Нейтрофилы при АНЦА-ассоциированном системном васкулите: патогенетическое значение и возможные терапевтические стратегии
https://doi.org/10.47360/1995-4484-2025-338-347
Аннотация
Обзор посвящен современным представлениям о значении нейтрофилов в патогенезе ассоциированного с антинейтрофильными цитоплазматическими антителами (АНЦА) системного васкулита (СВ). Обсуждаются многочисленные сигнальные пути регуляции функции нейтрофилов в ходе развития АНЦА-СВ, включая роль нейтрофильных протеаз, внеклеточных ловушек нейтрофилов, компонентов комплемента, особенностей межклеточного взаимодействия. Анализируется влияние экстракорпоральных методов лечения. Рассматриваются перспективные цели терапевтических стратегий.
Ключевые слова
Об авторах
Т. В. БекетоваРоссия
Бекетова Татьяна Валентиновна
115522, Москва, Каширское шоссе, 34а; 121356, Москва, ул. Маршала Тимошенко, 15; 107023, Москва, ул. Большая Семеновская, 38
Конфликт интересов:
Все авторы заявляют об отсутствии потенциального конфликта интересов, требующего раскрытия, в данной статье
Е. Л. Насонов
Россия
115522, Москва, Каширское шоссе, 34а
Конфликт интересов:
Все авторы заявляют об отсутствии потенциального конфликта интересов, требующего раскрытия, в данной статье
И. Ю. Попов
Россия
115522, Москва, Каширское шоссе, 34а
Конфликт интересов:
Все авторы заявляют об отсутствии потенциального конфликта интересов, требующего раскрытия, в данной статье
А. А. Соколов
Россия
198015, Санкт-Петербург, ул. Кирочная, 41
Конфликт интересов:
Все авторы заявляют об отсутствии потенциального конфликта интересов, требующего раскрытия, в данной статье
А. М. Лила
Россия
115522, Москва, Каширское шоссе, 34а; 125993, Москва, ул. Баррикадная, 2/1, стр. 1»
Конфликт интересов:
Все авторы заявляют об отсутствии потенциального конфликта интересов, требующего раскрытия, в данной статье
Список литературы
1. Jennette JC, Falk RJ, Bacon PA, Basu N, Cid MC, Ferrario F, et al. 2012 revised International Chapel Hill Consensus Conference nomenclature of vasculitides. Arthritis Rheum. 2013;65(1):111. doi: 10.1002/art.37715
2. Chung SA, Langford CA, Maz M, Abril A, Gorelik M, Guyatt G, et al. 2021 American College of Rheumatology/Vasculitis Foundation Guideline for the management of antineutrophil cytoplasmic antibody-associated vasculitis. Arthritis Rheumatol. 2021;73(8):1366-1383. doi: 10.1002/art.41773
3. Bertram A, Lovric S, Engel A, Beese M, Wyss K, Hertel B, et al. Circulating ADAM17 level reflects disease activity in protein ase-3 ANCA-associated vasculitis. J Am Soc Nephrol. 2015;26(11):2860-2870. doi: 10.1681/ASN.2014050477
4. Borregaard N, Cowland JB. Granules of the human neutrophilic polymorphonuclear leukocyte. Blood. 1997;89:3503-3521. doi: 10.1182/blood.V89.10.3503
5. McKinney EF, Willcocks LC, Broecker V. The immunopathology of ANCA-associated vasculitis. Semin Immunopathol. 2014;36:461478. doi: 10.1007/s00281-014-0436-6
6. Kain R, Matsui K, Exner M, Binder S, Schaffner G, Sommer EM, et al. A novel class of autoantigens of anti-neutrophil cytoplasmic antibodies in necrotizing and crescentic glomerulonephritis: The lysosomal membrane glycoprotein h-lamp-2 in neutrophil granulocytes and a related membrane protein in glomerular endothelial cells. J Exp Med. 1995;181(2):585-597. doi: 10.1084/jem.181.2.585
7. Peschel A, Basu N, Benharkou A, Brandes R, Brown M, Rees AJ, et al. Autoantibodies to hLAMP-2 in ANCA-negative pauciimmune focal necrotizing GN. J Am Soc Nephrol. 2014;25(3):455463. doi: 10.1681/ASN.2013030320
8. Tang S, Zhang Y, Yin SW, Gao XJ, Shi WW, Wang Y, et al. Neutrophil extracellular trap formation is associated with autophagyrelated signalling in ANCA-associated vasculitis. Clin Exp Immunol. 2015;180(3):408-418. doi: 10.1111/cei.12589
9. Sørensen OE, Borregaard N. Neutrophil extracellular traps – the dark side of neutrophils. J Clin Invest. 2016;126:1612-1620. doi: 10.1172/JCI84538
10. Насонов ЕЛ, Авдеева АС, Решетняк ТМ, Алексанкин АП, Рубцов ЮП. Роль нетоза в патогенезе иммуновоспалительных ревматических заболеваний. Научно-практическая ревматология. 2023;61(5):513-530. doi: 10.47360/19954484-2023-513-530
11. Falk RJ, Terrell RS, Charles LA. Anti-neutrophil cytoplasmic autoantibodies induce neutrophils to degranulate and produce oxygen radicals in vitro. Proc Natl Acad Sci U S A. 1990;87:4115-4119. doi: 10.1073/pnas.87.11.4115
12. Csernok E, Ernst M, Schmitt W, Bainton DF, Gross WL. Activated neutrophils express proteinase 3 on their plasma membrane in vitro and in vivo. Clin Exp Immunol. 1994;95(2):244-250. doi: 10.1111/j.1365-2249.1994.tb06518.x
