Preview

Rheumatology Science and Practice

Advanced search

The role of interleukin 17 in the pathogenesis of giant cell arteritis: new possibilities for pharmacotherapy

https://doi.org/10.47360/1995-4484-2024-582-589

Abstract

Giant cell arteritis (GCA) characterized by the paradoxical discrepancy between the high effectiveness of glucocorticoid (GCs) in the short term and the increase in signs associated with the persistence of inflammatory activity and the accumulation of organ damage induced by GCs in the long term, which indicates the need for the use of therapy, primarily in the direction of optimizing the use of GCs. New opportunities for pharmacotherapy of GCA are associated with the use of monoclonal antibodies (mAbs) that block the activity of cytokines involved in the immunopathogenesis of IMIRDs. Among pharmacological “targets”, interleukin (IL) 6, as well as IL-17, attracts special attention. Currently, several mAbs specific for IL-17 have been developed. The article summarizes data regarding the pathogenetic significance of IL-17 in GCA and the prospects for pharmacotherapy of GCA using mAbs to IL-17.

About the Authors

E. L. Nasonov
V.A. Nasonova Research Institute of Rheumatology ; I.M. Sechenov First Moscow State Medical University of the Ministry of Health Care of Russian Federation (Sechenov University)
Russian Federation

Evgeny L. Nasonov 

115522, Moscow, Kashirskoye Highway, 34A

119991, Moscow, Trubetskaya str., 8, building 2



T. V. Beketova
I.M. Sechenov First Moscow State Medical University of the Ministry of Health Care of Russian Federation (Sechenov University) ; Central State Medical Academy of the Administrative Directorate of the President of the Russian Federation ; Moscow Polytechnic University
Russian Federation

Tatiana V. Beketova 

115522, Moscow, Kashirskoye Highway, 34A

121359, Moscow, Marshala Timoshenko str., 19, building 1A

107023, Moscow, Bolshaya Semyonovskaya str., 38



A. M. Satybaldyev
V.A. Nasonova Research Institute of Rheumatology
Russian Federation

Azamat M. Satybaldyev 

115522, Moscow, Kashirskoye Highway, 34A



References

1. Pugh D, Karabayas M, Basu N, Cid MC, Goel R, Goodyear CS, et al. Large-vessel vasculitis. Nat Rev Dis Primers. 2022;7(1):93. doi: 10.1038/s41572-021-00327-5

2. Buttgereit F, Matteson EL, Dejaco C. Polymyalgia rheumatica and giant cell arteritis. JAMA. 2020;324(10):993-994. doi: 10.1001/jama.2020.10155

3. Satybaldyev AM, Demidova NV, Savushkina NM, Gordeev AV. Polymyalgia rheumatica. Nauchno-Prakticheskaya Revmatologia = Rheumatology Science and Practice. 2018;56(2):215-227 (In Russ.). doi: 10.14412/1995-4484-2018-215-227

4. Satybaldyev AM. The evolution of diagnosis of polymyalgia rheumatica. Nauchno-Prakticheskaya Revmatologia = Rheumatology Science and Practice. 2019;57(6):693-698 (In Russ.). doi: 10.14412/1995-4484-2019-693-698

5. Hemmig AK, Gozzoli D, Werlen L, Ewald H, Aschwanden M, Blockmans D, et al. Subclinical giant cell arteritis in new onset polymyalgia rheumatica: A systematic review and meta-analysis of individual patient data. Semin Arthritis Rheum. 2022;55:152017. doi: 10.1016/j.semarthrit.2022.152017

6. Salvarani C, Padoan R, Iorio L, Tomelleri A, Terrier B, Muratore F, et al. Subclinical giant cell arteritis in polymyalgia rheumatica: Concurrent conditions or a common spectrum of inflammatory diseases? Autoimmun Rev. 2024;23(1):103415. doi: 10.1016/j.autrev.2023.103415

7. Tomelleri A, van der Geest KSM, Khurshid MA, Sebastian A, Coath F, Robbins D, et al. Disease stratification in GCA and PMR: State of the art and future perspectives. Nat Rev Rheumatol. 2023;19(7):446-459. doi: 10.1038/s41584-023-00976-8

8. Schäfer VS, Brossart P, Warrington KJ, Kurts C, Sendtner GW, Aden CA. The role of autoimmunity and autoinflammation in giant cell arteritis: A systematic literature review. Autoimmun Rev. 2023;22(6):103328. doi: 10.1016/j.autrev.2023.103328

