The role of interleukin 17 in the pathogenesis of giant cell arteritis: new possibilities for pharmacotherapy
https://doi.org/10.47360/1995-4484-2024-582-589
Abstract
Giant cell arteritis (GCA) characterized by the paradoxical discrepancy between the high effectiveness of glucocorticoid (GCs) in the short term and the increase in signs associated with the persistence of inflammatory activity and the accumulation of organ damage induced by GCs in the long term, which indicates the need for the use of therapy, primarily in the direction of optimizing the use of GCs. New opportunities for pharmacotherapy of GCA are associated with the use of monoclonal antibodies (mAbs) that block the activity of cytokines involved in the immunopathogenesis of IMIRDs. Among pharmacological “targets”, interleukin (IL) 6, as well as IL-17, attracts special attention. Currently, several mAbs specific for IL-17 have been developed. The article summarizes data regarding the pathogenetic significance of IL-17 in GCA and the prospects for pharmacotherapy of GCA using mAbs to IL-17.
About the Authors
E. L. NasonovRussian Federation
Evgeny L. Nasonov
115522, Moscow, Kashirskoye Highway, 34A
119991, Moscow, Trubetskaya str., 8, building 2
T. V. Beketova
Russian Federation
Tatiana V. Beketova
115522, Moscow, Kashirskoye Highway, 34A
121359, Moscow, Marshala Timoshenko str., 19, building 1A
107023, Moscow, Bolshaya Semyonovskaya str., 38
A. M. Satybaldyev
Russian Federation
Azamat M. Satybaldyev
115522, Moscow, Kashirskoye Highway, 34A
References
1. Pugh D, Karabayas M, Basu N, Cid MC, Goel R, Goodyear CS, et al. Large-vessel vasculitis. Nat Rev Dis Primers. 2022;7(1):93. doi: 10.1038/s41572-021-00327-5
2. Buttgereit F, Matteson EL, Dejaco C. Polymyalgia rheumatica and giant cell arteritis. JAMA. 2020;324(10):993-994. doi: 10.1001/jama.2020.10155
3. Satybaldyev AM, Demidova NV, Savushkina NM, Gordeev AV. Polymyalgia rheumatica. Nauchno-Prakticheskaya Revmatologia = Rheumatology Science and Practice. 2018;56(2):215-227 (In Russ.). doi: 10.14412/1995-4484-2018-215-227
4. Satybaldyev AM. The evolution of diagnosis of polymyalgia rheumatica. Nauchno-Prakticheskaya Revmatologia = Rheumatology Science and Practice. 2019;57(6):693-698 (In Russ.). doi: 10.14412/1995-4484-2019-693-698
5. Hemmig AK, Gozzoli D, Werlen L, Ewald H, Aschwanden M, Blockmans D, et al. Subclinical giant cell arteritis in new onset polymyalgia rheumatica: A systematic review and meta-analysis of individual patient data. Semin Arthritis Rheum. 2022;55:152017. doi: 10.1016/j.semarthrit.2022.152017
6. Salvarani C, Padoan R, Iorio L, Tomelleri A, Terrier B, Muratore F, et al. Subclinical giant cell arteritis in polymyalgia rheumatica: Concurrent conditions or a common spectrum of inflammatory diseases? Autoimmun Rev. 2024;23(1):103415. doi: 10.1016/j.autrev.2023.103415
7. Tomelleri A, van der Geest KSM, Khurshid MA, Sebastian A, Coath F, Robbins D, et al. Disease stratification in GCA and PMR: State of the art and future perspectives. Nat Rev Rheumatol. 2023;19(7):446-459. doi: 10.1038/s41584-023-00976-8
