Preview

Научно-практическая ревматология

Расширенный поиск

МЕХАНИЗМЫ ЭМБРИОГЕНЕЗА ПРИ ОСТЕОАРТРОЗЕ:РОЛЬ ДИФФЕРЕНЦИРОВКИ ХОНДРОЦИТОВВ РЕЗОРБЦИИ СУСТАВНОГО ХРЯЩА

https://doi.org/10.14412/1995-4484-2010-446

Полный текст:

Об авторе

Elena Vasilyevna Chetina



Список литературы

1. <div><p>Алексеева Л.И., Зайцева Е.М. Субхондральная кость при остеоартрозе: новые возможности терапии. РМЖ 2004;12(20):1133-6.</p><p>Алексеева Л.И., Зайцева Е.М. Остеоартроз и остеопороз. Медицина 2006;16:2-7.</p><p>Миронов С.П., Омельяненко Н.П.,Семенова Л.А. и др. Структурные изменения суставного хряща при остеоартрозе. Биомед технол 2004;23:91-105.</p><p>Миронов С.П., Омельяненко Н.П.,Семенова Л.А., и др. Остеоартроз. Структурная характеристика и клинические проявления. Актуальные проблемы теоретической и клинической остеоартрологии. М., 2005;301-5.</p><p>Миронов С.П., Омельяненко Н.П.,Орлецкий А.К. и др. Остеоартроз: современное состояние проблемы (аналитический обзор). Вестн травматол ортопед 2001;2:96-9.</p><p>Насонов Е.Л. Остеопороз и остеоартроз: взаимодействующие или взаимоисключающие болезни? Consilium medicum 2000;2:248-50.</p><p>Насонова В.А. Проблемы остеоартроза в начале ХХI века. Consilium medicum 2000;2:244-8.</p><p>Цветкова Е.С., Алексеева Л.А. Возможности и перспективы фармакотерапии остеоартроза. Избранные лекции по клинической ревматологии. Под ред.В.А. Насоновой и Н.В. Бунчука. М., 2001;197-202.</p><p>Коршунов Н.И., Марасаев В.В., Баранова Э.Я. и др. Роль воспаления и оценка хондропротективного действия Афлутопа у больных остеоартрозом по данным магнитно-резонансной томографии коленного сустава. Ревматология 2003;23:1320-3.</p><p>Malemud C.J. Cytokines as therapeutic targets for osteoarthritis. BioDrugs 2004;18:23-5.</p><p>Павлова В.Н., Копьева Т.Н., Слуцкий Л.И. и др. Хрящ. М., 1988;320 с</p><p>Ким Зон Чхол, Быков В.А., Николаева С.С. Состояние воды в гиалиновом хряще и его основных компонентах. Биомедицинские технологии (Москва) 2000;14:85-90.</p><p>Николаева С.С., Ким Зон Чхол, Быков В.А. и др. Влагообменные процессы в гиалиновом хряще и его основных компонентах в норме и остеоартрозе. Вопр мед химии 2000;46:581-90.</p><p>Николаева С.С., Ким Зон Чхол, Быков В.А. и др. Биохимические и влагообменные характеристики поверхностного слоя суставного хряща человека. Бюл экспер биол и мед 2002;134:390-2.</p><p>Brocklehurst R., Bayliss M., Maurodas A. et al. The composition of normal and osteoarthritic articular cartilage from human knee joints. Bone Joint Surg Am 1984;66:95-106.</p><p>Muir I.H.M. Biochemistry. In: Freeman M.A.R., ed. Adult articular cartilage, 2nd ed. Tunbridge Wells, UK: Pitman Medical, 1979;145-214.</p><p>Thomas J.T., Grant M.E. Cartilage proteoglycan aggregate and fibronectin can modulate the expression of type X collagen by embryonic chick chondrocytes cultured in collagen gels. Biosci Rep 1988;8:163-71.</p><p>Слюсаренко Н.А., Капустин Л.Ф., Торба А.И. Функциональная морфология коленного сустава у собак в норме и в условиях действия глюкозамина. Биомед технол 1998;9:44-8.</p><p>Kempson G.E. Age-related changes in the tensile properties of human articular cartilage: a comparative study between the femoral head of the hip joint and the talus of the ankle joint. Biochim Biophys Acta 1991;1075:223-30.</p><p>Poole A.R., Rosenberg L.C., Reiner A. et al. Contents and distribution of the proteoglycans decorin and biglycan in normal and osteoarthritic human articular cartilage. J Orthop Res 1996;14:681-9.</p><p>Poole A.R. Cartilage in health and disease. In: Arthritis and Allied Conditions: A Textbook of Rheumatology, ed 15. Ed. by W. Koopman. Philadelphia, Lippincott: Williams and Wilkins, 2005;223-69.</p><p>Mitrovic D., Quintero M., Stankovic A. et al. Cell density of adult human femoral condylar articular cartilage: joints with normal and fibrillated surfaces. Lab Invest 1983;49:309-16.</p><p>Evans C. An inverse relationship between mammalian lifespan and cartilage cellularity. Exp Gerontol 1983;18:137-8.</p><p>Жилкин Б.А., Докторов А.А., Денисов-Никольский Ю.И. Минеральный компонент гиалинового хряща. Биомедицинские технологии. М., 2002;140-6.</p><p>Poole A.R., Pidoux I., Reiner A. et al. An immunoelectron microscope study of the organization of proteoglycan monomer, link protein and collagen in the matrix of articular cartilage. J Cell Biol 1982;93:921-37.</p><p>Buckwalter J.A., Mankin H.J. Articular cartilage repair and transplantation. Arthr Rheum 1998;41:1331-42.</p><p>Hardingham T.E., Bayliss M.T., Rayan V. et al. Effects of growth factors and cytokines on proteoglycan turnover in articular cartilage. Br J Rheumatol 1992;31(Suppl. 1):6.</p><p>Aigner T., Zien A., Hanisch D. et al. Gene expression in chondrocytes assessed with use of microarrays. J Bone Joint Surg Am 2003;85A(Suppl. 2):117-23.