Preview

Научно-практическая ревматология

Расширенный поиск

Развитие сахарного диабета 2-го типа при подагре

https://doi.org/10.47360/1995-4484-2021-599-607

Полный текст:

Аннотация

Подагра – наиболее часто встречающийся у взрослых воспалительный артрит, распространенность которого продолжает увеличиваться в течение последних десятилетий. Подагра характеризуется гиперурикемией с обязательной кристаллизацией уратов и связанной с ней воспалительной реакцией, а также метаболическими эффектами, вызванными в том числе этими процессами. В частности, диагноз подагры ассоциируется с высоким риском нарушений углеводного обмена, превышающим популяционный в 2 раза: по разным данным, от 21 до 26% пациентов с подагрой имеют сахарный диабет 2-го типа (СД 2). Однако роль мочевой кислоты и уратснижающих препаратов в его развитии у таких больных изучена недостаточно. Обсуждается возможность влияния на риск развития СД 2 хронического воспаления, интерлейкина-1β, других провоспалительных цитокинов, гиперурикемии, ксантиоксидазы и других факторов, ассоциирующихся с подагрой. Возможно, уровень мочевой кислоты связан с СД 2 и другими метаболическими заболеваниями, вызывая патофизиологические изменения не только через воспаление, но и через окислительный стресс, повреждение эндотелия сосудов. Также предполагается, что подагра и СД 2 могут иметь общие генетические маркеры. Взаимосвязь нарушений пуринового и углеводного обменов является стимулом для поиска препаратов, обладающих положительным влиянием как на пуриновый, так и на углеводный обмен. Однако не ясно, какой уровень мочевой кислоты следует рассматривать в качестве фактора риска, а также остаются противоречивыми данные по влиянию на риск развития СД 2 препаратов, применяемых для лечения подагры.

Об авторах

О. В. Желябина
ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой»
Россия

Желябина Ольга Владимировна

115522, Российская Федерация, Москва, Каширское шоссе, 34а



М. С. Елисеев
ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой»
Россия

115522, Российская Федерация, Москва, Каширское шоссе, 34а



Список литературы

1. Thottam GE, Krasnokutsky S, Pillinger MH. Gout and metabolic syndrome: A tangled web. Curr Rheumatol Rep. 2017;19(10):60. doi: 10.1007/s11926-017-0688-y

2. Rothenbacher D, Primatesta P, Ferreira A, Cea-Soriano L, Rodríguez LA. Frequency and risk factors of gout flares in a large population-based cohort of incident gout. Rheumatology (Oxford). 2011;50(5):973-981. doi: 10.1093/rheumatology/keq363

3. Quan H, Sundararajan V, Halfon P, Fong A, Burnand B, Luthi JC, et al. Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data. Med Care. 2005;43(11):1130-1139. doi: 10.1097/01.mlr.0000182534.19832.83

4. Richette P, Perez-Ruiz F, Doherty M, Jansen TL, Nuki G, Pascual E, et al. Improving cardiovascular and renal outcomes in gout: What should we target? Nat Rev Rheumatol. 2014;10(11):654-661. doi: 10.1038/nrrheum.2014.124

5. Zhu Y, Pandya BJ, Choi HK. Comorbidities of gout and hyperuricemia in the US general population: NHANES 2007–2008. Am J Med. 2012;125(7):679-687.e1. doi: 10.1016/j.amjmed.2011.09.033

6. Richette P, Clerson P, Périssin L, Flipo RM, Bardin T. Revisiting comorbidities in gout: a cluster analysis. Ann Rheum Dis. 2015;74(1):142-147. doi: 10.1136/annrheumdis-2013-203779

7. Lv Q, Meng XF, He FF, Chen S, Su H, Xiong J, et al. High serum uric acid and increased risk of type 2 diabetes: A systemic review and meta-analysis of prospective cohort studies. PLoS One. 2013;8(2):e56864. doi: 10.1371/journal.pone.0056864

8. Sluijs I, Holmes MV, van der Schouw YT, Beulens JW, Asselbergs FW, Huerta JM, et al. A Mendelian Randomization Study of circulating uric acid and type 2 diabetes. Diabetes. 2015;64(8):3028-3036. doi: 10.2337/db14-0742

