Preview

Rheumatology Science and Practice

Advanced search

Cytokine profile in patients with systemic lupus erythematosus: Relationship with disease activity and autoantibody levels (preliminary results)

https://doi.org/10.47360/1995-4484-2025-357-364

Abstract

The aim – to study the serum level of cytokines, chemokines, growth factors in patients with systemic lupus erythematosus (SLE) in comparison with healthy volunteers to identify promising indicators for assessing disease activity and the development of organ damage.

Material and methods. The analysis included 139 patients (123 (88%) women and 16 (12%) men) with a reliable diagnosis of SLE. The median duration of the disease was 3.0 [0.3; 12.0] years, SLEDAI-2K (Systemic Lupus Erythematosus Disease Activity Index 2000) – 7 [4; 11] points, SDI (SLICC (Systemic Lupus International Collaborating Clinics) Damage Index) – 0 [0; 1] points. The study of 48 cytokines in blood serum was carried out by the method of multiplex immune analysis based on suspension microarray technology xMAP (Bio-Plex® 200 Pro Human Cytokine Screening Panel, 48-Plex; Bio-Rad Laboratories, USA) according to the manufacturer’s instructions. The control group consisted of 13 healthy donors, comparable in gender and age with the examined patients.

Results. In patients with SLE, compared with healthy donors, there was a higher level of granulocyte colony-stimulating factor (G-CSF), interferon (IFN) γ, interleukin (IL) 6, IL-8, monocyte chemotactic protein (MCP) 1, IL-1 receptor antagonist (IL-1Ra), macrophage inflammatory protein (MIP) 1α, vascular endothelial growth factor (VEGF), IL-18, interferon-inducible protein 10 (IP-10), leukemia inhibitory factor (LIF), MCP-3, macrophage colony-stimulating factor (M-CSF), MIG (monokine induced by IFN-γ) (p<0.05). In the group of patients with nephritis (n=40), there was a higher concentration of IFN-γ, IL-7, VEGF, IFN-α2, M-CSF in contrast to patients without nephritis (p<0.05). Conclusion. In the sera of patients with SLE, a higher level of proinflammatory cytokines, chemokines, colony-stimulating, stromal and angiogenic factors is noted; M-CSF probably plays an important role in the development of nephritis. Further studies are required to improve our understanding of the role of cytokine profile parameters in the pathogenesis of SLE.

About the Authors

A. S. Avdeeva
V.A. Nasonova Research Institute of Rheumatology
Russian Federation

Anastasia S. Avdeeva

115522, Moscow, Kashirskoye Highway, 34A


Competing Interests:

none



M. E. Diatroptov
V.A. Nasonova Research Institute of Rheumatology
Russian Federation

Mikhail E. Diatroptov

115522, Moscow, Kashirskoye Highway, 34A


Competing Interests:

none



Yu. N. Gorbunova
V.A. Nasonova Research Institute of Rheumatology
Russian Federation

Yulia N. Gorbunova

115522, Moscow, Kashirskoye Highway, 34A


Competing Interests:

none



T. V. Popkova
V.A. Nasonova Research Institute of Rheumatology
Russian Federation

Tatiana V. Popkova

115522, Moscow, Kashirskoye Highway, 34A


Competing Interests:

none



T. A. Panafidina
V.A. Nasonova Research Institute of Rheumatology
Russian Federation

Tatiana A. Panafidina

115522, Moscow, Kashirskoye Highway, 34A


Competing Interests:

none



E. L. Nasonov
V.A. Nasonova Research Institute of Rheumatology
Russian Federation

Evgeny L. Nasonov

115522, Moscow, Kashirskoye Highway, 34A


Competing Interests:

none



References

1. Nasonov EL, Soloviev SK, Arshinov AV. Systemic lupus erythematosus: History and modernity. Nauchno-Prakticheskaya Revmatologia = Rheumatology Science and Practice. 2022;60(4):397-412 (In Russ.). doi: 10.47360/1995-4484-2022-397-412

2. Capecchi R, Puxeddu I, Pratesi F, Migliorini P. New biomarkers in SLE: From bench to bedside. Rheumatology (Oxford). 2020;59(Suppl 5):12-18. doi: 10.1093/rheumatology/keaa484