9. Greigert H, Genet C, Ramon A, Bonnotte B, Samson M. New insights into the pathogenesis of giant cell arteritis: Mechanisms involved in maintaining vascular inflammation. J Clin Med. 2022;11(10):2905. doi: 10.3390/jcm11102905

10. Weyand CM, Goronzy JJ. Immunology of giant cell arteritis. Circ Res. 2023;132(2):238-250. doi: 10.1161/CIRCRESAHA.122.322128

11. McGeachy MJ, Cua DJ, Gaffen SL. The IL-17 family of cytokines in health and disease. Immunity. 2019;50(4):892-906. doi: 10.1016/j.immuni.2019.03.021

12. Huangfu L, Li R, Huang Y, Wang S. The IL-17 family in diseases: From bench to bedside. Signal Transduct Target Ther. 2023;8(1):402. doi: 10.1038/s41392-023-01620-3

13. Nasonov EL. New possibilities of pharmacotherapy for immunoinflammatory rheumatic diseases: A focus on inhibitors of interleukin-17. Nauchno-Prakticheskaya Revmatologia = Rheumatology Science and Practice. 2017;55(1):68-86 (In Russ.). doi: 10.14412/1995-4484-2017-68-86

14. Zeisbrich M, Thiel J, Venhoff N. The IL-17 pathway as a target in giant cell arteritis. Front Immunol. 2024;14:1199059. doi: 10.3389/fimmu.2023.1199059

15. Sun L, Su Y, Jiao A, Wang X, Zhang B. T cells in health and disease. Signal Transduct Target Ther. 2023;8(1):235. doi: 10.1038/s41392-023-01471-y

16. Mills KHG. IL-17 and IL-17-producing cells in protection versus pathology. Nat Rev Immunol. 2023;23(1):38-54. doi: 10.1038/s41577-022-00746-9

17. Miossec P, Kolls JK. Targeting IL-17 and Th17 cells in chronic inflammation. Nat Rev Drug Discov. 2012;11:763-776. doi: 10.1038/nrd3794

18. Nasonov EL, Korotaeva TV, Dubinina TV, Lila AM. IL-23/IL-17 inhibitors in immunoinflammatory rheumatic diseases: New horizons. Nauchno-Prakticheskaya Revmatologia = Rheumatology Science and Practice. 2019;57(4):400- 406 (In Russ.). doi: 10.14412/1995-4484-2019-400-406

19. Robert M, Miossec P, Hot A. The Th17 pathway in vascular inflammation: Culprit or consort? Front Immunol. 2022;13:888763. doi: 10.3389/fimmu.2022.888763

20. Noack M, Miossec P. Th17 and regulatory T cell balance in autoimmune and inflammatory diseases. Autoimmun Rev. 2014;13(6):668-677. doi: 10.1016/j.autrev.2013.12.004

21. Chen Q, Yang W, Gupta S, Biswas P, Smith P, Bhagat G, et al. IRF-4-binding protein inhibits interleukin-17 and interleukin-21 production by controlling the activity of IRF-4 transcription factor. Immunity. 2008;29(6):899-911. doi: 10.1016/j.immuni.2008.10.011

22. Samson M, Audia S, Fraszczak J, Trad M, Ornetti P, Lakomy D, et al. Th1 and Th17 lymphocytes expressing CD161 are implicated in giant cell arteritis and polymyalgia rheumatica pathogenesis. Arthritis Rheum. 2012;64(11):3788-3798. doi: 10.1002/art.34647

23. Terrier B, Geri G, Chaara W, Allenbach Y, Rosenzwajg M, Costedoat-Chalumeau N, et al. Interleukin-21 modulates Th1 and Th17 responses in giant cell arteritis. Arthritis Rheum. 2012;64(6):2001-2011. doi: 10.1002/art.34327

24. Adriawan IR, Atschekzei F, Dittrich-Breiholz O, Garantziotis P, Hirsch S, Risser LM, et al. Novel aspects of regulatory T cell dysfunction as a therapeutic target in giant cell arteritis. Ann Rheum Dis. 2022;81(1):124-131. doi: 10.1136/annrheumdis-2021-220955