13. Noronha IL, Krüger C, Andrassy K, Ritz E, Waldherr R. In situ production of TNF-alpha, IL-1 beta and IL-2R in ANCA-positive glomerulonephritis. Kidney Int. 1993;43(3):682-692. doi: 10.1038/ki.1993.98
14. Charles LA, Caldas ML, Falk RJ, Terrell RS, Jennette JC. Antibodies against granule proteins activate neutrophils in vitro. J Leukoc Biol. 1991;50(6):539-546. doi: 10.1002/jlb.50.6.539
15. Little MA, Smyth CL, Yadav R, Ambrose L, Cook HT, Nourshargh S, et al. Antineutrophil cytoplasm antibodies directed against myeloperoxidase augment leukocyte-microvascular interactions in vivo. Blood. 2005;106(6):2050-2058. doi: 10.1182/blood2005-03-0921
16. Condliffe AM, Kitchen E, Chilvers ER. Neutrophil priming: Pathophysiological consequences and underlying mechanisms. Clin Sci (Lond). 1998;94(5):461-471. doi: 10.1042/cs0940461
17. Huugen D, Xiao H, van Esch A, Falk RJ, Peutz-Kootstra CJ, Buurman WA, et al. Aggravation of anti-myeloperoxidase antibody-induced glomerulonephritis by bacterial lipopolysaccharide: Role of tumor necrosis factor-alpha. Am J Pathol. 2005;167(1):4758. doi: 10.1016/s0002-9440(10)62952-5
18. Schreiber A, Xiao H, Jennette JC, Schneider W, Luft FC, Kettritz R. C5a receptor mediates neutrophil activation and ANCAinduced glomerulonephritis. J Am Soc Nephrol. 2009;20(2):289298. doi: 10.1681/ASN.2008050497
19. Yuan J, Gou SJ, Huang J, Hao J, Chen M, Zhao MH. C5a and its receptors in human anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis. Arthritis Res Ther. 2012;14(3):R140. doi: 10.1186/ar3873
20. Berti A, Cavalli G, Campochiaro C, Guglielmi B, Baldissera E, Cappio S, et al. Interleukin-6 in ANCA-associated vasculitis: Rationale for successful treatment with tocilizumab. Semin Arthritis Rheum. 2015;45(1):48-54. doi: 10.1016/j.semarthrit.2015.02.002
21. Cockwell P, Brooks CJ, Adu D. Interleukin-8: A pathogenetic role in antineutrophil cytoplasmic autoantibody-associated glomerulo-nephritis. Kidney Int. 1999;55(3):852-863. doi: 10.1046/j.1523-1755.1999.055003852.x
22. Hewins P, Morgan MD, Holden N, Neil D, Williams JM, Savage CO, et al. IL-18 is upregulated in the kidney and primes neutrophil responsiveness in ANCA-associated vasculitis. Kidney Int. 2006;69(3):605-615. doi: 10.1038/sj.ki.5000167
23. Hellmich B, Csernok E, Trabandt A. Granulocyte-macrophage colony-stimulating factor (GM-CSF) but not granulocyte colony-stimulating factor (G-CSF) induces plasma membrane expression of proteinase 3 (PR3) on neutrophils in vitro. Clin Exp Immunol. 2000;120:392-398. doi: 10.1046/j.1365-2249.2000.01205.x
24. Mukae H, Matsumoto N, Ashitani J, Mashimoto H, Kadota J, Nakazato M, et al. Neutrophil-related cytokines and neutrophil products in bronchoalveolar lavage fluid of a patient with ANCA negative Wegener’s granulomatosis. Eur Respir J. 1996;9(9):1950-1954. doi: 10.1183/09031936.96.09091950
25. Halbach L, Lesavre P. Endothelium-neutrophil interactions in ANCA-associated diseases. J Am Soc Nephrol. 2012;23:1449-1461. doi: 10.1681/ASN.2012020119
26. Nomura H, Imazeki I, Oheda M, Kubota N, Tamura M, Ono M, et al. Purification and characterization of human granulocyte colony-stimulating factor (G-CSF). EMBO J. 1986;5(5):871-876. doi: 10.1002/j.1460-2075.1986.tb04297.x
27. Kettritz R, Jennette JC, Falk RJ. Crosslinking of ANCA-antigens stimulates superoxide release by human neutrophils. J Am Soc Nephrol. 1997;8(3):386-394. doi: 10.1681/asn.V83386
28. Ohta N, Fukase S, Aoyagi M. Serum levels of soluble adhesion molecules ICAM-1, VCAM-1 and E-selectin in patients with Wegener’s granulomatosis. Auris Nasus Larynx. 2001;28(4):311-314. doi: 10.1016/s0385-8146(01)00097-9
29. Kunkel SL, Standiford T, Kasahara K, Strieter RM. Interleukin-8 (IL-8): The major neutrophil chemotactic factor in the lung. Exp Lung Res. 1991;17(1):17-23. doi: 10.3109/01902149109063278
30. Korkmaz B, Horwitz MS, Jenne DE, Gauthier F. Neutrophil elastase, proteinase 3, and cathepsin G as therapeutic targets in human diseases. Pharmacol Rev. 2010;62(4):726-759. doi: 10.1124/pr.110.002733
31. Perera NC, Wiesmüller KH, Larsen MT, Schacher B, Eickholz P, Borregaard N, et al. NSP4 is stored in azurophil granules and released by activated neutrophils as active endoprotease with restricted specificity. J Immunol. 2013;191(5):2700-2707. doi: 10.4049/jimmunol.1301293
32. Okrent DG, Lichtenstein AK, Ganz T. Direct cytotoxicity of polymorphonuclear leukocyte granule proteins to human lung-derived cells and endothelial cells. Am Rev Respir Dis. 1990;141(1):179-185. doi: 10.1164/ajrccm/141.1.179