</p><p>Tetlow L.C., Adlam D.J., Woolley D.E. Matrix metalloproteinase and proinflammatory cytokine production by chondrocytes of human osteoarthritic cartilage: associations with degenerative changes. Arthr Rheum 2001;44:585-94.</p><p>Van den Berg W.B. Growth factors in experimental osteoarthritis: Transforming growth factor beta pathogenic? J Rheumatol 1995;22(Suppl. 43):143-5.</p><p>Terkeltaub R., Lotz M., Johnson K. et al. Parathyroid hormone-related protein is abundant in osteoarthritic cartilage, and the parathyroid hormone-related protein 1-173 isoform is selectively induced by transforming growth factor beta in articular chondrocytes and suppresses generation of extracellular inorganic pyrophosphate. Arthr Rheum 1998;41:2152-64.</p><p>Zhou H.W., Lou S.Q., Zhang K. Recovery of function in osteoarthritic chondrocytes induced by p16INK4a-specific siRNA in vitro. Rheumatology (Oxford) 2004;43:555-68.</p><p>Aigner T., Berting W., Stoss H. et al. Independent expression of fibril-forming collagens I, II and III in chondrocytes in human osteoarthritic cartilage. J Clin Invest 1993;91:829-37.</p><p>Henson F.M., Davies M.E., Skepper J.N. et al. Localization of alkaline phosphatase in equine growth cartilage. J Anat 1995;187(Pt 1):151-9.</p><p>Aigner T., McKenna L. Molecular pathology and pathobiology of osteoarthritic cartilage. Cell Mol Life Sci 2002;59:5-18.</p><p>Poole A.R. What type of cartilage repair are we attempting to attain? J Bone Joint Surg 2003;85A(Suppl. 2):40-4.</p><p>Pullig O., Weseloh G., Ronneberger D. et al. Chondrocyte differentiation in human osteoarthritis: expression of osteocalcin in normal and osteoarthritic cartilage and bone. Calcif Tissue Int 2000;67:230-40.</p><p>White A.H., Watson R.E., Newman B. et al. Annexin VIII is differentially expressed by chondrocytes in the mammalian growth plate during endochondral ossification and in osteoarthritic cartilage. J Bone Miner Res 2002;17:1851-8.</p><p>Martin I., Jakob M., Schafer D. et al. Quantitative analysis of gene expression in human articular cartilage from normal and osteoarthritic joints. Osteoarthritis Cartilage 2000;9:112-8.</p><p>Kempson G.E., Muir H., Pollard C. et al. The tensile properties of the cartilage of human femoral condyles related to the content of collagen and glycosamineoglycans. Biochim Biophys Acta 1973;297:465-72.</p><p>Anderson H.C., Hodges P.T., Aguilera X.M. et al. Bone morphogenetic protein (BMP) localization in developing human and rat growth plate, metaphysis, epiphysis, and articular cartilage. J Histochem Cytochem 2000;48:1493-502.</p><p>Yamane S., Cheng E., You Z. et al. Gene expression profiling of mouse articular and growth plate cartilage. Tissue Engineering 2007;13:2163-73.</p><p>Pfander D., Swoboda B., Kirsch T. Expression of early and late differentiation markers (proliferating cell nuclear antigen, syndecan-3, annexin VI, and alkaline phosphatase) by human osteoarthritic chondrocytes. Am J Pathol 2001;159:1777-83.</p><p>Wu W., Billinghurst R.C., Pidoux I. et al. Sites of collagenase cleavage and denaturation of type II collagen in articular cartilage in ageing and osteoarthritis and their relationship to the distribution of the collagenases MMP-1 and MMP-13. Arthr Rheum 2002;46:2087-94.</p><p>Kinkel M.D., Yagi R., McBurney D. et al. Age-related expression patterns of Bag-1 and Bcl-2 in growth plate and articular chondrocytes. Anat Rec A Discov Mol Cell Evol Biol 2004;279:720-8.</p><p>Wezeman F.H., Bollnow M.R. Immunohistochemical localization of fibroblast growth factor-2 in normal and brachymorphic mouse tibial growth plate and articular cartilage. Histochem J 1997;29:505-14.</p><p>Quintavalla J., Kumar C., Daouti S. et al. Chondrocyte cluster formation in agarose cultures as a functional assay to identify genes expressed in osteoarthritis. J Cell Physiol 2005;204:560-6.</p><p>Maroudas A., Bayliss M.T., Venn M.F. Further studies on the composition of human femoral head cartilage. Ann Rheum Dis 1980;39:514-23.</p><p>Semevolos S.A., Strassheim M.L., Haupt J.L. et al. Expression patterns of hedgehog signaling peptides in naturally acquired equine osteochondrosis. J Orthop Res 2005;23:1152-9.</p><p>Aigner T., Hemmel M., Neureiter D. et al. Apoptotic cell death is not a widespread phenomenon in normal aging and osteoarthritis human articular knee cartilage: a study of proliferation, programmed cell death (apoptosis), and viability of chondrocytes in normal and osteoarthritic human knee cartilage. Art Rheum 2001;44:1304-12.</p><p>Kuhn K., D'Lima D.D., Hashimoto S., Lotz M. Cell death in cartilage. Osteoarthritis Cartilage 2004;12:1-16.</p><p>Kember N.F. Cell division in endochondral ossification: a study of cell proliferation in rat bones by the method of tritiated thymidine autoradiography. J Bone Joint Surg Br 1960;42:824-39.</p><p>Buckwalter J.A., Mower D., Ungar R. et al. Morphometric analysis of chondrocyte hypertrophy. J Bone Joint Surg Am 1986;68:243-55.