8. Schäfer VS, Brossart P, Warrington KJ, Kurts C, Sendtner GW, Aden CA. The role of autoimmunity and autoinflammation in giant cell arteritis: A systematic literature review. Autoimmun Rev. 2023;22(6):103328. doi: 10.1016/j.autrev.2023.103328
9. Greigert H, Genet C, Ramon A, Bonnotte B, Samson M. New insights into the pathogenesis of giant cell arteritis: Mechanisms involved in maintaining vascular inflammation. J Clin Med. 2022;11(10):2905. doi: 10.3390/jcm11102905
10. Weyand CM, Goronzy JJ. Immunology of giant cell arteritis. Circ Res. 2023;132(2):238-250. doi: 10.1161/CIRCRESAHA.122.322128
11. McGeachy MJ, Cua DJ, Gaffen SL. The IL-17 family of cytokines in health and disease. Immunity. 2019;50(4):892-906. doi: 10.1016/j.immuni.2019.03.021
12. Huangfu L, Li R, Huang Y, Wang S. The IL-17 family in diseases: From bench to bedside. Signal Transduct Target Ther. 2023;8(1):402. doi: 10.1038/s41392-023-01620-3
13. Nasonov EL. New possibilities of pharmacotherapy for immunoinflammatory rheumatic diseases: A focus on inhibitors of interleukin-17. Nauchno-Prakticheskaya Revmatologia = Rheumatology Science and Practice. 2017;55(1):68-86 (In Russ.). doi: 10.14412/1995-4484-2017-68-86
14. Zeisbrich M, Thiel J, Venhoff N. The IL-17 pathway as a target in giant cell arteritis. Front Immunol. 2024;14:1199059. doi: 10.3389/fimmu.2023.1199059
15. Sun L, Su Y, Jiao A, Wang X, Zhang B. T cells in health and disease. Signal Transduct Target Ther. 2023;8(1):235. doi: 10.1038/s41392-023-01471-y
16. Mills KHG. IL-17 and IL-17-producing cells in protection versus pathology. Nat Rev Immunol. 2023;23(1):38-54. doi: 10.1038/s41577-022-00746-9
17. Miossec P, Kolls JK. Targeting IL-17 and Th17 cells in chronic inflammation. Nat Rev Drug Discov. 2012;11:763-776. doi: 10.1038/nrd3794
18. Nasonov EL, Korotaeva TV, Dubinina TV, Lila AM. IL-23/IL-17 inhibitors in immunoinflammatory rheumatic diseases: New horizons. Nauchno-Prakticheskaya Revmatologia = Rheumatology Science and Practice. 2019;57(4):400- 406 (In Russ.). doi: 10.14412/1995-4484-2019-400-406
19. Robert M, Miossec P, Hot A. The Th17 pathway in vascular inflammation: Culprit or consort? Front Immunol. 2022;13:888763. doi: 10.3389/fimmu.2022.888763
20. Noack M, Miossec P. Th17 and regulatory T cell balance in autoimmune and inflammatory diseases. Autoimmun Rev. 2014;13(6):668-677. doi: 10.1016/j.autrev.2013.12.004
21. Chen Q, Yang W, Gupta S, Biswas P, Smith P, Bhagat G, et al. IRF-4-binding protein inhibits interleukin-17 and interleukin-21 production by controlling the activity of IRF-4 transcription factor. Immunity. 2008;29(6):899-911. doi: 10.1016/j.immuni.2008.10.011
22. Samson M, Audia S, Fraszczak J, Trad M, Ornetti P, Lakomy D, et al. Th1 and Th17 lymphocytes expressing CD161 are implicated in giant cell arteritis and polymyalgia rheumatica pathogenesis. Arthritis Rheum. 2012;64(11):3788-3798. doi: 10.1002/art.34647
23. Terrier B, Geri G, Chaara W, Allenbach Y, Rosenzwajg M, Costedoat-Chalumeau N, et al. Interleukin-21 modulates Th1 and Th17 responses in giant cell arteritis. Arthritis Rheum. 2012;64(6):2001-2011. doi: 10.1002/art.34327