9. Tsouli SG, Liberopoulos EN, Mikhailidis DP, Athyros VG, Elisaf MS. Elevated serum uric acid levels in metabolic syndrome: an active component or an innocent bystander? Metabolism. 2006;55(10):1293-1301. doi: 10.1016/j.metabol.2006.05.013

10. Bardin T, Richette P. Impact of comorbidities on gout and hyperuricaemia: An update on prevalence and treatment options. BMC Med. 2017;15(1):123. doi: 10.1186/s12916-017-0890-9

11. Roddy E, Choi HK. Epidemiology of gout. Rheum Dis Clin North Am. 2014;40(2):155-175. doi: 10.1016/j.rdc.2014.01.001

12. Zhu Y, Pandya BJ, Choi HK. Prevalence of gout and hyperuricemia in the US general population: The National Health and Nutrition Examination Survey 2007–2008. Arthritis Rheum. 2011;63(10):3136-3141. doi: 10.1002/art.30520

13. Kuo CF, Grainge MJ, Mallen C, Zhang W, Doherty M. Rising burden of gout in the UK but continuing suboptimal management: A nationwide population study. Ann Rheum Dis. 2015;74(4):661-667. doi: 10.1136/annrheumdis-2013-204463

14. San Gabriel DED, Slark J. The association of gout with an increased risk of hypertension and diabetes mellitus among stroke survivors in New Zealand: A cross-sectional study using routinely collected electronic health data. JRSM Cardiovasc Dis. 2019;8:2048004019863239. doi: 10.1177/2048004019863239

15. Richette P, Flipo RN, Patrikos DK. Characteristics and management of gout patients in Europe: Data from a large cohort of patients. Eur Rev Med Pharmacol Sci. 2015;19(4):630-639.

16. Bardin T, Bouée S, Clerson P, Chalès G, Flipo RM, Lioté F, et al. Prevalence of gout in the adult population of france. Arthritis Care Res (Hoboken). 2016;68(2):261-266. doi: 10.1002/acr.22660

17. Trifirò G, Morabito P, Cavagna L, Ferrajolo C, Pecchioli S, Simonetti M, et al. Epidemiology of gout and hyperuricaemia in Italy during the years 2005–2009: A nationwide population-based study. Ann Rheum Dis. 2013;72(5):694-700. doi: 10.1136/annrheumdis-2011-201254

18. Reuss-Borst MA. Hyperurikämie. Wann und wie behandeln? [Hyperuricemia. When and how to treat?]. Internist (Berl). 2016;57(2):194-201. doi: 10.1007/s00108-015-0001-y

19. Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. 2012;380(9859):2224-2260. doi: 10.1016/S0140-6736(12)61766-8

20. Xu Y, Wang L, He J, Bi Y, Li M, Wang T, et al. Prevalence and control of diabetes in Chinese adults. JAMA. 2013;310(9):948-959. doi: 10.1001/jama.2013.168118

21. CDC. National diabetes statistics report, 2017. Atlanta, GA:US Department of Health and Human Services, CDC;2017. URL: https://www.cdc.gov/diabetes/pdfs/data/statistics/national-diabetes-statistics-report.pdf (Accessed: 6th February 2021).

22. Internationl Diabetes Federation. IDF diabetes atlas; 8th ed. Brussels, Belgium:International Diabetes Federation;2017.

23. Дедов ИИ, Шестакова МВ, Галстян ГР. Распространенность сахарного диабета 2 типа у взрослого населения России (исследование NATION). Сахарный диабет. 2016;19(2):104-112.

