Preview

Rheumatology Science and Practice

Advanced search

Janus kinase inhibitors in immunoinflammatory diseases: 10 years of clinical practice in rheumatology

https://doi.org/10.47360/1995-4484-2022-131-148

Abstract

Despite great advances in the diagnosis and treatment of Immune-mediated inflammatory diseases (IMIDs), which have led to a significant improvement in the prognosis in many patients, the central medical problems of this pathology – restoring the quality of life and reducing mortality to the population level – are far from being resolved. This served as a powerful stimulus for the study of new approaches to the pharmacotherapy of IMIDs, one of which is associated with the discovery of targets for small-molecule therapeutics that inhibit intracellular “signaling” molecules JAKs (Janus kinases). The current achievements, trends and recommendations regarding the use of JAK inhibitors in the treatment of IMIDs and also in the hyper-response phase of COVID-19 are reviewed.

About the Authors

E. L. Nasonov
V.A. Nasonova Research Institute of Rheumatology; I.M. Sechenov First Moscow State Medical University of the Ministry of Health Care of Russian Federation (Sechenov University)
Russian Federation

Еvgeny L. Nasonov

119991, Moscow, Trubetskaya str., 8, building 2; 115522, Moscow, Kashirskoye Highway, 34A


Competing Interests:

Авторы подтверждают, что получают гонорары за консультационные услуги в области научной и педагогической деятельности (образовательные услуги, научные статьи, участие в экспертных советах, участие в исследованиях и др.)



T. V. Korotaeva
V.A. Nasonova Research Institute of Rheumatology
Russian Federation

Tatiana V. Korotaeva

115522, Moscow, Kashirskoye Highway, 34A


Competing Interests:

Авторы подтверждают, что получают гонорары за консультационные услуги в области научной и педагогической деятельности (образовательные услуги, научные статьи, участие в экспертных советах, участие в исследованиях и др.)



References

1. McGonagle D, McDermott MF. A proposed classification of the immunological diseases. PLoS Med. 2006;3(8):e297. doi: 10.1371/journal.pmed.0030297

2. Szekanecz Z, McInnes IB, Schett G, Szamosi S, Benkő S, Szűcs G. Autoinflammation and autoimmunity across rheumatic and musculoskeletal diseases. Nat Rev Rheumatol. 2021;17(10):585-595. doi: 10.1038/s41584-021-00652-9

3. Schett G, McInnes IB, Neurath MF. Reframing immune-mediated inflammatory diseases through signature cytokine hubs. N Engl J Med. 2021;385(7):628-639. doi: 10.1056/NEJMra1909094

4. van Wesemael T, Huizinga TW, Toes REM, van der Woude D. From phenotype to pathophysiology – placing rheumatic diseases in an immunological perspective. Lancet Rheumatol. 2022;4(3):E166-E167. doi: 10.1016/S2665-9913(21)00369-6

5. Baker KF, Isaacs JD. Novel therapies for immune-mediated inflammatory diseases: What can we learn from their use in rheumatoid arthritis, spondyloarthritis, systemic lupus erythematosus, psoriasis, Crohn’s disease and ulcerative colitis? Ann Rheum Dis. 2018;77(2):175-187. doi: 10.1136/annrheumdis-2017-211555

6. Nasonov EL. Pharmacotherapy for rheumatoid arthritis: New strategy, new targets. NauchnoPrakticheskaya Revmatologiya = Rheumatology Science and Practice. 2017;55(4):409-419 (In Russ.). doi: 10.14412/1995-44842017-409-419

7. Burmester GR, Bijlsma JWJ, Cutolo M, McInnes IB. Managing rheumatic and musculoskeletal diseases – past, present and future. Nat Rev Rheumatol. 2017;13(7):443-448. doi: 10.1038/nrrheum.2017.95

8. S chwartz DM, Kanno Y, Villarino A, Ward M, Gadina M, O’Shea JJ. JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat Rev Drug Discov. 2017;16(12):843862. doi: 10.1038/nrd.2017.201

9. Nasonov EL, Lila AM. Janus kinase inhibitors in immuno-inflammatory rheumatic diseases: New opportunities and prospects. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2019;57(1):8-16 (In Russ.). doi: 10.14412/1995-4484-2019-8-16

10. Spinelli FR, Meylan F, O’Shea JJ, Gadina M. JAK inhibitors: Ten years after. Eur J Immunol. 2021;51(7):1615-1627. doi: 10.1002/eji.202048922

11. O’Shea JJ, Holland SM, Staudt LM. JAKs and STATs in immunity, immunodeficiency, and cancer. N Engl J Med. 2013;368(2):161170. doi: 10.1056/NEJMra1202117

12. Tanaka Y, Luo Y, O’Shea JJ, Nakayamada S. Janus kinase-targeting therapies in rheumatology: A mechanisms-based approach. Nat Rev Rheumatol. 2022;18(3):133-145. doi: 10.1038/s41584-02100726-8

13. McLornan DP, Pope JE, Gotlib J, Harrison CN. Current and future status of JAK inhibitors. Lancet. 2021;398(10302):803-816. doi: 10.1016/S0140-6736(21)00438-4

14. Liu C, Kieltyka J, Fleischmann R, Gadina M, O’Shea JJ. A decade of JAK inhibitors: What have we learned and what may be the future? Arthritis Rheumatol. 2021;73(12):2166-2178. doi: 10.1002/art.41906

15. McInnes IB, Byers NL, Higgs RE, Lee J, Macias WL, Na S, et al. Comparison of baricitinib, upadacitinib, and tofacitinib mediated regulation of cytokine signaling in human leukocyte subpopulations. Arthritis Res Ther. 2019;21(1):183. doi: 10.1186/s13075-0191964-1

16. Choy EH. Clinical significance of Janus kinase inhibitor selectivity. Rheumatology (Oxford). 2019;58(6):953-962. doi: 10.1093/rheumatology/key339

17. Dowty ME, Lin TH, Jesson MI, Hegen M, Martin DA, Katkade V, et al. Janus kinase inhibitors for the treatment of rheumatoid arthritis demonstrate similar profiles of in vitro cytokine receptor inhibition. Pharmacol Res Perspect. 2019;7(6):e00537. doi: 10.1002/prp2.537

18. Traves PG, Murray B, Campigotto F, Galien R, Meng A, Di Paolo JA. JAK selectivity and the implications for clinical inhibition of pharmacodynamic cytokine signalling by filgotinib, upadacitinib, tofacitinib and baricitinib. Ann Rheum Dis. 2021;80(7):865-875. doi: 10.1136/annrheumdis-2020-219012

19. Kubo S, Nakayamada S, Sakata K, Kitanaga Y, Ma X, Lee S, et al. Janus kinase inhibitor baricitinib modulates human innate and adaptive immune system. Front Immunol. 2018;9:1510. doi: 10.3389/fimmu.2018.01510

20. Kubo S, Yamaoka K, Kondo M, Yamagata K, Zhao J, Iwata S, et al. The JAK inhibitor, tofacitinib, reduces the T cell stimulatory capacity of human monocyte-derived dendritic cells. Ann Rheum Dis. 2014;73(12):2192-2198. doi: 10.1136/annrheumdis-2013-203756

21. Moura RA, Fonseca JE. JAK inhibitors and modulation of B cell immune responses in rheumatoid arthritis. Front Med (Lausanne). 2021;7:607725. doi: 10.3389/fmed.2020.607725

22. Sornasse T, Sokolove J, McInnes I. Treatment with upadacitinib: Results in the normalization of key pathobiologic pathways in patients with rheumatoid arthritis [Abstract]. Arthritis Rheumatol. 2019;71(Suppl 10). URL: https://acrabstracts.org/abstract/treatment-with-upadacitinib-results-in-the-normalization-of-key-pathobiologic-pathways-in-patients-with-rheumatoidarthritis/ (Accessed: 21st August 2020).