33. Pepper RJ, Hamour S, Chavele KM, Todd SK, Rasmussen N, Flint S, et al. Leukocyte and serum S100A8/S100A9 expression reflects disease activity in ANCA-associated vasculitis and glomerulonephritis. Kidney Int. 2013;83(6):1150-1158. doi: 10.1038/ki.2013.2
34. Pepper RJ, Draibe JB, Caplin B, Fervenza FC, Hoffman GS, Kallenberg CG, et al.; RAVE-Immune Tolerance Network Research Group. Association of serum calprotectin (S100A8/A9) level with disease relapse in proteinase 3-antineutrophil cytoplasmic antibody-associated vasculitis. Arthritis Rheumatol. 2017;69(1):185-193. doi: 10.1002/art.39814
35. Moschen AR, Adolph TE, Gerner RR, Wieser V, Tilg H. Lipocalin-2: A master mediator of intestinal and metabolic inflammation. Trends Endocrinol Metab. 2017;28(5):388-397. doi: 10.1016/j.tem.2017.01.003
36. Schreiber A, Rousselle A, Klocke J, Bachmann S, Popovic S, Bontscho J, et al. Neutrophil gelatinase-associated lipocalin protects from ANCA-induced GN by inhibiting TH17 immunity. J Am
37. Chen M, Jayne D, Zhao MH. Complement in ANCA-associated vasculitis: Mechanisms and implications for management. Nat Rev Nephrol. 2017;13:359-367. doi: 10.1038/nrneph.2017.37
38. Camous L, Roumenina L, Bigot S, Brachemi S, Frémeaux-Bacchi V, Lesavre P, et al. Complement alternative pathway acts as a positive feedback amplification of neutrophil activation. Blood. 2011;117(4):1340-1349. doi: 10.1182/blood-2010-05-283564
39. Bekker P, Dairaghi D, Seitz L, Leleti M, Wang Y, Ertl L, et al. Characterization of pharmacologic and pharmacokinetic properties of CCX168, a potent and selective orally administered complement 5a receptor inhibitor, based on preclinical evaluation and randomized phase 1 clinical study. PLoS One. 2016;11(10):e0164646. doi: 10.1371/journal.pone.0164646
40. Xiao H, Dairaghi DJ, Powers JP, Ertl LS, Baumgart T, Wang Y, et al. C5a receptor (CD88) blockade protects against MPO-ANCA GN. J Am Soc Nephrol. 2014;25(2):225-231. doi: 10.1681/ASN.2013020143
41. Almaani S, Song H, Suthanthira M, Toy C, Fussner LA, Meara A, et al. Urine and plasma complement Ba levels during disease flares in patients with antineutrophil cytoplasmic autoantibody-associated vasculitis. Kidney Int Rep. 2023;8(11):2421-2427. doi: 10.1016/j.ekir.2023.08.017
42. Wirthmueller U, Dewald B, Thelen M, Schäfer MK, Stover C, Whaley K, et al. Properdin, a positive regulator of complement activation, is released from secondary granules of stimulated peripheral blood neutrophils. J Immunol. 1997;158(9):4444-4451.
43. Jayne DRW, Bruchfeld AN, Harper L, Schaier M, Venning MC, Hamilton P, et al.; CLEAR Study Group. Randomized trial of C5a receptor inhibitor avacopan in ANCA-associated vasculitis. J Am Soc Nephrol. 2017;28(9):2756-2767. doi: 10.1681/ASN.2016111179
44. Merkel PA, Niles J, Jimenez R, Spiera RF, Rovin BH, Bomback A, et al.; CLASSIC Investigators. Adjunctive treatmentwith avacopan, an oral C5a receptor inhibitor, in patients with antineutrophil cytoplasmic antibody-associated vasculitis. ACR Open Rheumatol. 2020;2(11):662-671. doi: 10.1002/acr2.11185
45. Jayne DRW, Merkel PA, Schall TJ, Bekker P; ADVOCATE Study Group. Avacopan for the treatment of ANCA-associated vasculitis. N Engl J Med. 2021;384(7):599-609. doi: 10.1056/NEJ-Moa2023386
46. Renson T, Kelly MM, Benediktsson H, Grundhoefer N, Luca N, Miettunen P, et al. Non-invasive biomarkers of disease activity and organ damage in ANCA-associated vasculitis: A systematic review. RMD Open. 2024;10(1):e003579. doi: 10.1136/rmdopen-2023-003579
47. Lelliott PM, Nishide M, Pavillon N, Okita Y, Shibahara T, Mizuno Y, et al. Cellular adhesion is a controlling factor in neutrophil extracellular trap formation induced by anti-neutrophil cytoplasmic antibodies. Immunohorizons. 2022;6(2):170-183. doi: 10.4049/immunohorizons.2200012
48. Petretto A, Bruschi M, Pratesi F, Croia C, Candiano G, Ghiggeri G, et al. Neutrophil extracellular traps (NET) induced by different stimuli: A comparative proteomic analysis. PLoS One. 2019;14(7):e0218946. doi: 10.1371/journal.pone.0218946
49. Yoshida M, Sasaki M, Sugisaki K, Yamaguchi Y, Yamada M. Neutrophil extracellular trap components in fibrinoid necrosis of the kidney with myeloperoxidase-ANCA-associated vasculitis. Clin Kidney J. 2013;6(3):308-312. doi: 10.1093/ckj/sft048
50. Abreu-Velez AM, Smith JG Jr, Howard MS. Presence of neutrophil extracellular traps and antineutrophil cytoplasmic antibodies associated with vasculitides. N Am J Med Sci. 2009;1(6):309-313.