24. Johnson RJ, Titte S, Cade JR, Rideout BA, Oliver WJ. Uric acid, evolution and primitive cultures. Semin Nephrol. 2005;25(1):3-8. doi: 10.1016/j.semnephrol.2004.09.002

25. Culleton BF, Larson MG, Kannel WB, Levy D. Serum uric acid and risk for cardiovascular disease and death: The Framingham Heart Study. Ann Intern Med. 1999;131(1):7-13. doi: 10.7326/0003-4819-131-1-199907060-00003

26. Moriarity JT, Folsom AR, Iribarren C, Nieto FJ, Rosamond WD. Serum uric acid and risk of coronary heart disease: Atherosclerosis Risk in Communities (ARIC) Study. Ann Epidemiol. 2000;10(3):136-143. doi: 10.1016/s1047-2797(99)00037-x

27. Taniguchi Y, Hayashi T, Tsumura K, Endo G, Fujii S, Okada K. Serum uric acid and the risk for hypertension and type 2 diabetes in Japanese men: The Osaka Health Survey. J Hypertens. 2001;19(7):1209-1215. doi: 10.1097/00004872-200107000-00005

28. Sochett EB, Cherney DZ, Curtis JR, Dekker MG, Scholey JW, Miller JA. Impact of renin angiotensin system modulation on the hyperfiltration state in type 1 diabetes. J Am Soc Nephrol. 2006;17(6):1703-1709. doi: 10.1681/ASN.2005080872

29. Maiuolo J, Oppedisano F, Gratteri S, Muscoli C, Mollace V. Regulation of uric acid metabolism and excretion. Int J Cardiol. 2016;213:8-14. doi: 10.1016/j.ijcard.2015.08.109

30. El Ridi R, Tallima H. Physiological functions and pathogenic potential of uric acid: A review. J Adv Res. 2017;8(5):487-493. doi: 10.1016/j.jare.2017.03.003

31. Ghasemi A. Uric acid-induced pancreatic β-cell dysfunction. BMC Endocr Disord. 2021;21(1):24. doi: 10.1186/s12902-021-00698-6

32. Facchini F, Chen YD, Hollenbeck CB, Reaven GM. Relationship between resistance to insulin-mediated glucose uptake, urinary uric acid clearance, and plasma uric acid concentration. JAMA. 1991;266(21):3008-3011.

33. Fang J, Alderman MH. Serum uric acid and cardiovascular mortality the NHANES I epidemiologic follow-up study, 1971–1992. National Health and Nutrition Examination Survey. JAMA. 2000;283(18):2404-2410. doi: 10.1001/jama.283.18.2404

34. Liu J, Tao L, Zhao Z, Mu Y, Zou D, Zhang J, et al. Two-year changes in hyperuricemia and risk of diabetes: A five-year prospective cohort study. J Diabetes Res. 2018;2018:6905720. doi: 10.1155/2018/6905720

35. Chen CJ, Shi Y, Hearn A, Fitzgerald K, Golenbock D, Reed G, et al. MyD88-dependent IL-1 receptor signaling is essential for gouty inflammation stimulated by monosodium urate crystals. J Clin Invest. 2006;116(8):2262-2271. doi: 10.1172/JCI28075

36. Chaudhary K, Malhotra K, Sowers J, Aroor A. Uric acid – key ingredient in the recipe for cardiorenal metabolic syndrome. Cardiorenal Med. 2013;3(3):208-220. doi: 10.1159/000355405

37. Vazirpanah N, Ottria A, van der Linden M, Wichers CGK, Schuiveling M, van Lochem E, et al. mTOR inhibition by metformin impacts monosodium urate crystal-induced inflammation and cell death in gout: A prelude to a new add-on therapy? Ann Rheum Dis. 2019;78(5):663-671. doi: 10.1136/annrheumdis-2018-214656

38. Maahs DM, Caramori L, Cherney DZ, Galecki AT, Gao C, Jalal D, et al. Uric acid lowering to prevent kidney function loss in diabetes: The preventing early renal function loss (PERL) allopurinol study. Curr Diab Rep. 2013;13(4):550-559. doi: 10.1007/s11892-013-0381-0

39. Tzanavari T, Giannogonas P, Karalis KP. TNF-alpha and obesity. Curr Dir Autoimmun. 2010;11:145-156. doi: 10.1159/000289203

40. Kang DH, Park SK, Lee IK, Johnson RJ. Uric acid-induced C-reactive protein expression: implication on cell proliferation and nitric oxide production of human vascular cells. J Am Soc Nephrol. 2005;16(12):3553-3562. doi: 10.1681/ASN.2005050572