</p><p>Hunziker E.B., Schenk R.K., Cruz-Orive L.M. Quantitation of chondrocyte performance in growth plate cartilage during longitudinal bone growth. J Bone Joint Surg Am 1987;69:162-73.</p><p>Mwale F., Tchetina E., Wu W. et al. The assembly and remodeling of the extracellular matrix in the growth plate in relationship to mineral deposition and cellular hypertrophy: An in situ study of collagens II and IV and proteoglycan. J Bone Miner Res 2002;17:275-83.</p><p>Alini M., Matsui Y., Dodge G.R. et al. The extracellular matrix of cartilageon the growth plate before and during calcification: Changes in composition and degradation of type II collagen. Calcif Tissue Int 1992;50:327-35.</p><p>Mwale F., Billinghurst C., Wu W. et al. The assembly and degradation of types II and IX collagens associated with expression of the hypertrophic phenotype. Dev Dyn 2000;218:648-62.</p><p>Glimcher M.J. The nature of the mineral component of bone and the mechanism of calcification. In: Coe F.L., Favus M.J. (eds). Disorders of Bone Mineral Metabolism. New York: Raven Press, Ltd., 1992;265-86.</p><p>Lee E.R., Smith C.E., Poole A.R. Ultrastructural localization of the C-propeptide released from type II procollagen in fetal bovine growth plate cartilage. J Histochem Cytochem 1996;44:433-43.</p><p>Schenk R.K., Wiener J., Spiro D. Fine structural aspects of vascular invasion of the tibial epiphyseal plate of growing rats. Acta Anat 1968;69:1-17.</p><p>Sandberg M., Vuorio E. Localization of types I, II and III collagen mRNAs in developing human skeletal tissue by in situ hybridization. J Cell Biol 1987;104:1077-84.</p><p>Tchetina E.V., Mwale F., Poole A.R. Distinct phases of coordinated early and late gene expression in growth plate chondrocytes in relationship to cell proliferation, matrix assembly, remodelling, and cell differentiation. J Bone Miner Res 2003;18:844-51.</p><p>Lee E.R., Matsui Y., Poole A.R. Immunochemical and immunocytochemical studies of the c-propeptide of type II procollagen in chondrocytes of the growth plate. J Histochem Cytochem 1990;38:659-73.</p><p>Alvarez J., Balbin M., Santos F. et al. Different bone growth rates are associated with changes in the expression pattern of types II and X collagens and collagenase 3 in proximal growth plates of the rat tibia. J Bone Miner Res 2000;15:82-94.</p><p>Stocum D.L., Davis R.M., Leger M. et al. Development of the tibiotarsus in the chick embryo: biosynthetic activities of histologically distinct regions. J Embryol Exp Morphol 1979;54:155-70.</p><p>Howell D.S., Dean D.D., Muniz O.E. et al. Hypertrophic cell zone growth cartilage contains heparin-binding growth factors. Trans Orthop Res Soc 1989;14:525-31.</p><p>Urist M.R., Nakagawa M., Nakata N. et al. Experimental myositis ossifications. Cartilage and bone formation in muscle in response to a diffusible bone matrix-derived morphogen. Arch Pathol Lab Med 1978;102:312-6.</p><p>Damron T.A., Mathur S., Horton J.A. et al. Temporal changes in PTHrP, Bcl-2, Bax, caspase, TGF-beta, and FGF-2 expression following growth plate irradiation with or without radioprotectant. J Histochem Cytochem 2004;52:157-67.</p><p>Nilsson O., Parker E.A., Hegde A. et al. Gradients in bone morphogenetic proteinrelated gene expression across the growth plate. J Endocrinol 2007;193:75-84.</p><p>Verdier M.-P., Seite S., Guntzer K. et al. Immunohistochemical analysis of transforming growth factor beta isoforms and their receptors in human cartilage from normal and osteoarthritic femoral heads. Rheumatol Int 2005;25:118-24.</p><p>Roach H.I., Mehta G., Oreffo R.O. et al. Temporal analysis of rat growth plates: cessation of growth with age despite presence of a physis. J Histochem Cytochem 2003;51:373-83.</p><p>Neuhold L.A., Killar L., Zhao W. et al. Postnatal expression in hyaline cartilage of constitutively active human collagenase-3 (MMP-13) induces osteoarthritis in mice. J Clin Invest 2001;107:35-44.</p><p>Armstrong C.G., Mow V.C. Variations in the intrinsic mechanical properties of human articular cartilage with age, degeneration and water content. J Bone Joint Surg Am 1982;64:88-94.</p><p>Horner A., Kemp P., Summers C. et al. Expression and distribution of transforming growth factor-? isoforms and their signalling receptors in growing human bone. Bone 1998;23:95-102.</p><p>Wang W., Kirsch T. Annexin V/beta5 integrin interactions regulate apoptosis of growth plate chondrocytes. J Biol Chem 2006;281:30848-56.</p><p>Ma Q., Li X., Vale-Cruz D. et al. Activating transcription factor 2 controls Bcl- 2 promoter activity in growth plate chondrocytes. J Cell Biochem 2007;101:477-87.</p><p>Akiyama H., Chaboissier M.C., Martin J.F. et al. The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev 2002;16:2813-28.</p><p>Vu T.H., Shipley J.M., Bergers G. et al. MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell 1998;93:411-22.