24. Adriawan IR, Atschekzei F, Dittrich-Breiholz O, Garantziotis P, Hirsch S, Risser LM, et al. Novel aspects of regulatory T cell dysfunction as a therapeutic target in giant cell arteritis. Ann Rheum Dis. 2022;81(1):124-131. doi: 10.1136/annrheumdis-2021-220955
25. Espígol-Frigolé G, Corbera-Bellalta M, Planas-Rigol E, Lozano E, Segarra M, García-Martínez A, et al. Increased IL-17A expression in temporal artery lesions is a predictor of sustained response to glucocorticoid treatment in patients with giant-cell arteritis. Ann Rheum Dis. 2013;72(9):1481-1487. doi: 10.1136/annrheumdis-2012-201836
26. Miyabe C, Miyabe Y, Strle K, Kim ND, Stone JH, Luster AD, et al. An expanded population of pathogenic regulatory T cells in giant cell arteritis is abrogated by IL-6 blockade therapy. Ann Rheum Dis. 2017;76(5):898-905. doi: 10.1136/annrheumdis-2016-210070
27. Deng J, Younge BR, Olshen RA, Goronzy JJ, Weyand CM. Th17 and Th1 T-cell responses in giant cell arteritis. Circulation. 2010;121(7):906-915. doi: 10.1161/CIRCULATIONAHA.109.872903
28. Ciccia F, Rizzo A, Guggino G, Cavazza A, Alessandro R, Maugeri R, et al. Difference in the expression of IL-9 and IL-17 correlates with different histological pattern of vascular wall injury in giant cell arteritis. Rheumatology (Oxford). 2015;54(9):1596-1604. doi: 10.1093/rheumatology/kev102
29. Palamidas DA, Argyropoulou OD, Georgantzoglou N, Karatza E, Xingi E, Kapsogeorgou EK, et al. Neutrophil extracellular traps in giant cell arteritis biopsies: Presentation, localization and coexpression with inflammatory cytokines. Rheumatology (Oxford). 2022;61(4):1639-1644. doi: 10.1093/rheumatology/keab505
30. Nasonov EL, Avdeeva AS, Reshetnyak TM, Aleksankin AP, Rubtsov YuP. The role of NETosis in the pathogenesis of immunoinflammatory rheumatic diseases. Nauchno-Prakticheskaya Revmatologia = Rheumatology Science and Practice. 2023;61(5):513-530 (In Russ.). doi: 10.47360/1995-4484-2023-513-530
31. Wigerblad G, Kaplan MJ. Neutrophil extracellular traps in systemic autoimmune and autoinflammatory diseases. Nat Rev Immunol. 2023;23(5):274-288. doi: 10.1038/s41577-022-00787-0
32. Hanata N, Shoda H, Tsuchida Y, Nagafuchi Y, Fujio K. Comment on: Neutrophil extracellular traps in giant cell arteritis biopsies: Presentation, localization and co-expression with inflammatory cytokines. Rheumatology (Oxford). 2022;61(6):e154-e155. doi: 10.1093/rheumatology/keab893
33. González García A, Bara Ledesma N, Lucena López D, Starita Fajardo G, García-De La Torre I, Vázquez Santos A, et al. AB1283 Role of IL-17A in giant cell arteritis: Potential usefulness as a biomarker for disease activity. Ann Rheum Dis. 2024;83:1986-1987.
34. Greigert H, Ramon A, Genet C, Cladière C, Gerard C, Cuidad M, et al. Neointimal myofibroblasts contribute to maintaining Th1/Tc1 and Th17/Tc17 inflammation in giant cell arteritis. J Autoimmun. 2024;142:103151. doi: 10.1016/j.jaut.2023.103151
35. Greigert H, Ramon A, Richard X, Cladière C, Ciudad M, Creuzot-Garcher C, et al. Study of the role of interleukin-17 in giant cell arteritis. Arthritis Rheumatol. 2023;75(Suppl 9). URL: https://acrabstracts.org/abstract/study-of-the-role-of-interleukin-17-ingiant-cell-arteritis (Accessed: 5 August 2024).