41. Kienhorst LB, van Lochem E, Kievit W, Dalbeth N, Merriman ME, Phipps-Green A, et al. Gout is a chronic inflammatory disease in which high levels of interleukin-8 (CXCL8), myeloid-related protein 8/myeloid-related protein 14 complex, and an altered proteome are associated with diabetes mellitus and cardiovascular disease. Arthritis Rheumatol. 2015;67(12):3303-3313. doi: 10.1002/art.39318

42. Guerne PA, Terkeltaub R, Zuraw B, Lotz M. Inflammatory microcrystals stimulate interleukin-6 production and secretion by human monocytes and synoviocytes. Arthritis Rheum. 1989;32(11):1443-1452. doi: 10.1002/anr.1780321114

43. Ye J, McGuinness OP. Inflammation during obesity is not all bad: Evidence from animal and human studies. Am J Physiol Endocrinol Metab. 2013;304(5):E466-E477. doi: 10.1152/ajpendo.00266.2012

44. Cruz NG, Sousa LP, Sousa MO, Pietrani NT, Fernandes AP, Gomes KB. The linkage between inflammation and type 2 diabetes mellitus. Diabetes Res Clin Pract. 2013;99(2):85-92. doi: 10.1016/j.diabres.2012.09.003

45. Yu MA, Sánchez-Lozada LG, Johnson RJ, Kang DH. Oxidative stress with an activation of the renin-angiotensin system in human vascular endothelial cells as a novel mechanism of uric acid-induced endothelial dysfunction. J Hypertens. 2010;28(6):1234-1242.

46. Sautin YY, Nakagawa T, Zharikov S, Johnson RJ. Adverse effects of the classic antioxidant uric acid in adipocytes: NADPH oxidasemediated oxidative/nitrosative stress. Am J Physiol Cell Physiol. 2007;293(2):C584-C596. doi: 10.1152/ajpcell.00600.2006

47. Erdogan D, Gullu H, Caliskan M, Yildirim E, Bilgi M, Ulus T, et al. Relationship of serum uric acid to measures of endothelial function and atherosclerosis in healthy adults. Int J Clin Pract. 2005;59(11):1276-1282. doi: 10.1111/j.1742-1241.2005.00621.x

48. Zoccali C, Maio R, Mallamaci F, Sesti G, Perticone F. Uric acid and endothelial dysfunction in essential hypertension. J Am Soc Nephrol. 2006;17(5):1466-1471. doi: 10.1681/ASN.2005090949

49. Mercuro G, Vitale C, Cerquetani E, Zoncu S, Deidda M, Fini M, et al. Effect of hyperuricemia upon endothelial function in patients at increased cardiovascular risk. Am J Cardiol. 2004;94(7):932-935. doi: 10.1016/j.amjcard.2004.06.032

50. Butler R, Morris AD, Belch JJ, Hill A, Struthers AD. Allopurinol normalizes endothelial dysfunction in type 2 diabetics with mild hypertension. Hypertension. 2000;35(3):746-751. doi: 10.1161/01.hyp.35.3.746

51. Doehner W, Schoene N, Rauchhaus M, Leyva-Leon F, Pavitt DV, Reaveley DA, et al. Effects of xanthine oxidase inhibition with allopurinol on endothelial function and peripheral blood flow in hyperuricemic patients with chronic heart failure: results from 2 placebo-controlled studies. Circulation. 2002;105(22):2619-2624. doi: 10.1161/01.cir.0000017502.58595.ed

52. Farquharson CA, Butler R, Hill A, Belch JJ, Struthers AD. Allopurinol improves endothelial dysfunction in chronic heart failure. Circulation. 2002;106(2):221-226. doi: 10.1161/01.cir.0000022140.61460.1d

53. Glantzounis GK, Tsimoyiannis EC, Kappas AM, Galaris DA. Uric acid and oxidative stress. Curr Pharm Des. 2005;11(32):4145-4151. doi: 10.2174/138161205774913255