23. Lent S, Sornasse T, Georgantas R, Sokolove J, McInnes I. Molecular analysis of the mode of action of upadacitinib in rheumatoid arthritis patients: Whole blood RNA expression data from the SELECT-NEXT study [Abstract]. Arthritis Rheumatol. 2019;71(Suppl 10). URL: https://acrabstracts.org/abstract/molecular-analysis-of-the-mode-of-action-of-upadacitinib-in-rheumatoid-arthritis-patients-whole-blood-rna-expression-data-from-theselect-next-study (Accessed: 21st August 2020).

24. Sornasse T, Song IH, Radstake T, McInnes I. FRI0026. Proteomics analysis comparing the mode of action of upadacitinib and adalimumab head to head in RA identifies novel, discrete early immune pathway modulation in the SELECT-COMPARE phase 3 study. Ann Rheum Dis. 2020;79:585-586. doi: 10.1136/annrheumdis-2020-eular.1908

25. Virtanen A, Haikarainen T, Raivola J, Silvennoinen O. Selective JAKinibs: Prospects in inflammatory and autoimmune diseases. BioDrugs. 2019;33(1):15-32. doi: 10.1007/s40259-019-00333

26. Fragoulis GE, Brock J, Basu N, McInnes IB, Siebert S. The role for JAK inhibitors in the treatment of immune-mediated rheumatic and related conditions. J Allergy Clin Immunol. 2021;148(4):941952. doi: 10.1016/j.jaci.2021.08.010

27. Smolen JS, van der Heijde D, Machold KP, Aletaha D, Landewé R. Proposal for a new nomenclature of disease-modifying antirheumatic drugs. Ann Rheum Dis. 2014;73(1):3-5. doi: 10.1136/annrheumdis-2013-204317

28. Nasonov EL, Avdeeva AS, Lila AM. Efficacy and safety of tofacitinib for immune-mediated inflammatory rheumatic diseases (Part I). Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2020;58(1):62-79 (In Russ.). doi: 10.14412/1995-4484-2020-62-79

29. Nasonov EL, Avdeeva AS, Lila AM. Efficacy and safety of tofacitinib for immune-mediated inflammatory rheumatic diseases (part II). NauchnoPrakticheskaya Revmatologiya = Rheumatology Science and Practice. 2020;58(2):214-224 (In Russ.). doi: 10.14412/1995-4484-2020214-224

30. Nasonov EL, Lila AM. Baricitinib: New pharmacotherapy options for rheumatoid arthritis and other immune-mediated inflammatory rheumatic diseases. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2020;58(3):304-316 (In Russ.). doi: 10.14412/1995-4484-2020-304-316

31. Nasonov EL, Lila AM. The progress of rheumatology in the 21st century potential uses of upadacitinib in rheumatoid arthritis and other inflammatory rheumatic diseases. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2020;58(5):532-543 (In Russ.). doi: 10.47360/1995-4484-2020-532-543

32. Насонов ЕЛ (ред.). Ревматология. Российские клинические рекомендации. М.:ГЭОТАР-Медиа;2017. [Nasonov EL (ed.). Rheumatology. Russian clinical guidelines. Moscow:GEOTARMedia;2020 (In Russ.)].

33. Smolen JS, Landewé RBM, Bijlsma JWJ, Burmester GR, Dougados M, Kerschbaumer A, et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2019 update. Ann Rheum Dis. 2020;79(6):685-699. doi: 10.1136/annrheumdis-2019-216655

34. Fraenkel L, Bathon JM, England BR, St Clair EW, Arayssi T, Carandang K, et al. 2021 American College of Rheumatology guideline for the treatment of rheumatoid arthritis. Arthritis Rheumatol. 2021;73(7):1108-1123. doi: 10.1002/art.41752

35. Gossec L, Baraliakos X, Kerschbaumer A, de Wit M, McInnes I, Dougados M, et al. EULAR recommendations for the management of psoriatic arthritis with pharmacological therapies: 2019 update. Ann Rheum Dis. 2020;79(6):700-712. doi: 10.1136/annrheumdis-2020-217159

36. Lamb CA, Kennedy NA, Raine T, Hendy PA, Smith PJ, Limdi JK, et al.; IBD guidelines eDelphi consensus group. British Society of Gastroenterology consensus guidelines on the manage ment of inflammatory bowel disease in adults. Gut. 2019;68(Suppl 3):s1-s106. doi: 10.1136/gutjnl-2019-318484

37. Amiot A, Bouguen G, Bonnaud G, Bouhnik Y, Hagege H, PeyrinBiroulet L; French National Consensus Clinical guidelines for the management of IBD study group. Clinical guidelines for the management of inflammatory bowel disease: Update of a French national consensus. Dig Liver Dis. 2021;53(1):35-43. doi: 10.1016/j.dld.2020.10.018

38. Nwaogu A, Bond A, Smith PJ. Guideline review: Tofacitinib for adults with moderately to severely active ulcerative colitis – NICE guidance. Frontline Gastroenterol. 2020;12(2):133-136. doi: 10.1136/flgastro-2020-101502

39. Kerschbaumer A, Smolen JS, Nash P, Doerner T, Dougados M, Fleischmann R, et al. Points to consider for the treatment of immune-mediated inflammatory diseases with Janus kinase inhibitors: A systematic literature research. RMD Open. 2020;6(3):e001374. doi: 10.1136/rmdopen-2020-001374

40. Reddy V, Cohen S. Role of Janus kinase inhibitors in rheumatoid arthritis treatment. Curr Opin Rheumatol. 2021;33(3):300-306. doi: 10.1097/BOR.0000000000000792

41. Tóth L, Juhász MF, Szabó L, Abada A, Kiss F, Hegyi P, et al. Janus kinase inhibitors improve disease activity and patient-reported outcomes in rheumatoid arthritis: A systematic review and metaanalysis of 24,135 patients. Int J Mol Sci. 2022;23(3):1246. doi: 10.3390/ijms23031246

42. Strand V. RMD commentary, JAK kinase inhibitors: A preferred alternative to TNF inhibitors? RMD Open. 2021;7(1):e001565. doi: 10.1136/rmdopen-2021-001565

43. Smolen JS, Aletaha D, Bijlsma JW, Breedveld FC, Boumpas D, Burmester G, et al.; T2T Expert Committee. Treating rheumatoid arthritis to target: Recommendations of an international task force. Ann Rheum Dis. 2010;69(4):631-637. doi: 10.1136/ard.2009.123919

44. Maassen JM, van Ouwerkerk L, Allaat CF. Tapering of diseasesmodifying antirheumatic drugs: an overview for daily practice. Lancet Rheumatol. 2021;3:e659-e670.