51. Imamoto T, Nakazawa D, Shida H, Suzuki A, Otsuka N, Tomaru U, et al. Possible linkage between microscopic polyangiitis and thrombosis via neutrophil extracellular traps. Clin Exp Rheumatol. 2014;32(1):149-150.
52. Von Brühl ML, Stark K, Steinhart A, Chandraratne S, Konrad I, Lorenz M, et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med. 2012;209(4):819-835. doi: 10.1084/jem.20112322
53. Matsumoto K, Yasuoka H, Yoshimoto K, Suzuki K, Takeuchi T. Platelet CXCL4 mediates neutrophil extracellular traps formation in ANCA-associated vasculitis. Sci Rep. 2021;11(1):222. doi: 10.1038/s41598-020-80685-4
54. Kessenbrock K, Krumbholz M, Schönermarck U, Back W, Gross WL, Werb Z, et al. Netting neutrophils in autoimmune smallvessel vasculitis. Nat Med. 2009;15(6):623-625. doi: 10.1038/nm.1959 55. Söderberg D, Kurz T, Motamedi A, Hellmark T, Eriksson P, Segelmark M. Increased levels of neutrophil extracellular trap remnants in the circulation of patients with small vessel vasculitis, but an inverse correlation to anti-neutrophil cytoplasmic antibodies during remission. Rheumatology (Oxford). 2015;54(11):2085-2094. doi: 10.1093/rheumatology/kev217
55. Abdulahad WH, Stegeman CA, Limburg PC, Kallenberg CG. Skewed distribution of Th17 lymphocytes in patients with Wegener’s granulomatosis in remission. Arthritis Rheum. 2008;58(7):21962205. doi: 10.1002/art.23557
56. Hemdan NY, Birkenmeier G, Wichmann G, Abu El-Saad AM, Krieger T, Conrad K, et al. Interleukin-17-producing T helper cells in autoimmunity. Autoimmun Rev. 2010;9(11):785-792. doi: 10.1016/j.autrev.2010.07.003
57. Velden J, Paust HJ, Hoxha E, Turner JE, Steinmetz OM, Wolf G, et al. Renal IL-17 expression in human ANCA-associated glomerulonephritis. Am J Physiol Renal Physiol. 2012;302(12):F1663-F1673. doi: 10.1152/ajprenal.00683.2011
58. Мазуров ВИ, Долгих СВ. Диагностическая значимость биологических маркеров при первичных системных некротизирующих васкулитах. Вестник Северо-Западного государственного медицинского университета имени И.И. Мечникова. 2010;1(2):4-8.
59. Niebuhr M, Gathmann M, Scharonow H, Mamerow D, Mommert S, Balaji H, et al. Staphylococcal alpha-toxin is a strong inducer of interleukin-17 in humans. Infect Immun. 2011;79(4):1615-1622. doi: 10.1128/IAI.00958-10
60. Stegeman CA, Tervaert JW, Sluiter WJ, Manson WL, de Jong PE, Kallenberg CG. Association of chronic nasal carriage of Staphylococcus aureus and higher relapse rates in Wegener granulomatosis. Ann Intern Med. 1994;120(1):12-17. doi: 10.7326/0003-4819-120-1-199401010-00003
61. Laudien M, Gadola SD, Podschun R, Hedderich J, Paulsen J, Reinhold-Keller E, et al. Nasal carriage of Staphylococcus aureus and endonasal activity in Wegener’s granulomatosis as compared to rheumatoid arthritis and chronic rhinosinusitis with nasal pol- yps. Clin Exp Rheumatol. 2010;28(1 Suppl 57):51-55.