3. Parodis I, Sjöwall C. Immune mechanisms and biomarkers in systemic lupus erythematosus. Int J Mol Sci. 2024;25(18):9965. doi: 10.3390/ijms25189965

4. Arriens C, Wren JD, Munroe ME, Mohan C. Systemic lupus erythematosus biomarkers: The challenging quest. Rheumatology (Oxford). 2017;56(Suppl 1):32-45. doi: 10.1093/rheumatology/kew407

5. Zharkova O, Celhar T, Cravens PD, Satterthwaite AB, Fairhurst AM, Davis LS. Pathways leading to an immunological disease: systemic lupus erythematosus. Rheumatology (Oxford). 2017;56(Suppl 1):55-66. doi: 10.1093/rheumatology/kew427

6. Yap DI, Lai KN. The role of cytokines in the pathogenesis of systemic lupus erythematosis – From bench to bedside. Nephrology. 2013;(18):243-255. doi: 10.1111/nep.12047

7. Yu H, Nagafuchi Y, Fujio K. Clinical and immunological biomarkers for systemic lupus erythematosus. Biomolecules. 2021;11(7):928. doi: 10.3390/biom11070928

8. Alduraibi FK, Tsokos G. Lupus nephritis biomarkers: A critical review. Int J Mol Sci. 2024;25(2):805. doi: 10.3390/ijms25020805

9. Petri M, Stohl W, Chatham W, McCune W, Chevrier M, Ryel J, et al. Association of plasma, B lymphocyte stimulator levels and disease activity in systemic lupus erythematosus. Arthritis Rheum. 2008;58:2453-2459. doi: 10.1002/art.23678

10. Chun HY, Chung JW, Kim HA, Yun J, Jeon J, Ye Y, et al. Cytokine IL-6 and IL-10 as biomarkers in systemic lupus erythematosus. J Clin Immunol. 2007;(27):461-466. doi: 10.1007/s10875-007-9104-0

11. Zhang S, Xu R, Kang L. Biomarkers for systemic lupus erythematosus: A scoping review. Immun Inflamm Dis. 2024:e70022. doi: 10.1002/iid3.70022

12. Lu R, Munroe ME, Guthridge JM, Bean KM, Fife DA, Chen H, et al. Dysregulation of innate and adaptive serum mediators precedes systemic lupus erythematosus classification and improves prognostic accuracy of autoantibodies. J Autoimmun. 2016;(74):182-193. doi: 10.1016/j.jaut.2016.06.001

13. Petri M, Orbai AM, Alarcón GS, Gordon C, Merrill JT, Fortin PR, et al. Derivation and validation of the Systemic Lupus International Collaborating Clinics Classification Criteria for systemic lupus erythematosus. Arthritis Rheum. 2012;64(8):2677-2686. doi: 10.1002/art.34473

14. Miyakis S, Lockshin MD, Atsumi T, Branch DW, Brey RL, Cervera R, et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J Thromb Haemost. 2006;4(2):295-306. doi: 10.1111/j.1538-7836.2006.01753.x

15. Nasonov EL (ed.). Rheumatology. Russian clinical recommendations. Moscow:GEOTAR-Media;2017 (In Russ.).

16. Gladman DD, Ibanez D, Urowitz MB. Systemic lupus erythematosus disease activity index 2000. J Rheumatol. 2002;29:288-291.

17. Gladman D, Ginzler E, Goldsmith C, Fortin P, Liang M, Urowitz M, et al. The development and initial validation of the Systemic Lupus International Collaborating Clinics/American College of Rheumatology damage index for systemic lupus erythematosus. Arthritis Rheum. 1996;39(3):363-369. doi: 10.1002/art.1780390303

18. Pacheco Y, Barahona-Correa J, Monsalve DM, Acosta-Ampudia Y, Rojas M, Rodríguez Y, et al. Cytokine and autoantibody clusters interaction in systemic lupus erythematosus. J Transl Med. 2017;15(1):239. doi: 10.1186/s12967-017-1345-y