25. Espígol-Frigolé G, Corbera-Bellalta M, Planas-Rigol E, Lozano E, Segarra M, García-Martínez A, et al. Increased IL-17A expression in temporal artery lesions is a predictor of sustained response to glucocorticoid treatment in patients with giant-cell arteritis. Ann Rheum Dis. 2013;72(9):1481-1487. doi: 10.1136/annrheumdis-2012-201836

26. Miyabe C, Miyabe Y, Strle K, Kim ND, Stone JH, Luster AD, et al. An expanded population of pathogenic regulatory T cells in giant cell arteritis is abrogated by IL-6 blockade therapy. Ann Rheum Dis. 2017;76(5):898-905. doi: 10.1136/annrheumdis-2016-210070

27. Deng J, Younge BR, Olshen RA, Goronzy JJ, Weyand CM. Th17 and Th1 T-cell responses in giant cell arteritis. Circulation. 2010;121(7):906-915. doi: 10.1161/CIRCULATIONAHA.109.872903

28. Ciccia F, Rizzo A, Guggino G, Cavazza A, Alessandro R, Maugeri R, et al. Difference in the expression of IL-9 and IL-17 correlates with different histological pattern of vascular wall injury in giant cell arteritis. Rheumatology (Oxford). 2015;54(9):1596-1604. doi: 10.1093/rheumatology/kev102

29. Palamidas DA, Argyropoulou OD, Georgantzoglou N, Karatza E, Xingi E, Kapsogeorgou EK, et al. Neutrophil extracellular traps in giant cell arteritis biopsies: Presentation, localization and coexpression with inflammatory cytokines. Rheumatology (Oxford). 2022;61(4):1639-1644. doi: 10.1093/rheumatology/keab505

30. Nasonov EL, Avdeeva AS, Reshetnyak TM, Aleksankin AP, Rubtsov YuP. The role of NETosis in the pathogenesis of immunoinflammatory rheumatic diseases. Nauchno-Prakticheskaya Revmatologia = Rheumatology Science and Practice. 2023;61(5):513-530 (In Russ.). doi: 10.47360/1995-4484-2023-513-530

31. Wigerblad G, Kaplan MJ. Neutrophil extracellular traps in systemic autoimmune and autoinflammatory diseases. Nat Rev Immunol. 2023;23(5):274-288. doi: 10.1038/s41577-022-00787-0

32. Hanata N, Shoda H, Tsuchida Y, Nagafuchi Y, Fujio K. Comment on: Neutrophil extracellular traps in giant cell arteritis biopsies: Presentation, localization and co-expression with inflammatory cytokines. Rheumatology (Oxford). 2022;61(6):e154-e155. doi: 10.1093/rheumatology/keab893

33. González García A, Bara Ledesma N, Lucena López D, Starita Fajardo G, García-De La Torre I, Vázquez Santos A, et al. AB1283 Role of IL-17A in giant cell arteritis: Potential usefulness as a biomarker for disease activity. Ann Rheum Dis. 2024;83:1986-1987.

34. Greigert H, Ramon A, Genet C, Cladière C, Gerard C, Cuidad M, et al. Neointimal myofibroblasts contribute to maintaining Th1/Tc1 and Th17/Tc17 inflammation in giant cell arteritis. J Autoimmun. 2024;142:103151. doi: 10.1016/j.jaut.2023.103151

35. Greigert H, Ramon A, Richard X, Cladière C, Ciudad M, Creuzot-Garcher C, et al. Study of the role of interleukin-17 in giant cell arteritis. Arthritis Rheumatol. 2023;75(Suppl 9). URL: https://acrabstracts.org/abstract/study-of-the-role-of-interleukin-17-ingiant-cell-arteritis (Accessed: 5 August 2024).

36. Coit P, De Lott LB, Nan B, Elner VM, Sawalha AH. DNA methylation analysis of the temporal artery microenvironment in giant cell arteritis. Ann Rheum Dis. 2016;75(6):1196-1202. doi: 10.1136/annrheumdis-2014-207116

37. Márquez A, Hernández-Rodríguez J, Cid MC, Solans R, Castañeda S, Fernández-Contreras ME, et al. Influence of the IL17A locus in giant cell arteritis susceptibility. Ann Rheum Dis. 2014;73(9):1742-1745. doi: 10.1136/annrheumdis-2014-205261

38. Rotar Ž, Tomšic M, Hocevar A. Secukinumab for the maintenance of glucocorticoid-free remission in a patient with giant cell arteritis and psoriatic arthritis. Rheumatology (Oxford). 2018;57(5):934-936. doi: 10.1093/rheumatology/kex507