62. Hurtado PR, Jeffs L, Nitschke J, Patel M, Sarvestani G, Cassidy J, et al. CpG oligodeoxynucleotide stimulates production of antineutrophil cytoplasmic antibodies in ANCA associated vasculitis. BMC Immunol. 2008;9:34. doi: 10.1186/1471-2172-9-34
63. Насонов ЕЛ, Бекетова ТВ, Ананьева ЛП, Васильев ВИ, Соловьев СК, Авдеева АС. Перспективы анти-В-клеточной терапии при иммуно-воспалительных ревматических заболеваниях. Научно-практическая ревматология. 2019;57:140. doi: 10.14412/1995-4484-20193-40
64. Huard B, McKee T, Bosshard C, Durual S, Matthes T, Myit S, et al. APRIL secreted by neutrophils binds to heparan sulfate proteoglycans to create plasma cell niches in human mucosa. J Clin Invest. 2008;118(8):2887-2895. doi: 10.1172/JCI33760
65. Scapini P, Nardelli B, Nadali G, Calzetti F, Pizzolo G, Montecucco C, et al. G-CSF-stimulated neutrophils are a prominent source of functional BLyS. J Exp Med. 2003;197(3):297-302. doi: 10.1084/jem.20021343
66. Holden NJ, Williams JM, Morgan MD, Challa A, Gordon J, Pepper RJ, et al. ANCA-stimulated neutrophils release BLyS and promote B cell survival: A clinically relevant cellular process. Ann Rheum Dis. 2011;70(12):2229-2233. doi: 10.1136/ard.2011.153890
67. Schneeweis C, Rafalowicz M, Feist E, Buttgereit F, Rudolph PE, Burmester GR, et al. Increased levels of BLyS and sVCAM-1 in antineutrophil cytoplasmatic antibody (ANCA)-associated vasculitides (AAV). Clin Exp Rheumatol. 2010;28(1 Suppl 57):62-66.
68. Sanders JS, Huitma MG, Kallenberg CG, Stegeman CA. Plasma levels of soluble interleukin 2 receptor, soluble CD30, interleukin 10 and B cell activator of the tumour necrosis factor family during follow-up in vasculitis associated with proteinase 3-antineutrophil cytoplasmic antibodies: Associations with disease activity and relapse. Ann Rheum Dis. 2006;65(11):1484-1489. doi: 10.1136/ard.2005.046219
69. Nagai M, Hirayama K, Ebihara I, Shimohata H, Kobayashi M, Koyama A. Serum levels of BAFF and APRIL in myeloperoxidase anti-neutrophil cytoplasmic autoantibody-associated renal vasculitis: Association with disease activity. Nephron Clin Pract. 2011;118(4):c339-с345. doi: 10.1159/000323393
70. Sachez-Alamo B, Moi L, Bajema I, Berden A, Flossmann O, Hruskova Z, et al. Long-term outcome of kidney function in patients with ANCA-associated vasculitis. Nephrol Dial Transplant. 2024;39(9):1483-1493. doi: 10.1093/ndt/gfae018
71. Goligorsky MS. NET formation in dialysis: A valuable, albeit mysterious and enticing predictor of mortality. Am J Nephrol. 2020;51(11):849-851. doi: 10.1159/000510772
72. Bieber S, Muczynski KA, Lood C. Neutrophil activation and neutrophil extracellular trap formation in dialysis patients. Kidney Med. 2020;2(6):692-698.e1. doi: 10.1016/j.xkme.2020.06.014
73. Fukushi T, Yamamoto T, Yoshida M, Fujikura E, Miyazaki M, Nakayama M. Enhanced neutrophil apoptosis accompanying myeloperoxidase release during hemodialysis. Sci Rep. 2020;10(1):21747. doi: 10.1038/s41598-020-78742-z
74. Okamoto K, Ito T, Sato S, Yamamoto M, Takahashi M, Takahashi Y, et al. Damage-associated molecular patterns as mediators of thrombus formation on dialyzer membrane in critically ill patients. ASAIO J. 2024;70(10):898-903. doi: 10.1097/MAT.0000000000002200
75. Canaud B, Stenvinkel P, Scheiwe R, Steppan S, Bowry S, Castellano G. The Janus-faced nature of complement in hemodialysis: Interplay between complement, inflammation, and bioincompatibility unveiling a self-amplifying loop contributing to organ damage. Front Nephrol. 2024;4:1455321. doi: 10.3389/fneph.2024.1455321
76. Walsh M, Collister D, Zeng L, Merkel PA, Pusey CD, Guyatt G, et al. The effects of plasma exchange in patients with ANCA-associated vasculitis: An updated systematic review and meta-analysis. BMJ. 2022;376:e064604. doi: 10.1136/bmj-2021-064604
77. Pusey CD, Rees AJ, Evans DJ, Peters DK, Lockwood CM. Plasma exchange in focal necrotizing glomerulonephritis without antiGBM antibodies. Kidney Int. 1991;40(4):757-763. doi: 10.1038/ki.1991.272
78. Jayne DR, Gaskin G, Rasmussen N, Abramowicz D, Ferrario F, Guillevin L, et al.; European Vasculitis Study Group. Randomized trial of plasma exchange or high-dosage methylprednisolone as adjunctive therapy for severe renal vasculitis. J Am Soc Nephrol. 2007;18(7):2180-2188. doi: 10.1681/ASN.2007010090