36. Coit P, De Lott LB, Nan B, Elner VM, Sawalha AH. DNA methylation analysis of the temporal artery microenvironment in giant cell arteritis. Ann Rheum Dis. 2016;75(6):1196-1202. doi: 10.1136/annrheumdis-2014-207116
37. Márquez A, Hernández-Rodríguez J, Cid MC, Solans R, Castañeda S, Fernández-Contreras ME, et al. Influence of the IL17A locus in giant cell arteritis susceptibility. Ann Rheum Dis. 2014;73(9):1742-1745. doi: 10.1136/annrheumdis-2014-205261
38. Rotar Ž, Tomšic M, Hocevar A. Secukinumab for the maintenance of glucocorticoid-free remission in a patient with giant cell arteritis and psoriatic arthritis. Rheumatology (Oxford). 2018;57(5):934-936. doi: 10.1093/rheumatology/kex507
39. Tomelleri A, Rinaldi E, Campochiaro C, Picchio M, Dagna L. Successful use of ixekizumab for glucocorticoid-free remission maintenance in giant cell arteritis. Rheumatology (Oxford). 2023;62(2):e24-e26. doi: 10.1093/rheumatology/keac416
40. Venhoff N, Schmidt WA, Lamprecht P, Tony HP, App C, Sieder C, et al. Efficacy and safety of secukinumab in patients with giant cell arteritis: Study protocol for a randomized, parallel group, double-blind, placebo-controlled phase II trial. Trials. 2021;22(1):543. doi: 10.1186/s13063-021-05520-1
41. Venhoff N, Schmidt WA, Bergner R, Rech J, Unger L, Tony HP, et al. Safety and efficacy of secukinumab in patients with giant cell arteritis (TitAIN): A randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Rheumatol. 2023;5(6):e341-e350. doi: 10.1016/S2665-9913(23)00101-7
42. Fedorinova EE, Bulanov NM, Meshkov AD, Borodin OO, Smitienko IO, Chachilo EV et al. Clinical manifestations and prognosis of giant cell arteritis: A retrospective cohort study. Dokl Biochem Biophys. 2024;517(1):250-258. doi: 10.1134/S1607672924700984
43. Nepal D, Putman M, Unizony S. Giant cell arteritis and polymyalgia rheumatica: Treatment approaches and new targets. Rheum Dis Clin North Am. 2023;49(3):505-521. doi: 10.1016/j.rdc.2023.03.005
44. Kaymakci MS, Warrington KJ, Kermani TA. New therapeutic approaches to large-vessel vasculitis. Annu Rev Med. 2024;75:427- 442. doi: 10.1146/annurev-med-060622-100940
45. Dua AB, Husainat NM, Kalot MA, Byram K, Springer JM, James KE, et al. Giant cell arteritis: A systematic review and metaanalysis of test accuracy and benefits and harms of common treatments. ACR Open Rheumatol. 2021;3(7):429-441. doi: 10.1002/acr2.11226
46. Floris A, Piga M, Chessa E, Congia M, Erre GL, Angioni MM, et al. Long-term glucocorticoid treatment and high relapse rate remain unresolved issues in the real-life management of polymyalgia rheumatica: A systematic literature review and meta-analysis. Clin Rheumatol. 2022;41(1):19-31. doi: 10.1007/s10067-021-05819-z
47. Moreel L, Betrains A, Molenberghs G, Blockmans D, Vanderschueren S. Duration of treatment with glucocorticoids in giant cell arteritis: A systematic review and meta-analysis. J Clin Rheumatol. 2023;29(6):291-297. doi: 10.1097/RHU.0000000000001897
48. Bond M, Tomelleri A, Buttgereit F, Matteson EL, Dejaco C. Looking ahead: Giant-cell arteritis in 10 years time. Ther Adv Musculoskelet Dis. 2022;14:1759720X221096366. doi: 10.1177/1759720X221096366
49. Nasonov EL, Satybaldyev AM, Otteva EN, Beketova TV, Baranov AA. Pharmacotherapy of giant cell arteritis and polymyalgia rheumatica: Prospects for the use of monoclonal antibodies to interleukin 6. Nauchno-Prakticheskaya Revmatologia = Rheumatology Science and Practice. 2024;62(3):348-364 (In Russ.). doi: 10.47360/1995-4484-2024-348-364
50. Unizony SH, Bao M, Han J, Luder Y, Pavlov A, Stone JH. Treatment failure in giant cell arteritis. Ann Rheum Dis. 2021;80(11):1467-1474. doi: 10.1136/annrheumdis-2021-220347