39. Tomelleri A, Rinaldi E, Campochiaro C, Picchio M, Dagna L. Successful use of ixekizumab for glucocorticoid-free remission maintenance in giant cell arteritis. Rheumatology (Oxford). 2023;62(2):e24-e26. doi: 10.1093/rheumatology/keac416

40. Venhoff N, Schmidt WA, Lamprecht P, Tony HP, App C, Sieder C, et al. Efficacy and safety of secukinumab in patients with giant cell arteritis: Study protocol for a randomized, parallel group, double-blind, placebo-controlled phase II trial. Trials. 2021;22(1):543. doi: 10.1186/s13063-021-05520-1

41. Venhoff N, Schmidt WA, Bergner R, Rech J, Unger L, Tony HP, et al. Safety and efficacy of secukinumab in patients with giant cell arteritis (TitAIN): A randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Rheumatol. 2023;5(6):e341-e350. doi: 10.1016/S2665-9913(23)00101-7

42. Fedorinova EE, Bulanov NM, Meshkov AD, Borodin OO, Smitienko IO, Chachilo EV et al. Clinical manifestations and prognosis of giant cell arteritis: A retrospective cohort study. Dokl Biochem Biophys. 2024;517(1):250-258. doi: 10.1134/S1607672924700984

43. Nepal D, Putman M, Unizony S. Giant cell arteritis and polymyalgia rheumatica: Treatment approaches and new targets. Rheum Dis Clin North Am. 2023;49(3):505-521. doi: 10.1016/j.rdc.2023.03.005

44. Kaymakci MS, Warrington KJ, Kermani TA. New therapeutic approaches to large-vessel vasculitis. Annu Rev Med. 2024;75:427- 442. doi: 10.1146/annurev-med-060622-100940

45. Dua AB, Husainat NM, Kalot MA, Byram K, Springer JM, James KE, et al. Giant cell arteritis: A systematic review and metaanalysis of test accuracy and benefits and harms of common treatments. ACR Open Rheumatol. 2021;3(7):429-441. doi: 10.1002/acr2.11226

46. Floris A, Piga M, Chessa E, Congia M, Erre GL, Angioni MM, et al. Long-term glucocorticoid treatment and high relapse rate remain unresolved issues in the real-life management of polymyalgia rheumatica: A systematic literature review and meta-analysis. Clin Rheumatol. 2022;41(1):19-31. doi: 10.1007/s10067-021-05819-z

47. Moreel L, Betrains A, Molenberghs G, Blockmans D, Vanderschueren S. Duration of treatment with glucocorticoids in giant cell arteritis: A systematic review and meta-analysis. J Clin Rheumatol. 2023;29(6):291-297. doi: 10.1097/RHU.0000000000001897

48. Bond M, Tomelleri A, Buttgereit F, Matteson EL, Dejaco C. Looking ahead: Giant-cell arteritis in 10 years time. Ther Adv Musculoskelet Dis. 2022;14:1759720X221096366. doi: 10.1177/1759720X221096366

49. Nasonov EL, Satybaldyev AM, Otteva EN, Beketova TV, Baranov AA. Pharmacotherapy of giant cell arteritis and polymyalgia rheumatica: Prospects for the use of monoclonal antibodies to interleukin 6. Nauchno-Prakticheskaya Revmatologia = Rheumatology Science and Practice. 2024;62(3):348-364 (In Russ.). doi: 10.47360/1995-4484-2024-348-364

50. Unizony SH, Bao M, Han J, Luder Y, Pavlov A, Stone JH. Treatment failure in giant cell arteritis. Ann Rheum Dis. 2021;80(11):1467-1474. doi: 10.1136/annrheumdis-2021-220347

51. Prieto Peña D, Martínez-Rodríguez I, Atienza-Mateo B, Calderón-Goercke M, Banzo I, González-Vela MC, et al. Evidence for uncoupling of clinical and 18-FDG activity of PET/CT scan improvement in tocilizumab-treated patients with large-vessel giant cell arteritis. Clin Exp Rheumatol. 2021;39(Suppl 129):69-75. doi: 10.55563/clinexprheumatol/mjm8fr