19. Reynolds JA, McCarthy EM, Haque S, Ngamjanyaporn P, Sergeant JC, Lee E, et al. Cytokine profiling in active and quiescent SLE reveals distinct patient subpopulations. Arthritis Res Ther. 2018;20(1):173. doi: 10.1186/s13075-018-1666-0

20. Lindblom J, Beretta L, Borghi MO and PRECISESADS Clinical Consortium, Alarco´n-Riquelme ME, Parodis I. Serum profiling identifies CCL8, CXCL13, and IL-1RA as markers of active disease in patients with systemic lupus erythematosus. Front Immunol. 2023;30:14:1257085. doi: 10.3389/fimmu.2023.1257085

21. Nasonov EL, Avdeeva AS. Interleukin 18 in immune-mediated rheumatic diseases and COVID-19. Nauchno-Prakticheskaya Revmatologia = Rheumatology Science and Practice. 2022;60(2):195-204 (In Russ.). doi: 10.47360/1995-4484-2022-195-204

22. Mende R, Vincent FB, Kandane-Rathnayake R, Koelmeyer R, Lin E, Chang J, et al. Analysis of serum interleukin (IL)-1beta and IL-18 in systemic lupus erythematosus. Front Immunol. 2018;9:1250. doi: 10.3389/fmmu.2018.01250

23. Umare V, Pradhan V, Nath S, Rajadhyaksha A, Ghosh K, Nadkarni AH. Impact of functional IL-18 polymorphisms on genetic predisposition and diverse clinical manifestations of the disease in Indian SLE patients. Lupus. 2019;28:545-554. doi: 10.1177/0961203319834677

24. Jafari-Nakhjavani MR, Abedi-Azar S, Nejati B. Correlation of plasma interleukin-18 concentration and severity of renal involvement and disease activity in systemic lupus erythematosus. J Nephropathol. 2016;5:28-33. doi: 10.15171/jnp.2016.05

25. Wu CY, Yang HY, Yao TC, Liu SH, Huang JL. Serum IL-18 as biomarker in predicting long-term renal outcome among pediatric-onset systemic lupus erythematosus patients. Medicine. (2016);95:e5037. doi:10.1097/MD.0000000000005037

26. Hirooka Y, Nozaki Y. Interleukin-18 in inflammatory kidney disease. Front Med. 2021;8:639103. doi: 10.3389/fmed.2021.639103

27. Xiang M, Feng Y, Wang Y. Wang J, Zhang Z, Liang J. Correlation between circulating interleukin‑18 level and systemic lupus erythematosus: A meta‑analysis. Sci Rep. 2021;11:4707. doi: 10.1038/s41598-021-84170-4

28. Mende R, Vincent FB, Kandane-Rathnayake R, Koelmeyer R, Lin E, Chang J, et al. Analysis of serum interleukin (IL)-1β and IL-18 in systemic lupus erythematosus. Front Immunol. 2018;9:1250. doi: 10.3389/fimu.2018.01250

29. Ruchakorn N, Ngamjanyaporn P, Suangtamai T, Kafaksom T, Polpanumas C, Petpisit V. Performance of cytokine models in predicting SLE activity. Arthrit Res Ther. 2019;21:287. doi: 10.1186/s13075-019-2029-1

30. Nasonov EL, Avdeeva AS. Immunoinflammatory rheumatic diseases associated with type I interferon: New evidence. Nauchno-Prakticheskaya Revmatologia = Rheumatology Science and Practice. 2019;57(4):452-461 (In Russ.). doi: 10.14412/1995-4484-2019-452-461

31. Bauer J, Baechler E, Petri M, Batliwalla F, Crawford D, Ortmann W, et al. Elevated serum levels of interferon-regulated chemokines are biomarkers for active human systemic lupus erythematosus. PLoS Med. 2006;3(12):e491. doi: 10.1186/s13075-019-2029-1

32. Kirou K, Lee C, George S, Louca K, Peterson M, Crow M. Activation of the interferon-alpha pathway identifies a subgroup of systemic lupus erythematosus patients with distinct serologic features and active disease. Arthritis Rheum. 2005;52:1491-1503. doi: 10.1002/art.21031