45. Kubo S, Yamaoka K, Amano K, Nagano S, Tohma S, Suematsu E, et al. Discontinuation of tofacitinib after achieving low disease activity in patients with rheumatoid arthritis: A multicentre, observational study. Rheumatology (Oxford). 2017;56(8):1293-1301. doi: 10.1093/rheumatology/kex068

46. Pérez-Román DI, Ortiz-Haro AB, Ruiz-Medrano E, ContrerasYáñez I, Pascual-Ramos V. Outcomes after rheumatoid arthritis patients complete their participation in a long-term observational study with tofacitinib combined with methotrexate: practical and ethical implications in vulnerable populations after tofacitinib discontinuation. Rheumatol Int. 2018;38(4):599-606. doi: 10.1007/s00296-017-3910-3

47. Mori S, Ueki Y Outcomes of dose reduction, withdrawal, and restart of tofacitinib in patients with rheumatoid arthritis: A prospective observational study. Clin Rheumatol. 2019;38(12):3391-3400. doi: 10.1007/s10067-019-04721-z

48. Kaine J, Tesser J, DeMasi R, Takiya L, Wang L, Slyder M, et al. Efficacy of tofacitinib after temporary discontinuation in patients with rheumatoid arthritis: Analysis of data from open-label longterm extension studies. Ann Rheum Dis. 2018. doi: 10/1136/annrheumdis-2018-eular.3755

49. Takeuchi T, Genovese MC, Haraoui B, Li Z, Xie L, Klar R, et al. Dose reduction of baricitinib in patients with rheumatoid arthritis achieving sustained disease control: Results of a prospective study. Ann Rheum Dis. 2019;78(2):171-178. doi: 10.1136/annrheumdis-2018-213271

50. Cohen SB, Pope J, Haraoui B, Irazoque-Palazuelos F, Korkosz M, Diehl A, et al. Methotrexate withdrawal in patients with rheumatoid arthritis who achieve low disease activity with tofacitinib modified-release 11 mg once daily plus methotrexate (ORAL Shift): A randomised, phase 3b/4, non-inferiority trial. Lancet Rheumatol. 2019;1:e23-e34. doi: 10.1016/S26659913(19)30005-0

51. Cohen SB, Pope J, Haraoui B, Mysler E, Diehl A, Lukic T, et al. Efficacy and safety of tofacitinib modified-release 11 mg once daily plus methotrexate in adult patients with rheumatoid arthritis: 24-week open-label phase results from a phase 3b/4 methotrexate withdrawal non-inferiority study (ORAL Shift). RMD Open. 2021;7(2):e001673. doi: 10.1136/rmdopen-2021-001673

52. Avdeeva AS, Misiyuk AS, Satybaldyev AM, Lukina GV, Sorotskaya VN, Zhilyaev EV, et al. Analysis of the results of tofacitinib therapy in real clinical practice according to the All-Russian Arthritis Registry (OREL). Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2020;58(3):262-267 (In Russ.). doi: 10.14412/1995-4484-2020-262-267

53. Campanaro F, Batticciotto A, Zaffaroni A, Cappelli A, Donadini MP, Squizzato A. JAK inhibitors and psoriatic arthritis: A systematic review and meta-analysis. Autoimmun Rev. 2021;20(10):102902. doi: 10.1016/j.autrev.2021.102902

54. Keeling S, Maksymowych WP. JAK inhibitors, psoriatic arthritis, and axial spondyloarthritis: A critical review of clinical trials. Expert Rev Clin Immunol. 2021;17(7):701-715. doi: 10.1080/1744666X.2021.1925541

55. Akkoc N, Khan MA. JAK inhibitors for axial spondyloarthritis: What does the future hold? Curr Rheumatol Rep. 2021;23(6):34. doi: 10.1007/s11926-021-01001-1

56. Lee YH, Song GG. Janus kinase inhibitors for treating active ankylosing spondylitis: A meta-analysis of randomized controlled trials. Z Rheumatol. 2022;81(1):71-76. doi: 10.1007/s00393-02000948-3

57. van der Heijde D, Deodhar A, Wei JC, Drescher E, Fleishaker D, Hendrikx T, et al.. Tofacitinib in patients with ankylosing spondylitis: A phase II, 16-week, randomised, placebo-controlled, doseranging study. Ann Rheum Dis. 2017;76(8):1340-1347. doi: 10.1136/annrheumdis-2016-210322

58. Deodhar A, Sliwinska-Stanczyk P, Xu H, Baraliakos X, Gensler LS, Fleishaker D, et al. Tofacitinib for the treatment of ankylosing spondylitis: A phase III, randomised, double-blind, placebo-controlled study. Ann Rheum Dis. 2021;80(8):1004-1013. doi: 10.1136/annrheumdis-2020-219601

59. van der Heijde D, Song IH, Pangan AL, Deodhar A, van den Bosch F, Maksymowych WP, et al. Efficacy and safety of upadacitinib in patients with active ankylosing spondylitis (SELECT-AXIS 1): A multicentre, randomised, double-blind, placebo-controlled, phase 2/3 trial. Lancet. 2019;394(10214):21082117. doi: 10.1016/S0140-6736(19)32534-6

60. Mease P, Hall S, FitzGerald O, van der Heijde D, Merola JF, Avila-Zapata F, et al. Tofacitinib or adalimumab versus placebo for psoriatic arthritis. N Engl J Med. 2017;377(16):1537-1550. doi: 10.1056/NEJMoa1615975

61. Gladman D, Rigby W, Azevedo VF, Behrens F, Blanco R, Kaszuba A, et al. Tofacitinib for psoriatic arthritis in patients with an inadequate response to TNF inhibitors. N Engl J Med. 2017;377(16):1525-1536. doi: 10.1056/NEJMoa1615977

62. McInnes IB, Kato K, Magrey M, Merola JF, Kishimoto M, Pacheco-Tena C, et al. Upadacitinib in patients with psoriatic arthritis and an inadequate response to non-biological therapy: 56-week data from the phase 3 SELECT-PsA 1 study. RMD Open. 2021;7(3):e001838. doi: 10.1136/rmdopen-2021-001838

63. Mease PJ, Lertratanakul A, Anderson JK, Papp K, van den Bosch F, Tsuji S, et al. Upadacitinib for psoriatic arthritis refractory to biologics: SELECT-PsA 2. Ann Rheum Dis. 2020;80(3):312-320. doi: 10.1136/annrheumdis-2020-218870

64. Loginova EYu, Korsakova YuL, Gubar EE, Karpova PL, Korotaeva TV. Efficacy and safety of tofacitinib in patients with psoriatic arthritis in real clinical practice. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2020;58(3):268-275 (In Russ.). doi: 10.14412/1995-4484-2020268-275

65. Gubar EE, Korsakova YuL, Loginova EYu, Smirnov AV, Glukhova SI, Korotaeva TV. Effect of tofacitinib treatment on active MRI sacroiliitis in psoriatic arthritis patients. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2021;59(2):134-140 (In Russ.). doi: 10.47360/19954484-2021-134-140

66. Gossec L, Dougados M, Dixon W. Patient-reported outcomes as end points in clinical trials in rheumatoid arthritis. RMD Open. 2015;1(1):e000019. doi: 10.1136/rmdopen-2014-000019

67. Rendas-Baum R, Bayliss M, Kosinski M, Raju A, Zwillich SH, Wallenstein GV, et al. Measuring the effect of therapy in rheumatoid arthritis clinical trials from the patient’s perspective. Curr Med Res Opin. 2014;30:1391-1403. doi: 10.1185/03007995.2014.896328