52. Reichenbach S, Adler S, Bonel H, Cullmann JL, Kuchen S, Bütikofer L, et al. Magnetic resonance angiography in giant cell arteritis: Results of a randomized controlled trial of tocilizumab in giant cell arteritis. Rheumatology (Oxford). 2018;57(6):982-986. doi: 10.1093/rheumatology/key015

53. Cid MC, Font C, Oristrell J, de la Sierra A, Coll-Vinent B, LópezSoto A, et al. Association between strong inflammatory response and low risk of developing visual loss and other cranial ischemic complications in giant cell (temporal) arteritis. Arthritis Rheum. 1998;41(1):26-32. doi: 10.1002/1529-0131(199801)41:1<26::AID-ART4>3.0.CO;2-0

54. Hernández-Rodríguez J, García-Martínez A, Casademont J, Filella X, Esteban MJ, López-Soto A, et al. A strong initial systemic inflammatory response is associated with higher corticosteroid requirements and longer duration of therapy in patients with giantcell arteritis. Arthritis Rheum. 2002;47(1):29-35. doi: 10.1002/art1.10161

55. Hernández-Rodríguez J, Segarra M, Vilardell C, Sánchez M, García-Martínez A, Esteban MJ, et al. Elevated production of interleukin-6 is associated with a lower incidence of diseaserelated ischemic events in patients with giant-cell arteritis: Angiogenic activity of interleukin-6 as a potential protective mechanism. Circulation. 2003;107(19):2428-2434. doi: 10.1161/01.CIR.0000066907.83923.32

56. O’Neill L, McCormick J, Gao W, Veale DJ, McCarthy GM, Murphy CC, et al. Interleukin-6 does not upregulate pro-inflammatory cytokine expression in an ex vivo model of giant cell arteritis. Rheumatol Adv Pract. 2019;3(1):rkz011. doi: 10.1093/rap/rkz011

57. Graver JC, Boots AMH, Haacke EA, Diepstra A, Brouwer E, Sandovici M. Massive B-cell infiltration and organization into artery tertiary lymphoid organs in the aorta of large vessel giant cell arteritis. Front Immunol. 2019;10:83. doi: 10.3389/fimmu.2019.00083

58. Villiger PM, Adler S, Kuchen S, Wermelinger F, Dan D, Fiege V, et al. Tocilizumab for induction and maintenance of remission in giant cell arteritis: A phase 2, randomised, double-blind, placebo-controlled trial. Lancet. 2016;387(10031):1921-1927. doi: 10.1016/S0140-6736(16)00560-2

59. Stone JH, Tuckwell K, Dimonaco S, Klearman M, Aringer M, Blockmans D, et al. Trial of tocilizumab in giant-cell arteritis. N Engl J Med. 2017;377(4):317-328. doi: 10.1056/NEJMoa1613849

60. Seror R, Baron G, Hachulla E, Debandt M, Larroche C, Puéchal X, et al. Adalimumab for steroid sparing in patients with giant-cell arteritis: Results of a multicentre randomised controlled trial. Ann Rheum Dis. 2014;73(12):2074-2081. doi: 10.1136/annrheumdis-2013-203586

61. Langford CA, Cuthbertson D, Ytterberg SR, Khalidi N, Monach PA, Carette S, et al.; Vasculitis Clinical Research Consortium. A randomized, double-blind trial of abatacept (CTLA-4Ig) for the treatment of giant cell arteritis. Arthritis Rheumatol. 2017;69(4):837-845. doi: 10.1002/art.40044

62. Cid MC, Unizony SH, Blockmans D, Brouwer E, Dagna L, Dasgupta B, et al.; KPL-301-C001 Investigators. Efficacy and safety of mavrilimumab in giant cell arteritis: A phase 2, randomised, double-blind, placebo-controlled trial. Ann Rheum Dis. 2022;81(5):653-661. doi: 10.1136/annrheumdis-2021-221865

63. Merkel P, Penn S, Setty A, Schmidt W, Rubbert-Roth A, Hauge EM, et al. Efficacy and safety of upadacitinib in patients with giant cell arteritis (SELECT-GCA): A double-blind, randomized controlled phase 3 trial. Arthritis Rheumatol. 2024;76 (Suppl 9). URL: https://acrabstracts.org/abstract/efficacy-andsafety-of-upadacitinib-in-patients-with-giant-cell-arteritis-selectgca-a-double-blind-randomized-controlled-phase-3-trial/ (Accessed: DD Month 2024).