</p><p>Borden P., Solymar D., Sucharczuk A. et al. Cytokine control of interstitial collagenase and collagenase-3 gene expression in human chondrocytes. J Biol Chem 1996;271:23577-81.</p><p>Haeusler G., Walter I., Heimreich M. et al. Localization of matrix metalloproteinases (MMPs), their tissue inhibitors, and vascular endothelial growth factor (VEGF) in growth plates of children and adolescents indicates a role for MMPs in human postnatal growth and skeleton maturation. Calcif Tissue Int 2005;7:326-35.</p><p>Li C., Chen L., Iwata T. et al. A Lys644Glu substitution in fibroblast growth factor receptor 3 (FGFR3) causes dwarfism in mice by activation of STATs and ink4 cell cycle inhibitors. Hum Mol Genet 1999;8:35-44.</p><p>Wang Y., Middleton F., Horton J.A. et al. Microarray analysis of proliferative and hypertrophic growth plate zones identifies differentiation markers and signal pathways. Bone 2004;35:1273-93.</p><p>Fukunaga T., Yamashiro T., Oya S. et al. Connective tissue growth factor mRNA expression pattern in cartilages is associated with their type I collagen expression. Bone 2003;33:911-8.</p><p>Kindblom J.M., Nilsson O., Hurme T. et al. Expression and localization of Indian hedgehog (Ihh) and parathyroid hormone related protein (PTHrP) in the human growth plate during pubertal development. J Endocrinol 2002;174:R1-R6.</p><p>Yamashita F., Sakakida K., Kusuzaki K. et al. Immunohistochemical localization of interleukin 1 in human growth cartilage. Nippon Seikeigeka Gakkai Zasshi 1989;63:562-8.</p><p>Ducy P., Zhang R., Geoffroy V. et al. Osf2/Cbfa1: A transcriptional activator of osteoblast differentiation. Cell 1997;80:371-8.</p><p>Takeda S., Bonnamy J.P., Owen M.J. et al. Continuous expression of Cbfa1 in nonhypertrophic chondrocytes uncovers its ability to induce hypertrophic chondrocyte differentiation and partially rescues Cbfa1-deficient mice. Genes Dev 2001;15:467-81.</p><p>Jimenez M.J.G., Balbin M., Lopez J.M. et al. Collagenase-3 is a target of Cbfa1, a transcription factor of the runt gene family involved in bone formation. Mol Cell Biol 1999;19:4431-42.</p><p>Wang W., Xu J., Du B., Kirsch T. Role of the progressive ankylosis gene (ank) in cartilage mineralization. Mol Cell Biol 2005;25;312-23.</p><p>Wang J., Elefant D., Veys E.M. et al. Insulin-like growth factor-1 rides the activity of interleukin-1 receptor II over and controls the homeostasis of the extracellular matrix of cartilage. Arthr Rheum 2003;48:1281-91.</p><p>Wang W., Xu J., Kirsch T. Annexin V and terminal differentiation of growth plate chondrocytes. Exp Cell Res 2005;305:156-65.</p><p>Shapiro I.M., Adams C.S., Freeman T. et al. Fate of the hypertrophic chondrocyte: microenvironmental perspectives on apoptosis and survival in the epiphyseal growth plate. Birth Defects Res C Embryo Today 2005;75:330-9.</p><p>Cheung W.H., Lee K.M., Fung K.P. et al. TGF-beta1 is the factor secreted by proliferative chondrocytes to inhibit neo-angiogenesis. J Cell Biochem 2001 (Suppl. 36):79-88.</p><p>Dong Y., Drissi H., Chen M. et al. Wntmediated regulation of chondrocyte maturation: modulation by TGF-beta. J Cell Biochem 2005;95:1057-68.</p><p>Kato Y., Iwamoto M. Fibroblast growth factor is an inhibitor of terminal differentiation. J Biol Chem 1990;110:1417-26.</p><p>Li T.F., Dong Y., Ionescu A.M. et al. Parathyroid hormone-related peptide (PTHrP) inhibits Runx2 expression through the PKA signaling pathway. Exp Cell Res 2004;299:128-36.</p><p>Yoshida E., Noshiro M., Kawamoto T. et al. Direct inhibition of Indian hedgehog expression by parathyroid hormone (PTH)/PTH-related peptide and up-regulation by retinoic acid in growth plate chondrocyte cultures. Exp Cell Res 2001;265:64-72.</p><p>Pacifici M., Shimo T., Gentili C. et al. Syndecan-3: a cell-surface heparan sulfate proteoglycan important for chondrocyte proliferation and function during limb skeletogenesis. J Bone Miner Metab 2005;23:191-9.</p><p>Yang X., Chen L., Xu X. et al. TGF2/Smad signals repress chondrocyte hypertrophic differentiation and are required for maintaining articular cartilage. J Cell Biol 2001;153:35-46.</p><p>Serra R., Karaplis A., Sohn P. Parathyroid hormone-related peptide (PTHrP)-dependent and -independent effects of transforming growth factor beta (TGF-beta) on endochondral bone formation. J Cell Biol 1999;145:783-94.</p><p>Bohme K., Winterhalter K.H.,Bruckner P. Terminal differentiation of chondrocytes is a spontaneous process and is arrested by transforming growth factor-beta- 2 and basic fibroblast growth factor in synergy. Exp Cell Res 1995;216:191-8.</p><p>Szuts V., Mollers U., Bittner K. et al. Terminal differentiation of chondrocytes is arrested at distinct stages identified by their expression repertoire of marker genes. Matrix Biol 1998;17:435-48.