68. Taylor P, Manger B, Alvaro-Gracia J, Johnstone R, GomezReino J, Eberhardt E, et al. Patient perceptions concerning pain management in the treatment of rheumatoid arthritis. J Int Med Res. 2010;38:1213-1224. doi: 10.1177/147323001003800402

69. Boyden SD, Hossain IN, Wohlfahrt A, Lee YC. Noninflammatory causes of pain in patients with rheumatoid arthritis. Curr Rheumatol Rep. 2016;18:30. doi: 10.1007/s11926-016-0581-0

70. Lampa JB. Pain without inflammation in rheumatic diseases. Best Pract Res Clin Rheumatol. 2019;33(3):101439. doi: 10.1016/j.berh.2019.101439

71. Pazmino S, Lovik A, Boonen A, de Cock D, Stouten V, Bertrand D, et al. The discordance between patient-reported and clinical. Biological outcomes could help in FUTURE future disease impact in patients with rheumatoid arthritis. Ann Rheum Dis. 2021;80:484. doi: 10.1136/annrheumdis-2021-eular.4099

72. Taylor PC, Moore A, Vasilescu R, Alvir J, Tarallo M. A structured literature review of the burden of illness and unmet needs in patients with rheumatoid arthritis: A current perspective. Rheumatol Int. 2016;36:685-695. doi: 10.1007/s00296-015-3415-x

73. Karateev AE. Problems of pain and quality of life in rheumatoid arthritis: Focus on baricitinib. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2020;58(4):420-427. (In Russ.). doi: 10.47360/1995-4484-2020-420-427

74. Taylor PC, Lee YC, Fleischmann R, Takeuchi T, Perkins EL, Fautrel B, et al. Achieving pain control in rheumatoid arthritis with baricitinib or adalimumab plus methotrexate: Results from the RA-BEAM trial. J Clin Med. 2019;8(6):831. doi: 10.3390/jcm8060831

75. Fautrel B, Kirkham B, Pope JE, Takeuchi T, Gaich C, Quebe A, et al. Effect of baricitinib and adalimumab in reducing pain and improving function in patients with rheumatoid arthritis in low disease activity: Exploratory analyses from RA-BEAM. J Clin Med. 2019;8(9):1394. doi: 10.3390/jcm8091394

76. Ogdie A, de Vlam K, McInnes IB, Mease PJ, Baer P, Lukic T, et al. Efficacy of tofacitinib in reducing pain in patients with rheumatoid arthritis, psoriatic arthritis or ankylosing spondylitis. RMD Open. 2020;6(1):e001042. doi: 10.1136/rmdopen-2019001042

77. Salaffi F, Giacobazzi G, Di Carlo M. Chronic pain in inflammatory arthritis: mechanisms, metrology, and emerging targets – A focus on the JAK-STAT Pathway. Pain Res Manag. 2018;2018:8564215. doi: 10.1155/2018/8564215

78. Simon LS, Taylor PC, Choy EH, Sebba A, Quebe A, Knopp KL, et al. The Jak/STAT pathway: A focus on pain in rheumatoid arthritis. Semin Arthritis Rheum. 2021;51(1):278-284. doi: 10.1016/j.semarthrit.2020.10.008

79. Crispino N, Ciccia F. JAK/STAT pathway and nociceptive cytokine signalling in rheumatoid arthritis and psoriatic arthritis. Clin Exp Rheumatol. 2021;39(3):668-675.

80. Karateev AE, Pogozheva EYu, Amirjanova VN, Filatova ES, Lila AM, Mazurov VI, et al. Evaluation of the effectiveness of Tofacitinib in rheumatoid arthritis in real clinical practice: The relationship between pain relief in the first 4 weeks and disease activity after 3–6 months. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2021;59(4):394-400. (In Russ.). doi: 10.47360/1995-4484-2021-394-400

81. Cook AD, Pobjoy J, Steidl S, Dürr M, Braine EL, Turner AL, et al. Granulocyte-macrophage colony-stimulating factor is a key mediator in experimental osteoarthritis pain and disease development. Arthritis Res Ther. 2012;14:R199. doi: 10.1186/ar4037

82. Lee KM, Prasad V, Achuthan A, Fleetwood AJ, Hamilton JA, Cook AD. Targeting GM-CSF for collagenase-induced osteoarthritis pain and disease in mice. Osteoarthritis Cartilage. 2020;28(4):486-491. doi: 10.1016/j.joca.2020.01.012

83. Choy EHS, Calabrese LH. Neuroendocrine and neurophysiological effects of interleukin 6 in rheumatoid arthritis. Rheumatology (Oxford). 2018;57(11):1885-1895. doi: 10.1093/rheumatology/kex391

84. Lisitsyna TA, Veltishchev DYu, Lila AM, Nasonov EL. Interleukin 6 as a pathogenic factor mediating clinical manifestations and a therapeutic target for rheumatic diseases and depressive disorders. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2019;57(3):318-327 doi: 10.14412/1995-44842019-318-327.

85. Olivera PA, Lasa JS, Bonovas S, Danese S, Peyrin-Biroulet L. Safety of Janus kinase inhibitors in patients with inflammatory bowel diseases or other immune-mediated diseases: A systematic review and meta-analysis. Gastroenterology. 2020;158(6):1554-1573.e12. doi: 10.1053/j.gastro.2020.01.001

86. Winthrop KL. The emerging safety profile of JAK inhibitors in rheumatic disease. Nat Rev Rheumatol. 2017;13(4):234-243. doi: 10.1038/nrrheum.2017.23

87. Harigai M, Honda S. Selectivity of Janus kinase inhibitors in rheumatoid arthritis and other immune-mediated inflammatory diseases: Is expectation the root of all headache? Drugs. 2020;80(12):1183-1201. doi: 10.1007/s40265-020-01349-1

88. Yates M, Mootoo A, Adas M, Bechman K, Rampes S, Patel V, et al. Venous thromboembolism risk with JAK inhibitors: A metaanalysis. Arthritis Rheumatol. 2021;73(5):779-788. doi: 10.1002/art.41580

89. Atzeni F, Popa CD, Nucera V, Nurmohamed MT. Safety of JAK inhibitors: Focus on cardiovascular and thromboembolic events. Expert Rev Clin Immunol. 2022 Feb 17:1-12. doi: 10.1080/1744666X.2022.2039630

90. Kretschmer S, Lee-Kirsch MA. Type I interferon-mediated autoinflammation and autoimmunity. Curr Opin Immunol. 2017;49:96102. doi: 10.1016/j.coi.2017.09.003

91. Nasonov EL, Avdeeva AS. Immunoinflammatory rheumatic diseases associated with type I interferon: New evidence. NauchnoPrakticheskaya Revmatologiya = Rheumatology Science and Practice. 2019;57(4):452-461 (In Russ.). doi: 10.14412/1995-4484-2019452-461

92. Gómez-Arias PJ, Gómez-García F, Hernández-Parada J, Montilla-López AM, Ruano J, Parra-Peralbo E. Efficacy and safety of Janus kinase inhibitors in type I interferon-mediated monogenic autoinflammatory disorders: A scoping review. Dermatol Ther (Heidelb). 2021;11(3):733-750. doi: 10.1007/s13555-021-00517-9

93. Jamilloux Y, El Jammal T, Vuitton L, Gerfaud-Valentin M, Kerever S, Sève P. JAK inhibitors for the treatment of autoimmune and inflammatory diseases. Autoimmun Rev. 2019;18(11):102390. doi: 10.1016/j.autrev.2019.102390