54. Kurra V, Eräranta A, Jolma P, Vehmas TI, Riutta A, Moilanen E, et al. Hyperuricemia, oxidative stress, and carotid artery tone in experimental renal insufficiency. Am J Hypertens. 2009;22(9):964-970. doi: 10.1038/ajh.2009.109

55. Waring WS, Convery A, Mishra V, Shenkin A, Webb DJ, Maxwell SR. Uric acid reduces exercise-induced oxidative stress in healthy adults. Clin Sci (Lond). 2003;105(4):425-430. doi: 10.1042/CS20030149

56. Sugihara S, Hisatome I, Kuwabara M, Niwa K, Maharani N, Kato M, et al. Depletion of uric acid due to SLC22A12 (URAT1) loss-of-function mutation causes endothelial dysfunction in hypouricemia. Circ J. 2015;79(5):1125-1132. doi: 10.1253/circj.CJ-14-1267

57. Patterson RA, Horsley ET, Leake DS. Prooxidant and antioxidant properties of human serum ultrafiltrates toward LDL: Important role of uric acid. J Lipid Res. 2003;44(3):512-521. doi: 10.1194/jlr.M200407-JLR200

58. Kushiyama A, Nakatsu Y, Matsunaga Y, Yamamotoya T, Mori K, Ueda K, et al. Role of uric acid metabolism-related inflammation in the pathogenesis of metabolic syndrome components such as atherosclerosis and nonalcoholic steatohepatitis. Mediators Inflamm. 2016;2016:8603164. doi: 10.1155/2016/8603164

59. Rizzo M, Obradovic M, Labudovic-Borovic M, Nikolic D, Montalto G, Rizvi AA, et al. Uric acid metabolism in pre-hypertension and the metabolic syndrome. Curr Vasc Pharmacol. 2014;12(4):572-585. doi: 10.2174/1570161111999131205160756

60. Tsushima Y, Nishizawa H, Tochino Y, Nakatsuji H, Sekimoto R, Nagao H, et al. Uric acid secretion from adipose tissue and its increase in obesity. J Biol Chem. 2013;288(38):27138-27149. doi: 10.1074/jbc.M113.485094

61. Stehouwer CDA, Henry RMA, Ferreira I. Arterial stiffness in diabetes and the metabolic syndrome: a pathway to cardiovascular disease. Diabetologia. 2008;51:527-539. doi: 10.1007/s00125-007-0918-3

62. Zhang J, Xiang G, Xiang L, Sun H. Serum uric acid is associated with arterial stiffness in men with newly diagnosed type 2 diabetes mellitus. J Endocrinol Invest. 2014;37(5):441-447. doi: 10.1007/s40618-013-0034-9

63. Wijnands JM, Boonen A, van Sloten TT, Schram MT, Sep SJ, Koster A, et al. Association between serum uric acid, aortic, carotid and femoral stiffness among adults aged 40–75 years without and with type 2 diabetes mellitus: The Maastricht Study.J Hypertens. 2015;33(8):1642-1650. doi: 10.1097/HJH.0000000000000593

64. Zhu Y, Hu Y, Huang T, Zhang Y, Li Z, Luo C, et al. High uric acid directly inhibits insulin signalling and induces insulin resistance. Biochem Biophys Res Commun. 2014;447(4):707-714.doi: 10.1016/j.bbrc.2014.04.080

65. Kuppusamy UR, Indran M, Rokiah P. Glycaemic control in relation to xanthine oxidase and antioxidant indices in Malaysian type 2 diabetes patients. Diabet Med. 2005;22(10):1343-1346. doi: 10.1111/j.1464-5491.2005.01630.x

66. Desco MC, Asensi M, Márquez R, Martínez-Valls J, Vento M, Pallardó FV, et al. Xanthine oxidase is involved in free radical production in type 1 diabetes: Protection by allopurinol. Diabetes. 2002;51(4):1118-1124. doi: 10.2337/diabetes.51.4.1118

67. Макишева РТ. Адаптивный смысл инсулинорезистентности. Вестник новых медицинских технологий. 2016;10(1):60-67.