51. Prieto Peña D, Martínez-Rodríguez I, Atienza-Mateo B, Calderón-Goercke M, Banzo I, González-Vela MC, et al. Evidence for uncoupling of clinical and 18-FDG activity of PET/CT scan improvement in tocilizumab-treated patients with large-vessel giant cell arteritis. Clin Exp Rheumatol. 2021;39(Suppl 129):69-75. doi: 10.55563/clinexprheumatol/mjm8fr
52. Reichenbach S, Adler S, Bonel H, Cullmann JL, Kuchen S, Bütikofer L, et al. Magnetic resonance angiography in giant cell arteritis: Results of a randomized controlled trial of tocilizumab in giant cell arteritis. Rheumatology (Oxford). 2018;57(6):982-986. doi: 10.1093/rheumatology/key015
53. Cid MC, Font C, Oristrell J, de la Sierra A, Coll-Vinent B, LópezSoto A, et al. Association between strong inflammatory response and low risk of developing visual loss and other cranial ischemic complications in giant cell (temporal) arteritis. Arthritis Rheum. 1998;41(1):26-32. doi: 10.1002/1529-0131(199801)41:1<26::AID-ART4>3.0.CO;2-0
54. Hernández-Rodríguez J, García-Martínez A, Casademont J, Filella X, Esteban MJ, López-Soto A, et al. A strong initial systemic inflammatory response is associated with higher corticosteroid requirements and longer duration of therapy in patients with giantcell arteritis. Arthritis Rheum. 2002;47(1):29-35. doi: 10.1002/art1.10161
55. Hernández-Rodríguez J, Segarra M, Vilardell C, Sánchez M, García-Martínez A, Esteban MJ, et al. Elevated production of interleukin-6 is associated with a lower incidence of diseaserelated ischemic events in patients with giant-cell arteritis: Angiogenic activity of interleukin-6 as a potential protective mechanism. Circulation. 2003;107(19):2428-2434. doi: 10.1161/01.CIR.0000066907.83923.32
56. O’Neill L, McCormick J, Gao W, Veale DJ, McCarthy GM, Murphy CC, et al. Interleukin-6 does not upregulate pro-inflammatory cytokine expression in an ex vivo model of giant cell arteritis. Rheumatol Adv Pract. 2019;3(1):rkz011. doi: 10.1093/rap/rkz011
57. Graver JC, Boots AMH, Haacke EA, Diepstra A, Brouwer E, Sandovici M. Massive B-cell infiltration and organization into artery tertiary lymphoid organs in the aorta of large vessel giant cell arteritis. Front Immunol. 2019;10:83. doi: 10.3389/fimmu.2019.00083
58. Villiger PM, Adler S, Kuchen S, Wermelinger F, Dan D, Fiege V, et al. Tocilizumab for induction and maintenance of remission in giant cell arteritis: A phase 2, randomised, double-blind, placebo-controlled trial. Lancet. 2016;387(10031):1921-1927. doi: 10.1016/S0140-6736(16)00560-2
59. Stone JH, Tuckwell K, Dimonaco S, Klearman M, Aringer M, Blockmans D, et al. Trial of tocilizumab in giant-cell arteritis. N Engl J Med. 2017;377(4):317-328. doi: 10.1056/NEJMoa1613849
60. Seror R, Baron G, Hachulla E, Debandt M, Larroche C, Puéchal X, et al. Adalimumab for steroid sparing in patients with giant-cell arteritis: Results of a multicentre randomised controlled trial. Ann Rheum Dis. 2014;73(12):2074-2081. doi: 10.1136/annrheumdis-2013-203586
61. Langford CA, Cuthbertson D, Ytterberg SR, Khalidi N, Monach PA, Carette S, et al.; Vasculitis Clinical Research Consortium. A randomized, double-blind trial of abatacept (CTLA-4Ig) for the treatment of giant cell arteritis. Arthritis Rheumatol. 2017;69(4):837-845. doi: 10.1002/art.40044
62. Cid MC, Unizony SH, Blockmans D, Brouwer E, Dagna L, Dasgupta B, et al.; KPL-301-C001 Investigators. Efficacy and safety of mavrilimumab in giant cell arteritis: A phase 2, randomised, double-blind, placebo-controlled trial. Ann Rheum Dis. 2022;81(5):653-661. doi: 10.1136/annrheumdis-2021-221865
63. Merkel P, Penn S, Setty A, Schmidt W, Rubbert-Roth A, Hauge EM, et al. Efficacy and safety of upadacitinib in patients with giant cell arteritis (SELECT-GCA): A double-blind, randomized controlled phase 3 trial. Arthritis Rheumatol. 2024;76 (Suppl 9). URL: https://acrabstracts.org/abstract/efficacy-andsafety-of-upadacitinib-in-patients-with-giant-cell-arteritis-selectgca-a-double-blind-randomized-controlled-phase-3-trial/ (Accessed: DD Month 2024).