79. Abe T, Matsuo H, Abe R, Abe S, Asada H, Ashida A, et al. The Japanese Society for Apheresis clinical practice guideline for therapeutic apheresis. Ther Apher Dial. 2021;25(6):728-876. doi: 10.1111/1744-9987.13749
80. Nezam D, Porcher R, Grolleau F, Morel P, Titeca-Beauport D, Faguer S, et al. Kidney histopathology can predict kidney function in ANCA-asscociated vasculitides with acute kidney injury treated with plasma exchanges. J Am Soc Nephrol. 2022;33(3):628-637. doi: 10.1681/ASN.2021060771
81. Walsh M, Merkel PA, Peh CA, Szpirt WM, Puéchal X, Fujimoto S, et al.; PEXIVAS Investigators. Plasma exchange and glucocorticoids in severe ANCA-associated vasculitis. N Engl J Med. 2020;382(7):622-631. doi: 10.1056/NEJMoa1803537
82. Junek ML, Merkel PA, Vilayur E, Wald R, Khalidi N, Jayne D, et al.; PEXIVAS Investigators. Risk of relapse of antineutrophil cytoplasmic antibody-associated vasculitis in a randomized controlled trial of plasma exchange and glucocorticoids. Arthritis Rheumatol. 2024;76(9):1431-1438. doi: 10.1002/art.42843
83. Ueki Y, Yamasaki S, Kanamoto Y, Kawazu T, Yano M, Matsumoto K, et al. Evaluation of filtration leucocytapheresis for use in the treatment of patients with rheumatoid arthritis. Rheumatology (Oxford). 2000;39(2):165-171. doi: 10.1093/rheumatology/39.2.165
84. Hidaka T, Suzuki K, Kawakami M, Okada M, Kataharada K, Shi nohara T, et al. Dynamic changes in cytokine levels in serum and synovial fluid following filtration leukocytapheresis therapy in patients with rheumatoid arthritis. J Clin Apher. 2001;16(2):74-81. doi: 10.1002/jca.1016
85. Kempe K, Tsuda H, Yang K, Yamaji K, Kanai Y, Hashimoto H. Filtration leukocytapheresis therapy in the treatment of rheumatoid arthritis patients resistant to or failed with methotrexate. Ther Apher Dial. 2004;8(3):197-205. doi: 10.1111/j.1526-0968.2004.00132.x
86. Kyogoku M, Kasukawa R. Clinical and basic studies on the G-1 column, a new extracorporeal therapeutic device effective in controlling rheumatoid arthritis. Inflamm Res. 1998;47(Suppl 3):S166-S176. doi: 10.1007/s000110050311
87. Fujimori J, Yoshino S, Koiwa M, Hirai H, Shiga H, Hayama N, et al. Improvement in rheumatoid arthritis following application of an extracorporeal granulotrap column, G-1. Rheumatol Int. 1996;15(5):175-180. doi: 10.1007/BF00290518
88. Hasegawa M, Watanabe A, Takahashi H, Takahashi K, Kasugai M, Kawamura N, et al. Treatment with cytapheresis for antineutrophil cytoplasmic antibody-associated renal vasculitis and its effect on anti-inflammatory factors. Ther Apher Dial. 2005;9(4):297-302. doi: 10.1111/j.1744-9987.2005.00285.x
89. Hasegawa M, Nishii C, Kabutan N, Kato M, Ohashi A, Nakai S, et al. Effects of cytapheresis on tumor necrosis factor receptor and on expression of CD63 in myeloperoxidase-antineutrophil cytoplasmic autoantibody-associated vasculitis. Ther Apher Dial. 2007;11(5):337-340. doi: 10.1111/j.1744-9987.2007.00496.x
90. Aswani A, Abramovsky S, Afanasieva M, Pokrovsky NS, Sokolov AA, Adamova I, et al. Safety and performance of the nucleo-capture column for selective cfDNA/NETs apheresis in patients with sepsis (ClinicalTrials.gov Identifier: NCT04749238). ISFA – E-ISFA 2023 Program & Abstract Booklet; 2023.
91. Асеева ЕА, Покровский НС, Соловьев СК, Николаева ЕВ, Никишина НЮ, Абдуллин ЕТ, и др. Первый клинический опыт применения селективной плазмосорбции ДНК с использованием сорбционной колонки «НуклеоКор®» при лечении системной красной волчанки. Современная ревматология. 2024;18(2):75-80. doi: 10.14412/1996-7012-2024-2-75-80
92. Cortazar FB, Niles JL, Jayne DRW, Merkel PA, Bruchfeld A, Yue H, et al.; ADVOCATE Study Group. Renal recovery for patients with ANCA-associated vasculitis and low eGFR in the ADVOCATE trial of avacopan. Kidney Int Rep. 2023;8(4):860-870. doi: 10.1016/j.ekir.2023.01.039
93. Merkel P, Hellmich B, Pfaff A, Müller C, Startseva E, Jayne D. A randomized, double-blind, phase II study of glucocorticoid replacement by vilobelimab, an anti-C5a monoclonal antibody, in ANCA-associated vasculitis. Arthritis Rheumatol. 2022;74 (Suppl 9). URL: https://acrabstracts.org/abstract/a-randomized-double-blind-phase-ii-study-of-glucocorticoid-replacement-by-vilobelimab-an-anti-c5a-monoclonal-antibody-in-anca-associated-vasculitis (Accessed: 29th April 2025).
