Preview

Rheumatology Science and Practice

Advanced search

IMPAIRED REGULATORY MECHANISMS OF THE mTOR SIGNALING PATHWAY IN OSTEOARTHROSIS

https://doi.org/10.14412/1995-4484-2012-1290

Abstract

Objective: to study the pattern of impaired regulatory mechanisms of the mammalian target of rapamycin (TOR) signaling pathway, by monitoring gene expression in the blood of patients with osteoarthrosis (OA) at different stages of the disease. Subjects and methods. The study covered 33 outpatients with OA, 14 patients with this condition prior to knee joint endoprosthesis, and 27 healthy individuals (controls) (mean age 58.0+7.4, 56.5+8.9, and 55.0+8.3 years, respectively). Total RNA was isolated from their blood and used to determine the level of gene expression by a real-time polymerase chain reaction for AMP-activated protein kinase (AMPK), hypoxia-inducible factor-1α (HIF1α), the rate-limiting proteins of the hexosamine signaling pathway — glutamine-fructose-6-phosphate amidotransferase and acetylglucosaminyltransferase, as well as the glucose transporter GLUT1 and steps 6 and 7 glycolytic pathway components — glucose-6-phosphate dehydrogenase and phosphoglycerate kinase-1, respectively; the lipogenesis-related genes — fatty acid synthase (FAS) and the activity of the pentose phosphate pathway — glucose-6-phosphate dehydrogenase in the blood of patients with OA at different stages of the disease. Results. Analysis of gene expressions showed that in the OA patients with a low expression of the mTOR gene (a LOW subgroup), the expression of AGT and GLUT1 genes proved to be significantly lower and that of the AMPK gene was higher than in the healthy individuals. In the OA patients with a high expression of the mTOR gene (a HIGH subgroup), the expression of all the genes under study was much higher, except for the FAS gene; moreover, the greatest expression excess as compared to the controls was observed for the AMPK and HIFlα genes. In the patients with endstage disease (an ES subgroup), the expression of all the study genes, including the FAS gene, turned out to be higher than in the healthy individuals. Conclusion. The development of OA is accompanied by a considerable decrease in the efficiency of energy metabolism. At the same time, in the patients with a low mTOR gene expression, energy deficiency may be due to decreased cellular metabolite transport. It may be caused by the deficiency of the end electron acceptor oxygen in the patients with a high mTOR gene expression and the pathological redistribution of energy substrate in favor of lipogenesis cannot be ruled out in those with end-stage disease.