94. Psarras A, Emery P, Vital EM. Type I interferon-mediated autoimmune diseases: Pathogenesis, diagnosis and targeted therapy. Rheumatology (Oxford). 2017;56(10):1662-1675. doi: 10.1093/rheumatology/kew431

95. Wallace DJ, Furie RA, Tanaka Y, Kalunian KC, Mosca M, Petri MA, et al. Baricitinib for systemic lupus erythematosus: A double-blind, randomised, placebo-controlled, phase 2 trial. Lancet. 2018;392(10143):222-231. doi: 10.1016/S01406736(18)31363-1

96. Hasni SA, Gupta S, Davis M, Poncio E, Temesgen-Oyelakin Y, Carlucci PM, et al. Phase 1 double-blind randomized safety trial of the Janus kinase inhibitor tofacitinib in systemic lupus erythematosus. Nat Commun. 2021;12(1):3391. doi: 10.1038/s41467-021-23361-z

97. You H, Zhang G, Wang Q, Zhang S, Zhao J, Tian X, et al. Successful treatment of arthritis and rash with tofacitinib in systemic lupus erythematosus: The experience from a single centre. Ann Rheum Dis. 2019;78(10):1441-1443. doi: 10.1136/annrheumdis-2019-215455

98. Chen YL, Liu LX, Huang Q, Li XY, Hong XP, Liu DZ. Case report: Reversal of long-standing refractory diffuse non-scarring alopecia due to systemic lupus erythematosus following treatment with tofacitinib. Front Immunol. 2021;12:654376. doi: 10.3389/fimmu.2021.654376

99. Bonnardeaux E, Dutz JP. Oral tofacitinib citrate for recalcitrant cutaneous lupus. JAAD Case Rep. 2021;20:61-64. doi: 10.1016/j.jdcr.2021.09.030

100. Landon-Cardinal O, Guillaume-Jugnot P, Bolko L, Toquet S, Rigolet A, Hervier B, et al. JAK inhibitors: A promising molecular-targeted therapy in dermatomyositis [Abstract]. Arthritis Rheumatol. 2019;71(Suppl 10). URL: https://acrabstracts.org/ abstract/jak-inhibitors-a-promising-molecular-targeted-therapyin-dermatomyositis (Accessed: 9th March 2022).

101. Paik JJ, Casciola-Rosen L, Shin JY, Albayda J, Tiniakou E, Leung DG, et al. Study of tofacitinib in refractory dermatomyositis: An open-label pilot study of ten patients. Arthritis Rheumatol. 2021;73(5):858-865. doi: 10.1002/art.41602

102. Papadopoulou C, Hong Y, Omoyinmi E, Brogan PA, Eleftheriou D. Janus kinase 1/2 inhibition with baricitinib in the treatment of juvenile dermatomyositis. Brain. 2019; 142(3):e8. doi: 10.1093/brain/awz005

103. Le Voyer T, Gitiaux C, Authier FJ, Bodemer C, Melki I, Quartier P, et al. JAK inhibitors are effective in a subset of patients with juvenile dermatomyositis: A monocentric retrospective study. Rheumatology (Oxford). 2021;60(12):5801-5808. doi: 10.1093/rheumatology/keab116

104. Kim H, Dill S, O’Brien M, Vian L, Li X, Manukyan M, et al. Janus kinase (JAK) inhibition with baricitinib in refractory juvenile dermatomyositis. Ann Rheum Dis. 2020 Aug 25:annrheumdis-2020-218690. doi: 10.1136/annrheumdis-2020-218690.

105. Sabbagh S, Almeida de Jesus A, Hwang S, Kuehn HS, Kim H, Jung L, et al. Treatment of anti-MDA5 autoantibody-positive juvenile dermatomyositis using tofacitinib. Brain. 2019;142(11):e59. doi: 10.1093/brain/awz293

106. Yu Z, Wang L, Quan M, Zhang T, Song H. Successful management with Janus kinase inhibitor tofacitinib in refractory juvenile dermatomyositis: A pilot study and literature review. Rheumatology (Oxford). 2021;60(4):1700-1707. doi: 10.1093/rheumatology/keaa558

107. Ding Y, Huang B, Wang Y, Hou J, Chi Y, Zhou Z, Li J. Janus kinase inhibitor significantly improved rash and muscle strength in juvenile dermatomyositis. Ann Rheum Dis. 2020;80(4):543-545. doi: 10.1136/annrheumdis-2020-218582

108. Kuwabara S, Tanimura S, Matsumoto S, Nakamura H, Horita T. Successful remission with tofacitinib in a patient with refractory Takayasu arteritis complicated by ulcerative colitis. Ann Rheum Dis. 2020;79(8):1125-1126. doi: 10.1136/annrheumdis-2019-216606

109. Zhu KJ, Yang PD, Xu Q. Tofacitinib treatment of refractory cutaneous leukocytoclastic vasculitis: A case report. Front Immunol. 2021;12:695768. doi: 10.3389/fimmu.2021.695768

110. You H, Xu D, Hou Y, Zhou J, Wang Q, Li M, et al. Tofacitinib as a possible treatment for skin thickening in diffuse cutaneous systemic sclerosis. Rheumatology (Oxford). 2021;60(5):2472-2477. doi: 10.1093/rheumatology/keaa613

111. Karalilova RV, Batalov ZA, Sapundzhieva TL, MatucciCerinic M, Batalov AZ. Tofacitinib in the treatment of skin and musculoskeletal involvement in patients with systemic sclerosis, evaluated by ultrasound. Rheumatol Int. 2021;41(10):17431753. doi: 10.1007/s00296-021-04956-7

112. Komai T, Shoda H, Hanata N, Fujio K. Tofacitinib rapidly ameliorated polyarthropathy in a patient with systemic sclerosis. Scand J Rheumatol. 2018;47(6):505-506. doi: 10.1080/03009742.2017.1387673

113. Meshkov AD, Novikov PI, Zhilyaev EV, Ilevsky IDJ, Moiseev SV. Tofacitinib in steroid-dependent relapsing polychondritis. Ann Rheum Dis. 2019;78(7):e72. doi: 10.1136/annrheumdis-2018-213554

114. Damsky W, Thakral D, Emeagwali N, Galan A, King B. Tofacitinib treatment and molecular analysis of cutaneous sarcoidosis. N Engl J Med. 2018;379(26):2540-2546. doi: 10.1056/NEJMoa1805958

115. Rimar D, Alpert A, Starosvetsky E, Rosner I, Slobodin G, Rozenbaum M, et al. Tofacitinib for polyarteritis nodosa: A tailored therapy. Ann Rheum Dis. 2016;75(12):2214-2216. doi: 10.1136/annrheumdis-2016-209330

116. Chapman S, Kwa M, Gold LS, Lim HW. Janus kinase inhibitors in dermatology: Part I. A comprehensive review. J Am Acad Dermatol. 2022;86(2):406-413. doi: 10.1016/j.jaad.2021.07.002

117. Chapman S, Gold LS, Lim HW. Janus kinase inhibitors in dermatology: Part II. A comprehensive review. J Am Acad Dermatol. 2022;86(2):414-422. doi: 10.1016/j.jaad.2021.06.873