94. Фролова НФ, Томилина НА, Котенко ОН, Подкорытова ОЛ, Исхаков РТ, Усатюк СС, и др. Экулизумаб в лечении АНЦАассоциированного васкулита, осложненного Covid-19. Клинические наблюдения. Нефрология и диализ. 2020;22:3345. doi: 10.28996/2618-9801-2020-Special_Issue-33-45
95. van Bijnen ST, Wouters D, van Mierlo GJ, Muus P, Zeerleder S. Neutrophil activation and nucleosomes as markers of systemic inflammation in paroxysmal nocturnal hemoglobinuria: Effects doi: 10.1111/jth.13125
96. Negreros M, Flores-Suárez LF. A proposed role of neutrophil extracellular traps and their interplay with fibroblasts in ANCA-associated vasculitis lung fibrosis. Autoimmun Rev. 2021;20(4):102781. doi: 10.1016/j.autrev.2021.102781
97. Wood AJJ, Patrono C. Aspirin as an antiplatelet drug. N Engl J Med. 1994;330:1287-1294. doi: 10.1056/NEJM199405053301808
98. Catella-Lawson F, Reilly MP, Kapoor SC, Cucchiara AJ, DeMarco S, Tournier B, et al. Cyclooxygenase inhibitors and the anti-
99. platelet effects of aspirin. N Engl J Med. 2001;345(25):1809-1817. doi: 10.1056/NEJMoa003199
100. Leon C, Ravanat C, Freund M, Cazenave JP, Gachet C. Differential involvement of the P2Y1 and P2Y12 receptors in platelet procoagulant activity. Arterioscler Thromb Vasc Biol. 2003;23(10):1941-1947. doi: 10.1161/01.ATV.0000092127.16125.E6
101. Ataga KI, Kutlar A, Kanter J, Liles D, Cancado R, Friedrisch J, et al. Crizanlizumab for the prevention of pain crises in sickle cell disease. N Engl J Med. 2017;376(5):429-439. doi: 10.1056/NEJMoa1611770
102. Liberale L, Holy EW, Akhmedov A, Bonetti NR, Nietlispach F, Matter CM, et al. Interleukin-1β mediates arterial thrombus formation via NET-associated tissue factor. J Clin Med. 2019;8(12):2072. doi: 10.3390/jcm8122072
103. Gomes T, Várady CBS, Lourenço AL, Mizurini DM, Rondon AMR, Leal AC, et al. IL-1β blockade attenuates thrombosis in a neutrophil extracellular trap-dependent breast cancer model. Front Immunol. 2019;10:2088. doi: 10.3389/fimmu.2019.02088
104. Hudock KM, Collins MS, Imbrogno M, Snowball J, Kramer EL, Brewington JJ, et al. Neutrophil extracellular traps activate IL-8 and IL-1 expression in human bronchial epithelia. Am J Physiol Lung Cell Mol Physiol. 2020;319(1):L137-L147. doi: 10.1152/ajplung.00144.2019
105. Ohyama A, Osada A, Kawaguchi H, Kurata I, Nishiyama T, Iwai T, et al. Specific increase in joint neutrophil extracellular traps and its relation to interleukin 6 in autoimmune arthritis. Int J Mol Sci. 2021;22(14):7633. doi: 10.3390/ijms22147633
106. Zhang S, Zhang Q, Wang F, Guo X, Liu T, Zhao Y, et al. Hydroxychloroquine inhibiting neutrophil extracellular trap formation alleviates hepatic ischemia/reperfusion injury by blocking TLR9 in mice. Clin Immunol. 2020;216:108461. doi: 10.1016/j.clim.2020.108461
107. Boone BA, Murthy P, Miller-Ocuin J, Doerfler WR, Ellis JT, Liang X, et al. Chloroquine reduces hypercoagulability in pancreatic cancer through inhibition of neutrophil extracellular traps. BMC Cancer. 2018;18(1):678. doi: 10.1186/s12885-018-4584-2
108. Murthy P, Singhi AD, Ross MA, Loughran P, Paragomi P, Papachristou GI, et al. Enhanced neutrophil extracellular trap formation in acute pancreatitis contributes to disease severity and is reduced by chloroquine. Front Immunol. 2019;10:28. doi: 10.3389/fimmu.2019.00028
109. Madan A, Chen S, Yates P, Washburn ML, Roberts G, Peat AJ, et al. Efficacy and safety of danirixin (GSK1325756) co-administered with standard-of-care antiviral (oseltamivir): A phase 2b, global, randomized study of adults hospitalized with influenza. Open Forum Infect Dis. 2019;6(4):ofz163. doi: 10.1093/ofid/ofz163
110. Holz O, Khalilieh S, Ludwig-Sengpiel A, Watz H, Stryszak P, Soni P, et al. SCH527123, a novel CXCR2 antagonist, inhibits ozone-induced neutrophilia in healthy subjects. Eur Respir J. 2010;35(3):564-570. doi: 10.1183/09031936.00048509
111. Mattos MS, Ferrero MR, Kraemer L, Lopes GAO, Reis DC, Cassali GD, et al. CXCR1 and CXCR2 inhibition by ladarixin improves neutrophil-dependent airway inflammation in mice. Front Immunol. 2020;11:566953. doi: 10.3389/fimmu.2020.566953
112. Gollomp K, Sarkar A, Harikumar S, Seeholzer SH, Arepally GM, Hudock K, et al. Fc-modified HIT-like monoclonal antibody as a novel treatment for sepsis. Blood. 2020;135(10):743-754. doi: 10.1182/blood.2019002329