</p><p>Zhang D., Schwarz E.M., Rosier R.N. et al. ALK2 functions as a BMP type I receptor and induces Indian hedgehog in chondrocytes during skeletal development. J Bone Miner Res 2003;18:1593-604.</p><p>Mailhot G., Yang M., Mason-Savas A. et al. BMP-5 expression increases during chondrocyte differentiation in vivo and in vitro and promotes proliferation and cartilage matrix synthesis in primary chondrocyte cultures. J Cell Physiol 2008;214:56-64.</p><p>Takahashi T., Morris E.A., Trippel S.B. Bone morphogenetic protein-2 and 9 regulate the interaction of insulin-like growth factor-I with growth plate chondrocytes. Int J Mol Med 2007;20:53-7.</p><p>Loesser R.F., Shanker G., Carlson C.S. et al. Reduction in the chondrocyte response to insulin-like growth factor 1 in ageing and osteoarthritis. Studies in a non-human primate mode of naturally occurring disease. Arthr Rheum 2000;43:2110-20.</p><p>Trippel S.B. Growth factor inhibition. Potential role in the etiopathogenesis of osteoarthritis. Clin Orthop Rel Res 2004;427:S47-S52.</p><p>Hui W., Rowan A.D., Cawston T.E. Transforming growth factor 1 blocks the release of collagen fragments from bovine nasal cartilage stimulated by oncostatin M in combination with interleukin-1. Cytokine 2000;12:765-9.</p><p>Bi W., Huang W., Whitworth D.J. et al. Haploinsufficiency of Sox9 results in defective cartilage primarodia and premature skeletal mineralization. Proc Natl Acad Sci USA 2001;98:6698-703.</p><p>de Crombrugghe B., Lefebvre V., Behringer R.R. et al. Transcriptional mechanisms of chondrocyte differentiation. Matrix Biol 2000;19:389-94.</p><p>Chen Q., Johnson D.M., Haudenschild D.R. et al. Progression and recapitulation of the chondrocyte differentiation program: cartilage matrix protein is a marker for cartilage maturation. Dev Biol 1995;172:293-306.</p><p>Nagai H., Aoki M. Inhibition of growth plate angiogenesis and endochondral ossification with diminished expression of MMP- 13 in hypertrophic chondrocytes in FGF-2- treated rats. J Bone Miner Metab 2002;20:142-7.</p><p>Wu W., Tchetina E., Mwale F. et al. Proteolysis involving MMP-13 (collagenase- 3) and the expression of the chondrocyte hypertrophic phenotype. J Bone Miner Res 2002;17:639-51.</p><p>Четина Е.В., Пул А.Р., ДиБатиста Д. Роль простагландина Е2 в ингибировании разрушения коллагена суставного хряща больных остеоартрозом. Науч- практич ревматол 2009;3:18-23.</p><p>Tchetina E.V., Di Battista J.A., Zukor D.J. et al. Prostaglandin PGE2 at very low concentrations suppresses collagen cleavage in cultured human osteoarthritic articular cartilage: this involves a decrease in expression of proinflammatory genes, collagenases and COL10A1, a gene linked to chondrocyte hypertrophy. Arthr Res Ther 2007;9:R75.</p><p>Brochhausen C., Neuland P.,Kirkpatrick C.J. et al. Cyclooxygenases and prostaglandin E2 receptors in growth plate chondrocytes in vitro and in situprostaglandin E2 dependent proliferation of growth plate chondrocytes. Arthr Res Ther 2006;8:R78.</p><p>Martin J.A., Buckwalter J.A. Telomere erosion and senescence in human articular cartlage chondrocytes. J Gerontol A Biol Sci Med Sci 2001;56:172-9.</p><p>Verzijl N., DeGroot J., Bank R.A. et al. Age-related accumulation of the advanced glycation end product pentosidine in human articular catilage aggrecan: the use of pentosidine levels as a quantitative measure of protein turnover. Martix Biol 2001;20:409-17.</p><p>Verzijl N., DeGroot J., Ben Z.C. et al. Crosslinking by advanced glycation end products increases the stiffness of the collagen network in human articular cartilage: a possible mechanism through which age is a risk factor for osteoarthritis. Arthr Rheum 2002;46:114-23.</p><p>DeGroot J., Verzijl N., Wentig van Wijk M.J.G. et al. Age-related decrease in susceptibility of human articular cartilage to matrix metalloproteinase-mediated degradation. The role of advanced glycation end products. Arthr Rheum 2002;44:2562-71.</p><p>Roughley P.J., White R.J., Poole A.R. Identification of a hyaluronic acid-binding protein that interferes with the preparation of high buoyant density proteoglycan aggregates from adult human articular cartilage. Biochem J 1985;231:129-38.</p><p>Franzen A., Inerot S., Hejderup S.-O. et al. Variations in the composition of bovine hip articular cartilage with distance from the articular surface. Biochem J 1981;195:535-43.</p><p>Maroudas A., Bayliss M.T., Uchitel-Kaushansky N. et al. Aggrecan turnover in human articular cartilage: use of aspartic acid racemization as a marker of molecular age. Arch Biochem Biophys 1998;350:61-71.</p><p>Клионер М.Л. Старческие и дегенеративные изменения в суставах и позвоночнике. М., 1962;151 с.</p><p>Омельяненко Н.П., Семенова Л.А. Возрастная динамика пограничных слоев суставного хряща человека. Морфология 2004;4:96.