118. Nasonov EL. Coronavirus Disease 2019 (COVID-19): A rheumatologist’s thoughts. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2020;58(2):123132 (In Russ.). doi: 10.14412/1995-4484-2020-123-132

119. Schett G, Manger B, Simon D, Caporali R. COVID-19 revisiting inflammatory pathways of arthritis. Nat Rev Rheumatol. 2020;16(8):465-470. doi: 10.1038/s41584-020-0451-z

120. Nasonov EL. Coronavirus disease 2019 (COVID-19) and autoimmunity. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2021;59(1):530 (In Russ.). doi: 10.47360/1995-4484-2021-5-30

121. Nasonov EL. Coronavirus disease (COVID-19): Contribution of rheumatology. Terapevticheskii arkhiv. 2021;93(5):537-550 (In Russ.). doi: 10.26442/00403660.2021.05.200799

122. Hu B, Guo H, Zhou P, Shi ZL. Characteristics of SARSCoV-2 and COVID-19. Nat Rev Microbiol. 2021;19(3):141-154. doi: 10.1038/s41579-020-00459-7

123. Wang Y, Perlman S. COVID-19: Inflammatory profile. Annu Rev Med. 2022;73:65-80. doi: 10.1146/annurev-med-042220-012417

124. Fajgenbaum DC, June CH, Cytokine storm. N Engl J Med. 2020;383:2255-2273. doi: 10.1056/NEJMra2026131

125. Weatherhead JE, Clark E, Vogel TP, Atmar RL, Kulkarni PA. Inflammatory syndromes associated with SARS-CoV-2 infection: Dysregulation of the immune response across the age spectrum. J Clin Invest. 2020;130(12):6194-6197. doi: 10.1172/JCI145301

126. Grom AA, Horne A, De Benedetti F. Macrophage activation syndrome in the era of biologic therapy. Nat Rev Rheumatol. 2016;12(5):259-268. doi: 10.1038/nrrheum.2015.179

127. Akbari H, Tabrizi R, Lankarani KB, Aria H, Vakili S, Asadian F, et al. The role of cytokine profile and lymphocyte subsets in the severity of coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis. Life Sci. 2020;258:118167. doi: 10.1016/j.lfs.2020.118167

128. Leisman DE, Ronner L, Pinotti R, Taylor MD, Sinha P, Calfee CS, et al. Cytokine elevation in severe and critical COVID19: A rapid systematic review, meta-analysis, and comparison with other inflammatory syndromes. Lancet Respir Med. 2020;8(12):1233-1244. doi: 10.1016/S2213-2600(20)30404-5

129. Nissen CB, Sciascia S, de Andrade D, Atsumi T, Bruce IN, Cron RQ, et al. The role of antirheumatics in patients with COVID-19. Lancet Rheumatol. 2021;3(6):e447-e459. doi: 10.1016/S2665-9913(21)00062-X

130. Nasonov E, Samsonov M. The role of Interleukin 6 inhibitors in therapy of severe COVID-19. Biomed Pharmacother. 2020;131:110698. doi: 10.1016/j.biopha.2020.110698

131. Fagni F, Simon D, Tascilar K, Schoenau V, Sticherling M, Neurath MF, et al. COVID-19 and immune-mediated inflammatory diseases: Effect of disease and treatment on COVID-19 outcomes and vaccine responses. Lancet Rheumatol. 2021;3(10):e724-e736. doi: 10.1016/S2665-9913(21)00247-2

132. Stebbing J, Krishnan V, de Bono S, Ottaviani S, Casalini G, Richardson PJ, et al.; Sacco Baricitinib Study Group. Mechanism of baricitinib supports artificial intelligence-predicted testing in COVID-19 patients. EMBO Mol Med. 2020;12(8):e12697. doi: 10.15252/emmm.202012697

133. Richardson P, Griffin I, Tucker C, Smith D, Oechsle O, Phelan A, et al. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet. 2020;395(10223):e30-e31. doi: 10.1016/S0140-6736(20)30304-4

134. Kalil AC, Patterson TF, Mehta AK, Tomashek KM, Wolfe CR, Ghazaryan V, et al.; ACTT-2 Study Group Members. Baricitinib plus remdesivir for hospitalized adults with COVID-19. N Engl J Med. 2021;384(9):795-807. doi: 10.1056/NEJMoa2031994

135. Marconi VC, Ramanan AV, de Bono S, Kartman CE, Krishnan V, Liao R, et al.; COV-BARRIER Study Group. Efficacy and safety of baricitinib for the treatment of hospitalised adults with COVID-19 (COV-BARRIER): A randomised, double-blind, parallel-group, placebo-controlled phase 3 trial. Lancet Respir Med. 2021;9(12):1407-1418. doi: 10.1016/S22132600(21)00331-3

136. Ely EW, Ramanan AV, Kartman CE, de Bono S, Kuai R, Piruzeli MLB, et al. Baricitinib plus standard of care for hospitalised adults with COVID-19 on invasive mechanical ventilation or extracorporeal membrane oxygenation: Results of a randomized, placebo-controlled trial. Medrxiv. 2021.10.11.21263897. doi: 10.1101/2021.10.11.21263897

137. Titanji BK, Farley MM, Mehta A, Connor-Schuler R, Moanna A, Cribbs SK, et al. Use of baricitinib in patients with moderate to severe coronavirus disease 2019. Clin Infect Dis. 2021;72(7):1247-1250. doi: 10.1093/cid/ciaa879

138. Rodriguez-Garcia JL, Sanchez-Nievas G, Arevalo-Serrano J, Garcia-Gomez C, Jimenez-Vizuete JM, Martinez-Alfaro E. Baricitinib improves respiratory function in patients treated with corticosteroids for SARS-CoV-2 pneumonia: an observational cohort study. Rheumatology (Oxford). 2021;60(1):399-407. doi: 10.1093/rheumatology/keaa587

139. Cantini F, Niccoli L, Matarrese D, Nicastri E, Stobbione P, Goletti D. Baricitinib therapy in COVID-19: A pilot study on safety and clinical impact. J Infect. 2020;81(2):318-356. doi: 10.1016/j.jinf.2020.04.017

140. Cantini F, Niccoli L, Nannini C, Matarrese D, Natale MED, Lotti P, et al. Beneficial impact of baricitinib in COVID-19 mod erate pneumonia; multicentre study. J Infect. 2020;81(4):647-679. doi: 10.1016/j.jinf.2020.06.052

141. Abizanda P, Calbo Mayo JM, Mas Romero M, Cortés Zamora EB, Tabernero Sahuquillo MT, et al. Baricitinib reduces 30-day mortality in older adults with moderate-to-severe COVID-19 pneumonia. J Am Geriatr Soc. 2021;69(10):2752-2758. doi: 10.1111/jgs.17357

142. Bronte V, Ugel S, Tinazzi E, Vella A, De Sanctis F, Canè S, et al. Baricitinib restrains the immune dysregulation in patients with severe COVID-19. J Clin Invest. 2020;130(12):6409-6416. doi: 10.1172/JCI141772

143. Rosas J, Liaño FP, Cantó ML, Barea JMC, Beser AR, Rabasa JTA, et al.; COVID19-HMB Group. Experience with the use of baricitinib and tocilizumab monotherapy or combined, in patients with interstitial pneumonia secondary to coronavirus COVID19: A real-world study. Reumatol Clin (Engl Ed). 2020;18(3):150-156. doi: 10.1016/j.reuma.2020.10.009