113. Knight JS, Subramanian V, O’Dell AA, Yalavarthi S, Zhao W, Smith CK, et al. Peptidylarginine deiminase inhibition disrupts NET formation and protects against kidney, skin and vascular disease in lupus-prone MRL/lpr mice. Ann Rheum Dis. 2015;74(12):2199-2206. doi: 10.1136/annrheumdis-2014-205365
114. Cedervall J, Dragomir A, Saupe F, Zhang Y, Ärnlöv J, Larsson E, et al. Pharmacological targeting of peptidylarginine deiminase 4 prevents cancer-associated kidney injury in mice. Oncoimmunology. 2017;6(8):e1320009. doi: 10.1080/2162402X.2017.1320009
115. Du M, Yang L, Gu J, Wu J, Ma Y, Wang T. Inhibition of peptidyl arginine deiminase-4 prevents renal ischemia-reperfusioninduced remote lung injury. Mediators Inflamm. 2020;2020:1724206. doi: 10.1155/2020/1724206
116. Willis VC, Banda NK, Cordova KN, Chandra PE, Robinson WH, Cooper DC, et al. Protein arginine deiminase 4 inhibition is sufficient for the amelioration of collagen-induced arthritis. Clin Exp Immunol. 2017;188(2):263-274. doi: 10.1111/cei.12932
117. Li M, Lin C, Deng H, Strnad J, Bernabei L, Vogl DT, et al. A novel peptidylarginine deiminase 4 (PAD4) inhibitor BMS-P5 blocks formation of neutrophil extracellular traps and delays progression of multiple myeloma. Mol Cancer Ther. 2020;19(7):1530-1538. doi: 10.1158/1535-7163.MCT-19-1020
118. Chirivi RGS, van Rosmalen JWG, van der Linden M, Euler M, Schmets G, Bogatkevich G, et al. Therapeutic ACPA inhibits NET formation: A potential therapy for neutrophil-mediated inflammatory diseases. Cell Mol Immunol. 2021;18(6):1528-1544. doi: 10.1038/s41423-020-0381-3
119. Liu J, Gao J, Wu Z, Mi L, Li N, Wang Y, et al. Anti-citrullinated protein antibody generation, pathogenesis, clinical application, and prospects. Front Med (Lausanne). 2022;8:802934. doi: 10.3389/fmed.2021.802934
120. van der Linden M, Kumari S, Montizaan D, van Dalen S, Kip A, Foster M, et al. Anti-citrullinated histone monoclonal antibody CIT-013, a dual action therapeutic for neutrophil extracellular trap-associated autoimmune diseases. MAbs. 2023;15(1):2281763. doi: 10.1080/19420862.2023.2281763
121. Hu JJ, Liu X, Xia S, Zhang Z, Zhang Y, Zhao J, et al. FDA-approved disulfiram inhibits pyroptosis by blocking gasdermin D pore formation. Nat Immunol. 2020;21(7):736-745. doi: 10.1038/s41590-020-0669-6
122. Viola-Rhenals M, Patel KR, Jaimes-Santamaria L, Wu G, Liu J, Dou QP. Recent advances in antabuse (Disulfiram): The importance of its metal-binding ability to its anticancer activity. Curr Med Chem. 2018;25(4):506-524. doi: 10.2174/0929867324666171023161121
123. Zheng W, Warner R, Ruggeri R, Su C, Cortes C, Skoura A, et al. PF-1355, a mechanism-based myeloperoxidase inhibitor, prevents immune complex vasculitis and anti-glomerular basement membrane glomerulonephritis. J Pharmacol Exp Ther. 2015;353(2):288-298. doi: 10.1124/jpet.114.221788
124. Maki C, Inoue Y, Ishihara T, Hirano Y, Kondo Y, Sueyoshi K, et al. Evaluation of appropriate indications for the use of sivelestat sodium in acute respiratory distress syndrome: A retrospective cohort study. Acute Med Surg. 2019;7(1):e471. doi: 10.1002/ams2.471
125. Vaidya K, Tucker B, Kurup R, Khandkar C, Pandzic E, Barraclough J, et al. Colchicine inhibits neutrophil extracellular trap formation in patients with acute coronary syndrome after percutaneous coronary intervention. J Am Heart Assoc. 2021;10(1):e018993. doi: 10.1161/JAHA.120.018993
126. Menegazzo L, Scattolini V, Cappellari R, Bonora BM, Albiero M, Bortolozzi M, et al. The antidiabetic drug metformin blunts NETosis in vitro and reduces circulating NETosis biomarkers in vivo. Acta Diabetol. 2018;55(6):593-601. doi: 10.1007/s00592-018-1129-8
127. Distéfano AM, Martin MV, Córdoba JP, Bellido AM, D’Ippólito S, Colman SL, et al. Heat stress induces ferroptosislike cell death in plants. J Cell Biol. 2017;216(2):463-476. doi: 10.1083/jcb.201605110
Рецензия
Для цитирования:
Бекетова Т.В., Насонов Е.Л., Попов И.Ю., Соколов А.А., Лила А.М. Нейтрофилы при АНЦА-ассоциированном системном васкулите: патогенетическое значение и возможные терапевтические стратегии. Научно-практическая ревматология. 2025;63(4):338-347. https://doi.org/10.47360/1995-4484-2025-338-347
For citation:
Beketova T.V., Nasonov E.I., Popov I.Yu., Sokolov A.A., Lila A.M. Neutrophils in ANCA-associated vasculitis: The role in the pathogenesis and promising therapeutic strategies. Rheumatology Science and Practice. 2025;63(4):338-347. (In Russ.) https://doi.org/10.47360/1995-4484-2025-338-347