33. Puapatanakul P, Chansritrakul S, Susantitaphong P, Ueaphongsukkit T, Eiam-Ong S, Praditpornsilpa K, et al. Interferon-inducible protein 10 and disease activity in systemic lupus erythematosus and lupus nephritis: A systematic review and meta-analysis. Int J Mol Sci. 2019;20(19):4954. doi: 10.3390/ijms20194954

34. Mirioğlu Ş, Çinar S, Uludağ Ö, Gürel E, Varelci S, Özlük Y. Serum and urine interferon-inducible protein 10, galectin-9, and SIGLEC-1 as biomarkers of disease activity in systemic lupus erythematosus. Turk J Med Sci. 2024;54(2):391-400. doi: 10.55730/1300-0144.5804

35. Liu AC, Yang Y, Li MT, Jia Y, Chen S, Ye S, et al. Macrophage activation syndrome in systemic lupus erythematosus: A multicenter, case-control study in China. Clin Rheumatol. 2018;37:93-100. doi: 10.1007/s10067-017-3625-6

36. Ayoub S, Hickey MJ, Morand EF. Mechanisms of disease: Macrophage migration inhibitory factor in SLE, RA and atherosclerosis. Nat Clin Pract Rheumatol. 2008;4:98-105. doi: 10.1038/ncprheum0701

37. Orme J, Mohan C. Macrophage subpopulations in systemic lupus erythematosus. Discov Med. 2012;13:151-158.

38. Burbano C, Villar-Vesga J, Vasquez G, Muñoz-Vahos C, Rojas M, Castaño D. Proinflammatory differentiation of macrophages through microparticles that form immune complexes leads to Tand B-cell activation in systemic autoimmune diseases. Front Immunol. 2019;10:2058. doi: 10.3389/fimmu.2019.02058

39. Horuluoglu B, Bayik D, Kayraklioglu N, Goguet E, Kaplan MJ, Klinman DM. PAM3 supports the generation of M2-like macrophages from lupus patient monocytes and improves disease outcome in murine lupus. J Autoimmun. 2019;99:24-32. doi: 10.1016/j.jaut.2019.01.004

40. Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili S, Mardani F, et al. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 2018;233:6425-6440. doi: 10.1002/jcp.26429

41. Jaguin M, Houlbert N, Fardel O, Lecureur V. Polarization profiles of human M-CSF-generated macrophages and comparison of M1-markers in classically activated macrophages from GMCSF and M-CSF origin. Cell Immunol. 2013;281:51-61. doi: 10.1016/j.cellimm.2013.01.010

42. Li F, Yang Y, Zhu X, Huang L, Xu J. Macrophage polarization modulates development of systemic lupus erythematosus. Cell Physiol Biochem. 2015;37:1279-1288. doi: 10.1159/000430251

43. Wen S, He F, Zhu X, Yuan S, Liu H, Sun L. IFN-gamma, CXCL16, uPAR: Potential biomarkers for systemic lupus erythematosus. Clin Exp Rheumatol. 2018;36:36-43.

44. Wang R, Zhao H, Liu Y, Li Y, Cai J. Macrophage colony-stimulating factor could evaluate both disease activity and renal involvement in systemic lupus erythematosus. Ann Palliat Med. 2021;10(2):2098-2107. doi: 10.21037/apm-20-2607

45. Ragsdale ME, Hall Zimmerman LG. Use of colony-stimulating factors in patients with systemic lupus erythematosus. J Pharm Pract. 2023;36(3):719-724. doi: 10.1177/08971900211053268


Review

For citations:


Avdeeva A.S., Diatroptov M.E., Gorbunova Yu.N., Popkova T.V., Panafidina T.A., Nasonov E.L. Cytokine profile in patients with systemic lupus erythematosus: Relationship with disease activity and autoantibody levels (preliminary results). Rheumatology Science and Practice. 2025;63(4):357-364. (In Russ.) https://doi.org/10.47360/1995-4484-2025-357-364

Views: 24


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1995-4484 (Print)
ISSN 1995-4492 (Online)