</p><p>Dodge G.R., Poole A.R. Immunohistochemical detection and immunochemical analysis of type II collagen degradation in human normal rheumatoid and osteoarthritic articular cartilage and in explants of bovine articular cartilage with interleukin 1. J Clin Invest 1989;83:647-61.</p><p>Hollander A.P., Pidoux I., Reiner A. et al. Damage to type II collagen in ageing and osteoarthritis: starts at the articular surface, originate around condrocytes and extends into the cartilage with progressive degeneration. J Clin Invest 1995;96:2859-69</p><p>Venn M.F. Variation of chemical composition with age in human femoral head cartilage. Ann Rheum Dis 1978;37:168-4.</p><p>Guilak F., Ratcliffe A., Lane N. et al. Mechanical and biochemical changes in the superficial zone of articular cartilage in canine experimental osteoarthritis. J Orthop Res 1994;12:474-84.</p><p>Wright M.O., Nishida K., Bavington C. et al. Hyperpolarization of cultured human chondrocytes follows cyclical pressureinduced strain: evidence of a role for 51 integrin as a chondrocyte mechanoreceptor. J Orthop Res 1997;15:742-7.</p><p>Billinghurst R.C., Dahlberg L., Ionescu M. et al. Enhanced cleavage of type II collagen by collagenases in osteoarthritic articular cartuilage. J Clin Invest 1997;99:1534-45.</p><p>Tchetina E.V., Kobayshi M., Yasuda T. et al. Chondrocyte hypertrophy can be induced by a criptic sequence of type II collagen and is accompanied by the induction of MMP-13 and collagenase activity: Implications for development and arthritis. Matrix Biol 2007;26:247-58.</p><p>Ким Зон Чхол, Быков В.А., Николаева С.С. и др. Изменения биохимических характеристик коллагена и состояния воды хряща при остеоартрозе. Вопр мед xимии 2001;47(5):498-505.</p><p>Tiku M.L., Liesch J.B., Robertson F.M. Production of hydrogen peroxide by rabbit articular chondrocytes: enhancement by cytokines. J Immunol 1990;145:690-6.</p><p>Cawston T.E., Ellis A.J., Lean E. et al. Interleukin-1 and oncostatin M in combination promote the release of collagen fragments from bovine nasal cartilage in culture. Biochem Biophys Res Communs 1995;215:377-85.</p><p>Poole A.R., Nelson F., Tchetina E. et al. Proteolysis of the collagen fibril in osteoarthritis. Biochem Soc Symp 2003;70:115-23.</p><p>Milner J.M., Elliot S.-F., Cawston T.E. Activation of procollagenases is a key control point in cartilage collagen degradation. Interaction of serine and metalloproteinase pathways. Arthr Rheum 2001;44:2084-96.</p><p>Sztrolovics R., White R.J., Poole A.R. et al. Resistance of small leucine rich repeat proteoglycans to proteolytic during interleukin- 1 stimulated cartilage. Biochem J 1999;339:571-7.</p><p>Cheung H.S., Ryan L.M., Kozin F. et al. Identification of collagen subtypes in synovial fluid sediments from arthritic patients. Am J Med 1980;68:73-9.</p><p>Witter J., Roughley P.J., Webber C. et al. The immunological detection and characterization of cartilage proteoglycan degradation products in synovial fluids of patients with arthritis. Arthr Rheum 1987;30:519-26.</p><p>Sandel L.J., Aigner T. Articular cartilage and changes in arthritis. An introduction: cell biology of osteoarthritis. Arthr Res 2001;3:107-13.</p><p>Yamada H., Nakagawa T., Stephens R.W. et al. Proteinases and their inhibitors in normal and osteoarthritic articular cartilage. Biomed Res 1987;8:289-300.</p><p>Malfait A.-M., Liu R.-Q., Ijiri K. et al. Inhibition of ADAM-TS4 and ADAM-TS5 prevents aggrecan degradation in osteoarthritic cartilage. J Biol Chem 2002;277:22201-8.</p><p>Миронов С.П., Омельяненко Н.П.,Шерепо К.М. и др. Морфология тканевых компонентов тазобедренного сустава у экспериментальных животных при моделировании остеоартроза. Вестн травматол ортопед 2006;1:57-63.</p><p>Раденска-Лоповок С.Г. Остеоартроз: возможности морфологической диагностики. Клин геронтол 2004;10:46-7.</p><p>Squires G., Okouneff S., Ionesku M. et al. Pathobiology of focal lesion development in aging human articular cartilage reveals molecular matrix changes characteristic of osteoarthritis. Arthr Rheum 2003;48:1261-70.</p><p>Akizuki S., Mow V.C., Muller F. et al. Tensile properties of human knee joint cartilage. 1. Influence of ionic conditions, weight-bearing and fibrillation on the tensile modulus. J Orthop Res 1986;4:379-92.</p><p>Bank R.A., Soudry M., Maroudas A. et al. The increased swelling and instantaneous deformation of osteoarthritic cartilage ias highly correlated with collagen degradation. Arthr Rheum 2000;43:2202-10.</p><p>Price J.S., Bickerstaff D.R., Bayliss M.T. et al. Degradation of cartilage type II collagen precedes the onset of osteoarthritis following anterior cruciate ligament rupture. Arthr Rheum 1999;42:2390-8.</p><p>Stoop R., van der Kraan P.M., Buma P. et al. Type II collagen degradation in spontaneous osteoarthritis in C57/B1/6 and BALB/c mice. Arthr Rheum 1999;42:2381-9.