144. Stebbing J, Sánchez Nievas G, Falcone M, Youhanna S, Richardson P, Ottaviani S, et al. JAK inhibition reduces SARSCoV-2 liver infectivity and modulates inflammatory responses to reduce morbidity and mortality. Sci Adv. 2021;7(1):eabe4724. doi: 10.1126/sciadv.abe4724

145. Pérez-Alba E, Nuzzolo-Shihadeh L, Aguirre-García GM, Espinosa-Mora J, Lecona-Garcia JD, Flores-Pérez RO, et al. Baricitinib plus dexamethasone compared to dexamethasone for the treatment of severe COVID-19 pneumonia: A retrospective analysis. J Microbiol Immunol Infect. 2021;54(5):787-793. doi: 10.1016/j.jmii.2021.05.009

146. Masiá M, Padilla S, García JA, García-Abellán J, Navarro A, Guillén L, et al. Impact of the addition of baricitinib to standard of care including tocilizumab and corticosteroids on mortality and safety in severe COVID-19. Front Med (Lausanne). 2021;8:749657. doi: 10.3389/fmed.2021.749657

147. Melikhov O, Kruglova T, Lytkina K, Melkonyan G, Prokhorovich E, Putsman G, et al. Use of Janus kinase inhibitors in COVID-19: A prospective observational series in 522 individuals. Ann Rheum Dis. 2021;80(9):1245-1246. doi: 10.1136/annrheumdis-2021-220049

148. Guimarães PO, Quirk D, Furtado RH, Maia LN, Saraiva JF, Antunes MO, et al.; STOP-COVID Trial Investigators. Tofacitinib in patients hospitalized with COVID-19 pneumonia. N Engl J Med. 2021;385(5):406-415. doi: 10.1056/NEJMoa2101643

149. Maslennikov R, Ivashkin V, Vasilieva E, Chipurik M, Semikova P, Semenets V, et al. Tofacitinib reduces mortality in coronavirus disease 2019 Tofacitinib in COVID-19. Pulm Pharmacol Ther. 2021;69:102039. doi: 10.1016/j.pupt.2021.102039

150. Hayek ME, Mansour M, Ndetan H, Burkes Q, Corkern R, Dulli A, et al. Anti-inflammatory treatment of COVID-19 pneumonia with tofacitinib alone or in combination with dexamethasone is safe and possibly superior to dexamethasone as a single agent in a predominantly African American cohort. Mayo Clin Proc Innov Qual Outcomes. 2021;5(3):605-613. doi: 10.1016/j.mayocpiqo.2021.03.007

151. Singh PK, Lalwani LK, Govindagoudar MB, Aggarwal R, Chaudhry D, Kumar P, et al. Tofacitinib associated with reduced intubation rates in the management of severe COVID-19 pneumonia: A preliminary experience. Indian J Crit Care Med. 2021;25(10):1108-1112. doi: 10.5005/jp-journals-10071-23964

152. Nasonov EL, Lila AM, Mazurov VI, Belov BS, Karateev AE, Dubinina TV, et al. Coronavirus disease 2019 (COVID-19) and immune-mediated rheumatic diseases. Recommendations of the Association of Rheumatologists of Russia. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2021;59(3):239-254 (In Russ.). doi: 10.47360/1995-4484-2021239-254

153. Nasonov EL, Belov BS, Lila AM, Aronova ES, Gridneva GI, Kudryavtseva AV, et al. Course and outcomes of COVID-19 in patients with immunoinflammatory rheumatic diseases: Preliminary data from the NIIR/APP-COVID-19 registry and literature review. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2021;59(6):666-675 (In Russ.). doi: 10.47360/19954484-2021-666-675

154. Izadi Z, Brenner EJ, Mahil SK, Dand N, Yiu ZZN, Yates M, et al.; Psoriasis Patient Registry for Outcomes, Therapy and Epidemiology of COVID-19 Infection (PsoProtect); the Secure Epidemiology of Coronavirus Under Research Exclusion for Inflammatory Bowel Disease (SECURE-IBD); and the COVID-19 Global Rheumatology Allianc; Psoriasis Patient Registry for Outcomes, Therapy and Epidemiology of COVID-19 Infection (PsoProtect); the Secure Epidemiology of Coronavirus Under Research Exclusion for Inflammatory Bowel Disease (SECURE-IBD); and the COVID-19 Global Rheumatology Alliance (GRA). Association between tumor necrosis factor inhibitors and the risk of hospitalization or death among patients with immune-mediated inflammatory disease and COVID-19. JAMA Netw Open. 2021;4(10):e2129639. doi: 10.1001/jamanetworkopen.2021.29639

155. Strangfeld A, Schäfer M, Gianfrancesco MA, Lawson-Tovey S, Liew JW, Ljung L, et al.; COVID-19 Global Rheumatology Alliance. Factors associated with COVID-19-related death in people with rheumatic diseases: Results from the COVID19 Global Rheumatology Alliance physician-reported registry. Ann Rheum Dis. 2021;80(7):930-942. doi: 10.1136/annrheumdis-2020-219498

156. Sparks JA, Wallace ZS, Seet AM, Gianfrancesco MA, Izadi Z, Hyrich KL, et al.; COVID-19 Global Rheumatology Alliance. Associations of baseline use of biologic or targeted synthetic DMARDs with COVID-19 severity in rheumatoid arthritis: Results from the COVID-19 Global Rheumatology Alliance physician registry. Ann Rheum Dis. 2021;80(9):1137-1146. doi: 10.1136/annrheumdis-2021-220418

157. Dernoncourt A, Schmidt J, Duhaut P, Liabeuf S, GrasChampel V, Masmoudi K, et al. COVID-19 in DMARD-treated patients with inflammatory rheumatic diseases: Insights from an analysis of the World Health Organization pharmacovigilance database. Fundam Clin Pharmacol. 2022;36(1):199-209. doi: 10.1111/fcp.12695

158. Seror R, Camus M, Salmon JH, Roux C, Dernis E, Basch A, et al. Do JAK inhibitors affect immune response to COVID19 vaccination? Data from the MAJIK-SFR Registry. Lancet Rheumatol. 2022;4(1):e8-e11. doi: 10.1016/S2665-9913(21)00314-3

159. Winthrop KL, Silverfield J, Racewicz A, Neal J, Lee EB, Hrycaj P, et al. The effect of tofacitinib on pneumococcal and influenza vaccine responses in rheumatoid arthritis. Ann Rheum Dis. 2016;75(4):687-695. doi: 10.1136/annrheumdis-2014-207191

160. Winthrop KL, Bingham CO 3rd, Komocsar WJ, Bradley J, Issa M, Klar R, et al. Evaluation of pneumococcal and tetanus vaccine responses in patients with rheumatoid arthritis receiving baricitinib: Results from a long-term extension trial substudy. Arthritis Res Ther. 2019;21(1):102. doi: 10.1186/s13075-019-1883-1

161. Belov BS, Lila AM, Nasonov EL. Vaccination against SARS-CoV-2 in rheumatic diseases: Safety issues. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2022;60(1):21-31. (In Russ.). doi: 10.47360/19954484-2022-21-31

162. Nash P, Kerschbaumer A, Dörner T, Dougados M, Fleischmann RM, Geissler K, et al. Points to consider for the treatment of immune-mediated inflammatory diseases with Janus kinase inhibitors: A consensus statement. Ann Rheum Dis. 2021;80(1):71-87. doi: 10.1136/annrheumdis-2020-218398

