Preview

Rheumatology Science and Practice

Advanced search

MOLECULAR GENETIC TESTING OF OSTEOPOROSIS SUSCEPTIBILITY IN POSTMENOPAUSAL WOMEN IN MOSCOW

https://doi.org/10.14412/1995-4484-2011-597

Abstract

Polymorphisms of 21 genes involved in the processes of bone remodeling were studied on samples of 150 to 265 postmenopausal healthy women in a control group and those of 175 to 269 patients with osteoporosis (OP). In a Moscow sample of postmenopausal women, the genotypes of OP susceptibility were found to be the CT genotype of the low-density lipoprotein receptor-related protein 5 (LRP5) gene, the GG genotype of the leptin (LEP) gene, the XX genotype of the estrogen receptor a (ER-a) gene, the Ff genotype of the vitamin D receptor (VDR) gene, the HH genotype of the a1 polypeptide chain of type II collagen gene and the GG genotype of the aromatase (CYP19) gene. The interaction of a number of genes to develop OP susceptibility was ascertained to be compliant. For example, the carriage of the CTxx genotypes of the LRP5/ERa genes, the CTGG genotypes of the LRP5/CBFA genes, the CCGA genotypes of the TGF/31/CYP19 genes, and the CCAA genotypes of the TGF/31/OPG genes increases a risk for OP by 7.7, 4.1, 6.2, and 2.7 times, respectively.
The genotypes increasing the risk of spinal osteoporotic fractures were AG of 163A/G polymorphism in the osteoprotegerin (OPG) gene, TT of 509C^T polymorphism in the TGF/31 gene, and BB of BsmI polymorphism in the VDR gene (OR = 4.9, 3.9, and 4.4, respectively). The genotype of a risk for osteoporotic fractures at other sites was AG of A19G polymorphism in the LEP gene (OR = 2.6).

References

1. <div><p>Frost H.M. Dynamics of bone remodeling. In: Frost H.M. (ed.). Bone Biodinamics. Boston, 1964;315-33.</p><p>Денисов-Никольский Ю.И., Докторов А.А., Матвейчук И.В. Структура и функция костной ткани в норме. Руководство по остеопорозу. М.: Бином. Лаборатория знаний, 2003;56-76.</p><p>Ralston S.H., de Crombrugghe B. Genetic regulation of bone mass and susceptibility to osteoporosis. Genes Development 2006;20:2492-506.</p><p>Janssens K., van Hul W. Molecular genetics of too much bone. Hum Mol Genet 2002;11:2385-93.</p><p>Wergedal J.E., Veskovic K., Minea H. et al. Patients with Van Buchem disease, an osteosclerotic genetic disease, have elevated bone formation markers, higher bone density, and greater derived polar moment of intertia than normal. J Clin Endocrin Metabol 2003;88:5778-83.</p><p>Cavalli-Sforza L.L., Bodmer W.F. The Genetic of Human Population. San Francisco: W.H. Freeman and Co., 1971;508-634.</p><p>Deroo J.J., Korach R.S. Estrogen receptors and human disease. J Clin Invest 2006;116:561-70.</p><p>Courtois G., Gilmore T.D. Mutations in the NF-κB signaling pathway: implications for human disease. Oncogene 2006;25:6831-43.</p><p>Kong Y.Y., Yoshida H., Sarosi I. et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 1999;397:315-23.</p><p>Kong Y.-Y., Feige U., Sarosi I. et al. Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature 1999;402:304-9.</p><p>Heine P.A., Taylor J.A. Iwamoto G.A. et al. Increased adipose tissue in male and female estrogen receptor-alpha knockout mice. Proc Nat Acad Sci USA 2000;97:12729-34.</p><p>McTernan P.G., Anderson L., Anwar A. et al. Glucocorticoid regulation of P450 aromatase activity in human adipose tissue: gender and site differences. J Clin Endocr Metab 2002;87:1327-36.</p><p>Kennedy A., Gettys T.W., Watson P. et al. The metabolic significance of leptin in humans: geneder-based differencies in relationship to adiposity, insulin sensitivity and energy expenditure. J Clin Endocrinol Metab 1997;82:1293-300.</p><p>Lips P. Vitamin D deficiency and secondary hyperparathyroidism in the elderly: consequences for bone loss and fractures and therapeutic implications. Endocr Rev 2001;22:477-501.</p><p>Garnero P., Munoz F., Borel O. et al. Vitamin D receptor gene polymorphisms are associated with the risk of fractures in postmenopausal women, independently of bone mineral density. The OFELY study. J Clin Endocrinol Metab 2005;90:4829-35.</p><p>Westendorf J.J., Kahler R.A., Schroeder T.M. Wnt signaling in osteoblasts and bone diseases. Gene 2004;341:19-39.</p><p>Krishnan V., Bryant H.U., MacDougald O.A. Regulation of bone mass by Wnt signaling. J Clin Invest 2006;116:1202-9.</p><p>Massague J., Chen Y.G. Controlling TGF-β1 signaling. Genes Dev 2000;14:627-44.</p><p>Ten Dijke P., Hill C.S. New insights into TGF-α-Smad signalling. Trends Biochem Sci 2004;29:265-73.</p><p>Vaughan T., Pasco J.A., Kotowicz M.A. et al. Alleles of RUNX2/CBFA1 gene are associated with differences in bone mineral density and risk of fracture. J Bone Miner Res 2002;17:1527-34.</p><p>Vaughan T., Reid D.M., Morrison N.A., Ralston S.H. RUNX2 alleles associated with BMD in Scottish women; interaction of RUNX2 alleles with menopausal status and body mass index. Bone 2004;34:1029-36.</p></div><br />


Review

For citations:


Myakotkin V.A., Krylov M.Yu., Guseva I.A., Chetina E.V., Toroptsova N.V., Nikitinskaya O.A., Samarkina E.Yu., Benevolenskaya L.I., Myakotkin V.A., Krylov M.Yu., Guseva I.A., Chetina E.V., Toroptsova N.V., Nikitinskaya O.A., Samarkina E.Yu., Benevolenskaya L.I. MOLECULAR GENETIC TESTING OF OSTEOPOROSIS SUSCEPTIBILITY IN POSTMENOPAUSAL WOMEN IN MOSCOW. Rheumatology Science and Practice. 2011;49(2):15-20. (In Russ.) https://doi.org/10.14412/1995-4484-2011-597

Views: 855


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1995-4484 (Print)
ISSN 1995-4492 (Online)