68. Choi YJ, Yoon Y, Lee KY, Hien TT, Kang KW, Kim KC, et al. Uric acid induces endothelial dysfunction by vascular insulin resistance associated with the impairment of nitric oxide synthesis. FASEB J. 2014;28(7):3197-3204. doi: 10.1096/fj.13-247148

69. Fiorentino TV, Sesti F, Succurro E, Pedace E, Andreozzi F, Sciacqua A, et al. Higher serum levels of uric acid are associated with a reduced insulin clearance in non-diabetic individuals. Acta Diabetol. 2018;55(8):835-842. doi: 10.1007/s00592-018-1153-8

70. Hu Y, Liu J, Li H, Zhu H, Liu L, Yuan Y, et al. The association between elevated serum uric acid levels and islet β-cell function indexes in newly diagnosed type 2 diabetes mellitus: A cross-sectional study. Peer J. 2018;6:e4515. doi: 10.7717/peerj.4515

71. Nakagawa T, Hu H, Zharikov S, Tuttle KR, Short RA, Glushakova O, et al. A causal role for uric acid in fructose-induced metabolic syndrome. Am J Physiol Renal Physiol. 2006;290(3):625-631. doi: 10.1152/ajprenal.00140.2005

72. Wan X, Xu C, Lin Y, Lu C, Li D, Sang J, et al. Uric acid regulates hepatic steatosis and insulin resistance through the NLRP3 inflammasome-dependent mechanism. J Hepatol. 2016;64(4):925-932. doi: 10.1016/j.jhep.2015.11.022

73. Carstensen M, Herder C, Kivimäki M, Jokela M, Roden M, Shipley MJ, et al. Accelerated increase in serum interleukin-1 receptor antagonist starts 6 years before diagnosis of type 2 diabetes: Whitehall II prospective cohort study. Diabetes. 2010;59(5):1222-1227. doi: 10.2337/db09-1199

74. Lai HM, Chen CJ, Su BY, Chen YC, Yu SF, Yen JH, et al. Gout and type 2 diabetes have a mutual inter-dependent effect on genetic risk factors and higher incidences. Rheumatology (Oxford). 2012;51(4):715-720. doi: 10.1093/rheumatology/ker373

75. Dehghan A, Köttgen A, Yang Q, Hwang SJ, Kao WL, Rivadeneira F, et al. Association of three genetic loci with uric acid concentration and risk of gout: A genome-wide association study. Lancet. 2008;372(9654):1953-1961. doi: 10.1016/S0140-6736(08)61343-4

76. Krishnan E. Reduced glomerular function and prevalence of gout: NHANES 2009–10. PLoS One. 2012;7(11):e50046. doi: 10.1371/journal.pone.0050046

77. Rodríguez G, Soriano LC, Choi HK. Impact of diabetes against the future risk of developing gout. Ann Rheum Dis. 2010;69(12):2090-2094. doi: 10.1136/ard.2010.130013

78. Eleftheriadis T, Pissas G, Antoniadi G, Liakopoulos V, Stefanidis I. Allopurinol protects human glomerular endothelial cells from high glucose-induced reactive oxygen species generation, p53 overexpression and endothelial dysfunction. Int Urol Nephrol. 2018;50(1):179-186. doi: 10.1007/s11255-017-1733-5

79. Cicero AF, Rosticci M, Bove M, Fogacci F, Giovannini M, Urso R, et al. Serum uric acid change and modification of blood pressure and fasting plasma glucose in an overall healthy population sample: Data from the Brisighella heart study. Ann Med. 2017;49(4):275-282. doi: 10.1080/07853890.2016.1222451

80. Afshari M, Larijani B, Rezaie A, Mojtahedi A, Zamani MJ, Astanehi-Asghari F, et al. Ineffectiveness of allopurinol in reduction of oxidative stress in diabetic patients; a randomized, double-blind placebo-controlled clinical trial. Biomed Pharmacother. 2004;58(10):546-550. doi: 10.1016/j.biopha.2004.09.012

81. Chang HW, Lin YW, Lin MH, Lan YC, Wang RY. Associations between urate-lowering therapy and the risk of type 2 diabetes mellitus. PLoS One. 2019;14(1):e0210085. doi: 10.1371/journal.pone.0210085.63