</p><p>Dahlberg L., Billinghurst R.C., Manner P. et al. Selective enhancement of collagenase- mediated cleavage of resident type II collagen in cultured osteoarthritic cartilage and arrest with a synthetic inhibitor that's speres collagenase (matrix metalloproteinase). Arthr Rheum 2000;43:673-82.</p><p>Melchiorri C., Meliconi R., Frizzizro L. et al. Enhanced and coordinated in vivo expression of inflammatory cytokines and nitric oxide synthase by chondrocytes from patients with osteoarthritis. Arthr Rheum 1998;41:2165-74.</p><p>Pickvance E.A., Oegema J.-R.,Thompson R.C. Immunolocalization of selected cytokines and proteases in canine articular cartilage transarticular loading. J Orthop Res 1993;11:313-23.</p><p>Barakat A.F., Elson C.J., Westacott C.I. Susceptibility to physiological concentrations of IL-1 varies in cartilage at different anatomical locations on human osteoarthritic knee joints. Osteoarthritis Cartilage 2002;10:264-9.</p><p>Matsumoto T., Tsukazaki T., Enomoto H. et al. Effects of interleukin-1 on insulinlike growth factor-1 autocrine/paracrine axis in culture rat articular chondrocytes. Ann Rheum Dis 1994;53:128-33.</p><p>Morales T.I. The insulin growth factor binding proteins in uncultured human cartilage. Increases in insulin-like growth factor binding proteins during osteoarthritis. Arthr Rheum 2001;44:578-84.</p><p>Dore S., Pelletier J.-P., DiBattista J.A. et al. Human osteoarthritic chondrocytes possess an increased number of insulin-like growth factor binding sites but are unresponsive to its stimulation: possible role of IGF-1 binding proteins. Arthr Rheum 1994;37:253-63.</p><p>Attur M.G., Dave M.N., Stuchin S. et al. Osteopontin: an intrinsic inhibitor in cartilage. Arthr Rheum 2001;44:578-84.</p><p>Johnson K., Goding J., van Etten D. et al. Linked deficiencies in extracellular PPi and osteopontin mediate pathologic calcification associated with defective PC-1 and ANK expression. J Bone Miner Res 2003;18:994-1004.</p><p>Fenwick S.A., Gregg P.J., Rooney P. Osteoarthritic cartilage loses its ability to remain avascular. Osteoarthritis Cartilage 1999;7:441-52.</p><p>Aigner T., Gerwin N. Growth plate cartilage as developmental model in osteoarthritis research-potentials and limitations. Curr Drug Targets 2007;8:377-85.</p><p>Von der Mark K., Kirsch T., Nerlich A. et al. Type X collagen synthesis in human osteoarthritic cartilage-indication of chondrocyte hypertrophy. Arthr Rheum 1992;35:806-11.</p><p>Kirsch T., Swoboda B., Nah H. Activation of annexin II and V expression, terminal differentiation, mineralization and apoptosis in human osteoarthritic cartilage. Osteoarthritis Cartilage 2000;8:294-302.</p><p>Hashimoto H., Ochs R.L., Komiya S. et al. Linkage of chondrocyte apoptosis and cartilage degradation in human osteoarthritis. Arthr Rheum 1998;41:1632-8.</p><p>Ohira T., Ishikawa K. Hydroxyapatite deposition in osteoarthritic articular cartilage of the proximal feoral head. Arthr Rheum 1987;30:651-60.</p><p>Kim H.A., Song Y.W. Apoptotic chondrocyte death in rheumatoid arthritis. Arthr Rheum 1999;42:1528-37.</p><p>Омельяненко Н.П., Селезнев Н.В.,Семенова Л.А. Формирование гиалиновой хрящевой ткани на поврежденных суставных концах сочленяющихся костей при пассивных движениях в суставе. Морфология 2004;4:95.</p><p>Bernstein B., Forrester D., Singsen B. et al. Hip Joint restoration in juvenile rheumatoid arthritis. Arthr Rheum 1977;20:1099-104.</p><p>Garcia-Moteo O., Babini J.C.,Maldonado-Cocco J.A. et al. Remodelling of the hip joint in juvenile rheumatoid arthritis. Arthr Rheum 1981;24:1570-4.</p><p>Четина Е.В., Пул А.Р. Роль ростовых факторов в подавлении разрушения коллагена и дифференциации хондроцитов при остеоартрозе. Вестн РАМН 2008;9:40-9.</p><p>Tchetina E.V., Antoniou J., Tanzer M. et al. Transforming growth factor-2 suppresses collagen cleavage in cultured human osteoarthritic cartilage, reduces expression of genes associated with chondrocyte hypertrophy and degradation, and increases prostaglandin E2 production. Am J Pathol 2006;168:131-40.</p><p>Jiang J., Leong N.L., Mung J.C. et al. Interaction between zonal populations of articular chondrocytes suppresses chondrocyte mineralization and this process is mediated by PTHrP. Osteoarthritis Cartilage 2008;16:70-82.</p><p>Zhang X., Ziran N., Goater J.J. et al. Primary murine limb bud mesenchimal cells in long-term culture complete chondrocyte differentiation: TGF- delays hypertrophy and PGE2 inhibits terminal differentiation. Bone 2004;34:809-17.</p><p>Kamekura S., Kawasaki Y., Hoshi K. et al. Contribution of runt-related transcription factor 2 to the pathogenesis of osteoarthritis in mice after induction of knee joint instability. Arthr Rheum 2006;54:2462-70.</p><p>Klatt A.R., Klinger G., Neumь ller O. et al. TAK1 downregulation reduces IL- 1beta induced expression of MMP13, MMP1 and TNF-alpha. Biomed Pharmacother 2006;60:55-61.