64. Matza MA, Fernandes AD, Stone JH, Unizony SH. Ustekinumab for the treatment of giant cell arteritis. Arthritis Care Res (Hoboken). 2021;73(6):893-897. doi: 10.1002/acr.24200

65. Nasonov EL, Avdeeva AS, Korotaeva TV, Dubinina TV, Usacheva JV. The role of interleukin 17 in the pathogenesis of rheumatoid arthritis. Are there any prospects for the use of IL-17 inhibitors? Nauchno-Prakticheskaya Revmatologia = Rheumatology Science and Practice. 2023;61(2):165-180 (In Russ.). doi: 10.47360/1995-4484-2023-165-180

66. Nasonov EL, Lila AM. Inhibition of interleukin 6 in immune inflammatory rheumatic diseases: Achievements, prospects, and hopes. Nauchno-Prakticheskaya Revmatologia = Rheumatology Science and Practice. 2017;55(6):590-599 (In Russ.). doi: 10.14412/1995-4484-2017-590-599

67. Tian X, Li M, Jiang N, Zhao Y, Li J, Zhou Y, et al. Comparative efficacy of secukinumab versus tumor necrosis factor inhibitors for the treatment of Takayasu arteritis. Arthritis Rheumatol. 2023;75(8):1415-1423. doi: 10.1002/art.42496

68. Wang Q, Wang Y, Xu D. Research progress on Th17 and T regulatory cells and their cytokines in regulating atherosclerosis. Front Cardiovasc Med. 2022:929078. doi: 10.3389/fcvm.2022.929078

69. Davis GK, Fehrenbach DJ, Madhur MS. Interleukin 17A: Key player in the pathogenesis of hypertension and a potential therapeutic target. Curr Hypertens Rep. 2021;23(3):13. doi: 10.1007/s11906-021-01128-7

70. Carvajal Alegria G, Nicolas M, van Sleen Y. Biomarkers in the era of targeted therapy in giant cell arteritis and polymyalgia rheumatica: Is it possible to replace acute-phase reactants? Front Immunol. 2023;14:1202160. doi: 10.3389/fimmu.2023.1202160

71. Tombetti E, Hysa E, Mason JC, Cimmino MA, Camellino D. Blood biomarkers for monitoring and prognosis of large vessel vasculitides. Curr Rheumatol Rep. 2021;23(3):17. doi: 10.1007/s11926-021-00980-5

72. Matsumoto K, Suzuki K, Takeshita M, Takeuchi T, Kaneko Y. Changes in the molecular profiles of large-vessel vasculitis treated with biological disease-modifying anti-rheumatic drugs and Janus kinase inhibitors. Front Immunol. 2023;14:1197342. doi: 10.3389/fimmu.2023.1197342

73. Karabayas M, Ibrahim HE, Roelofs AJ, Reynolds G, Kidder D, De Bari C. Vascular disease persistence in giant cell arteritis: Are stromal cells neglected? Ann Rheum Dis. 2024 Apr 29:ard- 2023-225270. doi: 10.1136/ard-2023-225270

74. Dejaco C, Kerschbaumer A, Aletaha D, Bond M, Hysa E, Camellino D, et al. Treat-to-target recommendations in giant cell arteritis and polymyalgia rheumatica. Ann Rheum Dis. 2024;83(1):48-57. doi: 10.1136/ard-2022-223429

75. Hysa E, Bond M, Ehlers L, Camellino D, Falzon L, Dejaco C, et al. Evidence on treat to target strategies in polymyalgia rheumatica and giant cell arteritis: A systematic literature review. Rheumatology (Oxford). 2024;63(2):285-297. doi: 10.1093/rheumatology/kead471

76. Lyman M, Lieuw V, Richardson R, Timmer A, Stewart C, Granger S, et al. A bispecific antibody that targets IL-6 receptor and IL-17A for the potential therapy of patients with autoimmune and inflammatory diseases. J Biol Chem. 2018;293(24):9326-9334. doi: 10.1074/jbc.M117.818559


Review

For citations:


Nasonov E.L., Beketova T.V., Satybaldyev A.M. The role of interleukin 17 in the pathogenesis of giant cell arteritis: new possibilities for pharmacotherapy. Rheumatology Science and Practice. 2024;62(6):582-589. (In Russ.) https://doi.org/10.47360/1995-4484-2024-582-589

Views: 270


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1995-4484 (Print)
ISSN 1995-4492 (Online)