82. Slobodnick A, Toprover M, Greenberg J, Crittenden DB, Pike VC, Qian Y, et al. Allopurinol use and type 2 diabetes incidence among patients with gout: A VA retrospective cohort study. Medicine (Baltimore). 2020;99(35):21675. doi: 10.1097/MD.0000000000021675

83. Kojima S, Matsui K, Hiramitsu S, Hisatome I, Waki M, Uchiyama K, et al. Febuxostat for Cerebral and CaRdiorenovascular Events PrEvEntion StuDy. Eur Heart J. 2019;40(22):1778-1786. doi: 10.1093/eurheartj/ehz119

84. Mizuno Y, Yamamotoya T, Nakatsu Y, Ueda K, Matsunaga Y, Inoue MK, et al. Xanthine oxidase inhibitor febuxostat exerts an anti-inflammatory action and protects against diabetic nephropathy development in KK-Ay obese diabetic mice. Int J Mol Sci. 2019;20(19):4680. doi: 10.3390/ijms20194680

85. Zhao Y, Xu L, Tian D, Xia P, Zheng H, Wang L, et al. Effects of sodium-glucose co-transporter 2 (SGLT2) inhibitors on serum uric acid level: A meta-analysis of randomized controlled trials. Diabetes Obes Metab. 2018;20(2):458-462. doi: 10.1111/dom.13101

86. Fralick M, Chen SK, Patorno E, Kim SC. Assessing the risk for gout with sodium-glucose cotransporter-2 inhibitors in patients with type 2 diabetes: A population-based cohort study. Ann Intern Med. 2020;172(3):186-194. doi: 10.7326/M19-2610

87. Shimodaira M, Niwa T, Nakajima K, Kobayashi M. Beneficial effects of vildagliptin on metabolic parameters in patients with type 2 diabetes. Endocr Metab Immune Disord Drug Targets. 2015;15:223-228.

88. Yamagishi S, Ishibashi Y, Ojima A, Sugiura T, Matsui T. Linagliptin, a xanthine-based dipeptidyl peptidase-4 inhibitor, decreases serum uric acid levels in type 2 diabetic patients partly by suppressing xanthine oxidase activity. Int J Cardiol. 2014;176(2):550-552. doi: 10.1016/j.ijcard.2014.07.023

89. Yuan H, Hu Y, Zhu Y, Zhang Y, Luo C, Li Z, et al. Metformin ameliorates high uric acid-induced insulin resistance in skeletal muscle cells. Mol Cell Endocrinol. 2017;443:138-145. doi: 10.1016/j.mce.2016.12.025

90. Pollak M. The effects of metformin on gut microbiota and the immune system as research frontiers. Diabetologia. 2017;60(9):1662-1667. doi: 10.1007/s00125-017-4352-x

91. Singh JA, Gaffo A. Gout epidemiology and comorbidities. Semin Arthritis Rheum. 2020;50(3S):S11-S16. doi: 10.1016/j.semarthrit.2020.04.008

92. Барскова ВГ, Елисеев МС, Насонов ЕЛ, Волков АВ, Цапина ТН, Зилов АВ, и др. Использование метформина (Сиофора) у пациентов с подагрой и инсулинорезистентностью (6-месячные результаты пилотного исследования. Терапевтический архив. 2005;77(12):44-49.

93. Барскова ВГ, Елисеев МС, Кудаева ФМ, Александрова ЕН, Волков АВ, Насонова ВА, и др. Влияние метформина на течение подагры и инсулинорезистентность. Клиническая медицина. 2009;87(7):41-46.


Для цитирования:


Желябина О.В., Елисеев М.С. Развитие сахарного диабета 2-го типа при подагре. Научно-практическая ревматология. 2021;59(5):599-607. https://doi.org/10.47360/1995-4484-2021-599-607

For citation:


Zhelyabina O.V., Eliseev M.S. Type 2 diabetes mellitus and gout. Rheumatology Science and Practice. 2021;59(5):599-607. (In Russ.) https://doi.org/10.47360/1995-4484-2021-599-607

Просмотров: 75


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1995-4484 (Print)
ISSN 1995-4492 (Online)