</p><p>Yamamoto T., Wakitani S., Imoto K. et al. Fibroblast growth factor-2 promotes the repair of partial thickness defects of articular cartilage in immature rabbits but not in mature rabbits. Osteoarthritis Cartilage 2004;12:636-41.</p><p>Elford P.R., Graeber M., Ohtsu H. et al. Induction of swelling, synovial hyperplasia and cartilage proteoglycan loss upon intra-articular injection of transforming growth factor-2 in the rabbit. Cytokine 1992;4:232-8.</p><p>Shida J.-I., Jingushi S., Izumi T. et al Basic fibroblast growth factor regulates expression of growth factors in rat epiphyseal chondrocytes. J Orthop Res 2001;19:259-64.</p><p>Blaney Davidson E.N., Vitters E.L., van den Berg W.B. et al. TGF beta-induced cartilage repair is maintained but fibrosis is blocked in the presence of Smad7. Arthr Res Ther 2006;8:R65.</p><p>Goldring S.R., Goldring M.B.The role of cytokines in cartilage matrix degeneration in osteoarthritis. Clin Orthopaed 2004;427(Suppl.):27-36.</p><p>Benito M.J., Veale D.J., FitzGerald O. et al. Synovial tissue inflammation in early and late osteoarthritis. Ann Rheum Dis 2005;64:1263-7.</p><p>Goldring M.B. Update on the biology of the chondrocyte and new approaches to teating cartilage diseases. Best Practice Res. Clin Rheumatol 2006;20:1003-25.</p><p>Evans S.H. Novel biological approaches to the intra-articular treatment of osteoarthritis. BioDrugs 2005;19:355-62.</p><p>Fernandes J.C., Martel-Pelletier J., Pelletier J.P. The role of cytokines in osteoarthritis pathophysiology. Biorheology 2002;39:237-46.</p><p>Четина Е.В., Пул А.Р. Способность фрагмента коллагена 2 типа индуцировать расщепление коллагена и гипертрофию суставных хондроцитов. Вестн РАМН 2008;5:15-21.</p><p>Cecil D.L., Appleton C.T., Polewski M.D. et al. The pattern recognition receptor CD36 is a chondrocyte hypertrophy marker associated with suppression of catabolic responses and promotion of repair responses to inflammatory stimuli. J Immunol 2009;182:5024-31.</p><p>Borzi R.M., Mazetti I., Marcu K.B. et al. Chemokines in cartilage degradation. Clin Orthopaed Rel Res 2004;427(Suppl.):S53-S61.</p><p>Lubberts E., Koenders M.I., van den Berg W.B. The role of T cell interleukin-17 in conducting destructive arthritis: lessons from animal models. Arthr Res Ther 2005;7:29-37.</p><p>Scanzello C.R., Umoh E., Pessler F. et al. Local cytokine profiles in knee osteoarthritis: elevated synovial fluid interleukin- 15 differentiates early from end-stage disease. Osteoarthritis Cartilage 2009;17:1040-8.</p><p>Barksby H.E., Hui W., Wappler I. et al. Interleukin-1 in combination with oncostatin M up-regulates multiple genes in chondrocytes: implications for cartilage destruction and repair. Arthr Rheum 2006;54:540-50.</p><p>Toncheva A., Remichkova M.,Ikonomova K. et al. Inflammatory response in patients with active and inactive osteoarthritis. Rheum Int 2009;29:1197-203.</p><p>Hussein M.R., Fathi N.A., El-Din A.M. et al. Alterations of the CD4(+), CD8(+) T cell subsets, interleukins-1beta, IL-10, IL-17, tumor necrosis factor-alpha and soluble intercellular adhesion molecule- 1 in rheumatoid arthritis and osteoarthritis: preliminary observations. Pathol Oncol Res 2008;14:321-8.</p><p>Маколкин В.И., Пак Ю.В., Меньшикова И.В. Коксартроз: этиология, эпидемиология, клинические проявления и новые подходы к терапии. Тер арх 2007;79:81-5.</p><p>Ijiri K., Zerbini L.F., Peng H. et al. A novel role for GADD45beta as a mediator of MMP-13 gene expression during chondrocyte terminal differentiation. J Biol Chem 2005;280:38544-55.</p><p>Karpousas G.A., Terkeltaub R.A. New developments in the pathogenesis of articular cartilage calcification. Curr Rheumatol Reps 1999;1:212-7.</p><p>Poole A.R., Webber C., Pidoux I. et al. Localization of a dermatan sulphate proteoglycan in cartilage and the presence of an immunologically related species in other tissues. J Histochem Cytochem 1986;34:619-25.</p><p>Teree T.M., Klein L. Hypophosphatasia, clinical and metabolic studies. J Pediatr 1986;72:50-7.</p><p>Tchetina E.V., Squires G., Poole A.R. Increased type II collagen degradation and very early focal cartilage degeneration is associated with the upregulation of chondrocyte differentiation related genes in early human articular cartilage lesions. J Rheumatol 2005;32:876-86.</p></div><br />


Для цитирования:


Chetina E.V. МЕХАНИЗМЫ ЭМБРИОГЕНЕЗА ПРИ ОСТЕОАРТРОЗЕ:РОЛЬ ДИФФЕРЕНЦИРОВКИ ХОНДРОЦИТОВВ РЕЗОРБЦИИ СУСТАВНОГО ХРЯЩА. Научно-практическая ревматология. 2010;48(3):65-77. https://doi.org/10.14412/1995-4484-2010-446

For citation:


Chetina E.V. MEKhANIZMY EMBRIOGENEZA PRI OSTEOARTROZE:ROL' DIFFERENTsIROVKI KhONDROTsITOVV REZORBTsII SUSTAVNOGO KhRYaShchA. Rheumatology Science and Practice. 2010;48(3):65-77. (In Russ.) https://doi.org/10.14412/1995-4484-2010-446

Просмотров: 819


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1995-4484 (Print)
ISSN 1995-4492 (Online)