64. Matza MA, Fernandes AD, Stone JH, Unizony SH. Ustekinumab for the treatment of giant cell arteritis. Arthritis Care Res (Hoboken). 2021;73(6):893-897. doi: 10.1002/acr.24200
65. Nasonov EL, Avdeeva AS, Korotaeva TV, Dubinina TV, Usacheva JV. The role of interleukin 17 in the pathogenesis of rheumatoid arthritis. Are there any prospects for the use of IL-17 inhibitors? Nauchno-Prakticheskaya Revmatologia = Rheumatology Science and Practice. 2023;61(2):165-180 (In Russ.). doi: 10.47360/1995-4484-2023-165-180
66. Nasonov EL, Lila AM. Inhibition of interleukin 6 in immune inflammatory rheumatic diseases: Achievements, prospects, and hopes. Nauchno-Prakticheskaya Revmatologia = Rheumatology Science and Practice. 2017;55(6):590-599 (In Russ.). doi: 10.14412/1995-4484-2017-590-599
67. Tian X, Li M, Jiang N, Zhao Y, Li J, Zhou Y, et al. Comparative efficacy of secukinumab versus tumor necrosis factor inhibitors for the treatment of Takayasu arteritis. Arthritis Rheumatol. 2023;75(8):1415-1423. doi: 10.1002/art.42496
68. Wang Q, Wang Y, Xu D. Research progress on Th17 and T regulatory cells and their cytokines in regulating atherosclerosis. Front Cardiovasc Med. 2022:929078. doi: 10.3389/fcvm.2022.929078
69. Davis GK, Fehrenbach DJ, Madhur MS. Interleukin 17A: Key player in the pathogenesis of hypertension and a potential therapeutic target. Curr Hypertens Rep. 2021;23(3):13. doi: 10.1007/s11906-021-01128-7
70. Carvajal Alegria G, Nicolas M, van Sleen Y. Biomarkers in the era of targeted therapy in giant cell arteritis and polymyalgia rheumatica: Is it possible to replace acute-phase reactants? Front Immunol. 2023;14:1202160. doi: 10.3389/fimmu.2023.1202160
71. Tombetti E, Hysa E, Mason JC, Cimmino MA, Camellino D. Blood biomarkers for monitoring and prognosis of large vessel vasculitides. Curr Rheumatol Rep. 2021;23(3):17. doi: 10.1007/s11926-021-00980-5
72. Matsumoto K, Suzuki K, Takeshita M, Takeuchi T, Kaneko Y. Changes in the molecular profiles of large-vessel vasculitis treated with biological disease-modifying anti-rheumatic drugs and Janus kinase inhibitors. Front Immunol. 2023;14:1197342. doi: 10.3389/fimmu.2023.1197342
73. Karabayas M, Ibrahim HE, Roelofs AJ, Reynolds G, Kidder D, De Bari C. Vascular disease persistence in giant cell arteritis: Are stromal cells neglected? Ann Rheum Dis. 2024 Apr 29:ard- 2023-225270. doi: 10.1136/ard-2023-225270
74. Dejaco C, Kerschbaumer A, Aletaha D, Bond M, Hysa E, Camellino D, et al. Treat-to-target recommendations in giant cell arteritis and polymyalgia rheumatica. Ann Rheum Dis. 2024;83(1):48-57. doi: 10.1136/ard-2022-223429
75. Hysa E, Bond M, Ehlers L, Camellino D, Falzon L, Dejaco C, et al. Evidence on treat to target strategies in polymyalgia rheumatica and giant cell arteritis: A systematic literature review. Rheumatology (Oxford). 2024;63(2):285-297. doi: 10.1093/rheumatology/kead471
76. Lyman M, Lieuw V, Richardson R, Timmer A, Stewart C, Granger S, et al. A bispecific antibody that targets IL-6 receptor and IL-17A for the potential therapy of patients with autoimmune and inflammatory diseases. J Biol Chem. 2018;293(24):9326-9334. doi: 10.1074/jbc.M117.818559
Review
For citations:
Nasonov E.L., Beketova T.V., Satybaldyev A.M. The role of interleukin 17 in the pathogenesis of giant cell arteritis: new possibilities for pharmacotherapy. Rheumatology Science and Practice. 2024;62(6):582-589. (In Russ.) https://doi.org/10.47360/1995-4484-2024-582-589