active SLE: An integrated analysis of phase II and III trials. Lupus Sci Med. 2021;8(1):e000464. doi: 10.1136/lupus-2020-000464
80. Merrill J, Kalunian K, Furie R, Winthrop K, Primakov P, Pineda L, et al. Herpes zoster events with anifrolumab in patients with active SLE: An integrated analysis of phase 2 and phase 3 trials [abstract]. Arthritis Rheumatol. 2020;72(Suppl 10). https://acrabstracts.org/abstract/herpes-zoster-events-with-anifrolumab-in-patients-with-active-sle-an-integrated-analysis-of-phase-2-and-phase-3-trials.
81. Toro-Domínguez D, Alarcón-Riquelme ME. Precision medicine in autoimmune diseases: Fact or fiction. Rheumatology (Oxford). 2021 May 18:keab448. doi: 10.1093/rheumatology/keab448
82. Lever E, Alves MR, Isenberg DA. Towards precision medicine in systemic lupus erythematosus. Pharmgenomics Pers Med. 2020;13:39-49. doi: 10.2147/PGPM.S205079
83. Psarras A, Emery P, Vital EM. Type I interferon-mediated autoimmune diseases: Pathogenesis, diagnosis and targeted therapy. Rheumatology (Oxford). 2017;56(10):1662-1675. doi: 10.1093/rheumatology/kew431
84. Northcott M, Gearing LJ, Nim HT, Nataraja C, Hertzog P, Jones SA, et al. Glucocorticoid gene signatures in systemic lupus erythematosus and the effects of type I interferon: A cross-sectional and in-vitro study. Lancet Rheumatol. 2021;3(5):e357-e370. doi: 10.1016/S2665-9913(21)00006-0
85. Cain DW, Cidlowski JA. Immune regulation by glucocorticoids. Nat Rev Immunol. 2017;17(4):233-247. doi: 10.1038/nri.2017.1
86. Franco LM, Gadkari M, Howe KN, Sun J, Kardava L, Kumar P, et al. Immune regulation by glucocorticoids can be linked to cell type-dependent transcriptional responses. J Exp Med. 2019;216(2):384-406. doi: 10.1084/jem.20180595
87. van Vollenhoven RF, Mosca M, Bertsias G, Isenberg D, Kuhn A, Lerstrøm K, et al. Treat-to-target in systemic lupus erythematosus: Recommendations from an international task force. Ann Rheum Dis. 2014;73(6):958-967. doi: 10.1136/annrheumdis-2013-205139
88. Apostolopoulos D, Kandane-Rathnayake R, Louthrenoo W, Luo SF, Wu Y-J, Lateef A, et al. Factors associated with damage accrual in patients with systemic lupus erythematosus with no clinical or serological disease activity: A multicentre cohort study. Lancet Rheumatol. 2020;2:e24-e30. doi: 10.1016/S2665-9913(19)30105-5
89. Bultink IEM, de Vries F, van Vollenhoven RF, Lalmohamed A. Mortality, causes of death and influence of medication use in patients with systemic lupus erythematosus vs matched controls. Rheumatology (Oxford). 2021;60(1):207-216. doi: 10.1093/rheumatology/keaa267
90. Lightstone L, Doria A, Wilson H, Ward FL, Larosa M, Bargman JM. Can we manage lupus nephritis without chronic corticosteroids administration? Autoimmun Rev. 2018;17(1):4-10. doi: 10.1016/j.autrev.2017.11.002
91. van Vollenhoven R, Voskuyl A, Bertsias G, Aranow C, Aringer M, Arnaud L, et al. A framework for remission in SLE: Consensus findings from a large international task force on definitions of remission in SLE (DORIS). Ann Rheum Dis. 2017;76(3):554561. doi: 10.1136/annrheumdis-2016-209519
92. Touma Z, Gladman DD, Su J, Anderson N, Urowitz MB. A novel lupus activity index accounting for glucocorticoids: SLEDAI-2K glucocorticoid index. Rheumatology (Oxford). 2018;57(8):1370-1376. doi: 10.1093/rheumatology/key103
93. Touma Z, Gladman DD, Zandy M, Su J, Anderson N, Urowitz MB. Identifying a response for the Systemic Lupus Erythematosus Disease Activity 2000 Glucocorticoid Index. Arthritis Care Res (Hoboken). 2020 May 20. doi: 10.1002/acr.24261
94. Gao H, Wang Q, Yu X, Liu J, Bai S, Feng J, et al. Molecular mechanisms of glucocorticoid resistance in systemic lupus erythematosus: A review. Life Sci. 2018;209:383-387. doi: 10.1016/j.lfs.2018.08.038
95. Guiducci C, Gong M, Xu Z, Gill M, Chaussabel D, Meeker T, et al. TLR recognition of self nucleic acids hampers glucocorticoid activity in lupus. Nature. 2010;465(7300):937-941. doi: 10.1038/nature09102
96. Lepelletier Y, Zollinger R, Ghirelli C, Raynaud F, HadjSlimane R, Cappuccio A, et al. Toll-like receptor control of glucocorticoid-induced apoptosis in human plasmacytoid predendritic cells (pDCs). Blood. 2010;116(18):3389-3397. doi: 10.1182/blood-2010-05-282913
97. Felger JC, Haroon E, Woolwine BJ, Raison CL, Miller AH. Interferon-alpha-induced inflammation is associated with reduced glucocorticoid negative feedback sensitivity and depression in patients with hepatitis C virus. Physiol Behav. 2016;166:14-21. doi: 10.1016/j.physbeh.2015.12.013
Рецензия
Для цитирования:
Насонов Е.Л., Авдеева А.С., Попкова Т.В. Новые возможности фармакотерапии системной красной волчанки: перспективы применения анифролумаба (моноклональные антитела к рецепторам интерферона типа I). Научно-практическая ревматология. 2021;59(5):537-546. https://doi.org/10.47360/1995-4484-2021-537-546
For citation:
Nasonov E.L., Avdeeva A.S., Popkova T.V. New possibilities of pharmacotherapy for systemic lupus erythematosus: Prospects for the use of anifrolumab (monoclonal antibodies to type I interferon receptor). Rheumatology Science and Practice. 2021;59(5):537-546. (In Russ.) https://doi.org/10.47360/1995-4484-2021-537-546