163. Goodman SM, Springer B, Guyatt G, Abdel MP, Dasa V, George M, et al. 2017 American College of Rheumatology/ American Association of Hip and Knee Surgeons guideline for the perioperative management of antirheumatic medication in patients with rheumatic diseases undergoing elective total hip or total knee arthroplasty. Arthritis Rheumatol. 2017;69(8):15381551. doi: 10.1002/art.40149

164. Landewé RBM, Kroon FPB, Alunno A, Najm A, Bijlsma JW, Burmester GR, et al. EULAR recommendations for the management and vaccination of people with rheumatic and musculoskeletal diseases in the context of SARS-CoV-2: The November 2021 update. Ann Rheum Dis. 2022 Feb 23:annrheumdis-2021-222006. doi: 10.1136/annrheumdis-2021-222006

165. M ikuls TR, Johnson SR, Fraenkel L, Arasaratnam RJ, Baden LR, Bermas BL, et al. American College of Rheumatology guidance for the management of rheumatic disease in adult patients during the COVID-19 pandemic: Version 3. Arthritis Rheumatol. 2021;73(2):e1-e12. doi: 10.1002/art.41596

166. Curtis JR, Johnson SR, Anthony DD, Arasaratnam RJ, Baden LR, Bass AR, et al. American College of Rheumatology guidance for COVID-19 vaccination in patients with rheumatic and musculoskeletal diseases: Version 1. Arthritis Rheumatol. 2021;73(7):1093-1107. doi: 10.1002/art.41734

167. McInnes IB, Szekanecz Z, McGonagle D, Maksymowych WP, Pfeil A, Lippe R, et al. A review of JAK-STAT signalling in the pathogenesis of spondyloarthritis and the role of JAK inhibition. Rheumatology (Oxford). 2021 Oct 20:keab740. doi: 10.1093/rheumatology/keab740

168. Ridgley LA, Anderson AE, Pratt AG. What are the dominant cytokines in early rheumatoid arthritis? Curr Opin Rheumatol. 2018;30(2):207-214. doi: 10.1097/BOR

169. Mylonas A, Conrad C. Psoriasis: Classical vs. paradoxical. The yin-yang of TNF and type I interferon. Front Immunol. 2018;9:2746. doi: 10.3389/fimmu.2018.02746

170. Conrad C, Di Domizio J, Mylonas A, Belkhodja C, Demaria O, Navarini AA, et al. TNF blockade induces a dysregulated type I interferon response without autoimmunity in paradoxical psoriasis. Nat Commun. 2018;9(1):25. doi: 10.1038/s41467-017-02466-4

171. Strand V, Balsa A, Al-Saleh J, Barile-Fabris L, Horiuchi T, Takeuchi T, et al. Immunogenicity of biologics in chronic inflammatory diseases: A systematic review. BioDrugs. 2017;31(4):299316. doi: 10.1007/s40259-017-0231-8

172. Nasonov EL, Olyunin YuA, Lila AM. Rheumatoid arthritis: The problems of remission and therapy resistance. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2018;56(3):263-271 (In Russ.). doi: 10.14412/1995-4484-2018263-271

173. Buch MH, Eyre S, McGonagle D. Persistent inflammatory and non-inflammatory mechanisms in refractory rheumatoid arthritis. Nat Rev Rheumatol. 2021;17(1):17-33. doi: 10.1038/s41584-020-00541-7

174. Emery P, Pope JE, Kruger K, Lippe R, DeMasi R, Lula S, et al. Efficacy of monotherapy with biologics and JAK inhibitors for the treatment of rheumatoid arthritis: A systematic review. Adv Ther. 2018;35(10):1535-1563. doi: 10.1007/s12325-0180757-2

175. Ytterberg SR, Bhatt DL, Mikuls TR, Koch GG, Fleischmann R, Rivas JL, et al.; ORAL Surveillance Investigators. Cardiovascular and cancer risk with tofacitinib in rheumatoid arthritis. N Engl J Med. 2022;386(4):316-326. doi: 10.1056/NEJMoa2109927

176. Khosrow-Khavar F, Kim SC, Lee H, Lee SB, Desai RJ. Tofacitinib and risk of cardiovascular outcomes: results from the Safety of TofAcitinib in Routine care patients with Rheumatoid Arthritis (STAR-RA) study. Ann Rheum Dis. 2022 Jan 13:annrheumdis-2021-221915. doi: 10.1136/annrheumdis-2021-221915

177. Winthrop KL, Cohen DB. Oral surveillance and JAK inhibitor safety: The theory of relativity. Nat Rev Rheumatol. 2022 Mar 22:1-4. doi: 10.1038/s41584-022-00767-7

178. Burke JR, Cheng L, Gillooly KM, Strnad J, Zupa-Fernandez A, Catlett IM, et al. Autoimmune pathways in mice and humans are blocked by pharmacological stabilization of the TYK2 pseudokinase domain. Sci Transl Med. 2019;11(502):eaaw1736. doi: 10.1126/scitranslmed.aaw1736

179. Li H, Tsokos GC. IL-23/IL-17 axis in inflammatory rheumatic diseases. Clin Rev Allergy Immunol. 2021;60(1):31-45. doi: 10.1007/s12016-020-08823-4

180. Schinocca C, Rizzo C, Fasano S, Grasso G, La Barbera L, Ciccia F, et al. Role of the IL-23/IL-17 pathway in rheumatic diseases: An overview. Front Immunol. 2021;12:637829. doi: 10.3389/fimmu.2021.637829

181. P app K, Gordon K, Thaçi D, Morita A, Gooderham M, Foley P, et al. Phase 2 trial of selective tyrosine kinase 2 inhibition in psoriasis. N Engl J Med. 2018;379(14):1313-1321. doi: 10.1056/NEJMoa1806382

182. Mease PJ, Deodhar AA, van der Heijde D, Behrens F, Kivitz AJ, Neal J, et al. Efficacy and safety of selective TYK2 inhibitor, deucravacitinib, in a phase II trial in psoriatic arthritis. Ann Rheum Dis. 2022 Mar 3:annrheumdis-2021-221664. doi: 10.1136/annrheumdis-2021-221664

183. Blunt MD, Koehrer S, Dobson RC, Larrayoz M, Wilmore S, Hayman A, et al. The dual Syk/JAK inhibitor cerdulatinib antagonizes B-cell receptor and microenvironmental signaling in chronic lymphocytic leukemia. Clin Cancer Res. 2017;23(9):2313-2324. doi: 10.1158/1078-0432.CCR-16-1662

184. Deng GM, Kyttaris VC, Tsokos GC. Targeting Syk in autoimmune rheumatic diseases. Front Immunol. 2016;7:78. doi: 10.3389/fimmu.2016.00

185. Menet CJ. A dual inhibition, a better solution: Development of a JAK1/TYK2 inhibitor. J Med Chem. 2018;61(19):8594-8596. doi: 10.1021/acs.jmedchem.8b01397


Review

For citations:


Nasonov E.L., Korotaeva T.V. Janus kinase inhibitors in immunoinflammatory diseases: 10 years of clinical practice in rheumatology. Rheumatology Science and Practice. 2022;60(2):131-148. (In Russ.) https://doi.org/10.47360/1995-4484-2022-131-148

Views: 3655


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1995-4484 (Print)
ISSN 1995-4492 (Online)