About the Authors

Elena Vasilyevna Chetina

Laboratory of Genetics


E A Bratygina

Laboratory of Genetics


E M Zaitseva

Laboratory of Genetics


E P Sharapova

Laboratory of Genetics


A L Alekseyeva

Laboratory of Genetics


N V Demin

Laboratory of Genetics


S A Makarov

Laboratory of Genetics


References

1. <div><p>Henrotin Y., Lambert C., Couchourel D. et al. Nutraceuticals: do they represent a new era in the management of osteoarthritis? — А narrative review from the lessons taken with five products. Osteoarthr Cartilage 2011; 19: 1—21.</p><p>Marshall K.W., Zhang H., Nossova N. Chondrocyte genomics: implications for disease modification in osteoarthritis. Drug Discov Today 2006; 11: 825—32.</p><p>Четина Е.В. Сигнальные пути нутриентов и ревматические заболевания. Науч.-практич. ревматол. (в печати).</p><p>Raught B., Gingras A.C., Sonenberg N. The target of rapamycin (TOR) proteins. Proc Natl Аcad Sci USA 2005; 98: 7037—44.</p><p>Nicklin P., Bergman P., Zhang B. et al. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 2009; 136: 521—34.</p><p>Sofer A., Lei K., Johannessen C.M. et al. Regulation of mTOR and cell growth in response to energy stress by REDD1. Mol Cell Biol 2005; 25: 5834—45.</p><p>Hara K., Yonezawa K., Weng Q.P. et al. Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J Biol Chem 1998; 273: 14484—94.</p><p>Мецлер Д. Биохимия. Химические реакции в живой клетке. М.: Мир, 1980.</p><p>Love D.C., Hanover J.A. The hexosamine signaling pathway: Deciphering the O-GlcNAc code. Sci. STKE 2005; 2005: re13.</p><p>Smith S., Witkowski A., Joshi A.K. Structural and functional organization of the animal fatty acid synthase. Prog Lipid Res 2003; 42: 289—317.</p><p>Kahn B.B., Alquier T., Carling D. et al. AMP-activated protein kinase: Ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab 2005; 1: 15—25.</p><p>Carling D. The AMP-activated protein kinase cascade, а unifying system for energy control. Trends Biochem Sci 2004; 29: 18—24.</p><p>Четина Е.В., Братыгина Е.А., Зайцева Е.М. и др. Прогнозирование течения остеоартроза по экспрессии гена mTOR (mammalian target of rapamycin). Науч.-практич. ревматол. 2012; 1: 27—32.</p><p>Четина Е.В. Ингибирование активности расщепления коллагена в хряще больных остеоартрозом при активации гликолиза. Остеопороз и остеопатии 2011; 1: 8—12.</p><p>Четина Е.В., Пул А.Р. Роль ростовых факторов в подавлении разрушения коллагена и дифференциации хондроцитов при остеоартрозе. Вестн. РАМН 2008; 5: 15—21.</p><p>Coggon D., Reading I., Croft P. et al. Knee osteoarthritis and obesity. Int J Obes Relat Metab Disord 2001; 25: 622—7.</p><p>Bliddal H., Leeds A.R., Stigsgaard L. et al. Weight loss as treatment for knee osteoarthritis symptoms in obese patients: 1-year results from a randomised controlled trial. Ann Rheum Dis 2011; 70: 1798—803.</p><p>Gwinn D.M., Shackelford D.B., Egan D.F. et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 2008; 30: 214—26.</p><p>Ghosh S., Blumental H.J., Davidson E. et al. Glucosamine metabolism.V. Enzymatic synthesis of glucosamine 6-phosphate. J Biol Chem 1960; 235: 1265—73.</p><p>Johnston I.R., McGuire E.J., Jourdian G.W. et al. Incorporation of N-acetyl-D-glucosamine into glycoproteins. J Biol Chem 1966; 241: 5735—7.</p><p>Shikhman A.R., Brinson D.C., Valbracht J. et al. Differential metabolic effects of glucoseamine and N-acetylglucoseaminein human articular chondrocytes. Osteoarthr Cartilage 2009; 17: 1022—8.</p><p>Ryu J.H., Shin Y., Huh Y.H. et al. Hypoxia-inducible factor-2α regulates Fas-mediated chondrocyte apoptosis during osteoarthritic cartilage destruction. Cell Death Differ 2012; 19: 440—50.</p><p>Gouze J.N., Gouze E., Palmer G.D. et al. Adenovirus-mediated gene transfer of glutamine: fructose-6-phosphate amidotransferase antagonizes tha effect of interleukin-1beta on rat chondrocytes. Osteoarthr Cartilage 2004; 12: 217—24.</p><p>Tong K.M., Chen C.P., Huang K.C. et al. Adiponectin increases MMP-3 expression in human chondrocytes through AdipoR1 signaling pathway. J Cell Biochem 2011; 112: 1431—40.</p><p>Fermor B., Gurumurthy A., Diekman B.O. Hypoxia, RONS and energy metabolism in articular cartilage. Osteoarthr Cartilage 2010; 18: 1167—73.</p><p>Banhegyi G., Csala M., Benedetti A. Hexose-6-phosphate dehydrogenase: linking endocrinology and metabolism. J Mol Endocrinol 2009; 42: 283—9.</p><p>Senesi S., Marcolongo P., Manini I. et al. Constant expression of hexose-6-phosphate dehydrogenase during differentiation of human adipose-derived mesenchymal stem cells. J Mol Endocrinol 2008; 41: 125—33.</p><p>Bujaska I.J., Hewitt K.N., Hauton D. et al. Lack of hexose-6-phosphate dehydrogenase impairs lipid mobilization from mouse adipose tissue. Endocrinology 2008; 149: 2584—91.</p><p>Ford J.H. Saturated fatty acid metabolism is key link between cell division, cancer, and senescence in cellular and whole organism aging. Age 2010; 32: 231—7.</p><p>Rumberger J.M., Wu T., Hering M.A. et al. Role of hexosamine biosynthesis in glucose-mediated up-regulation of lipogenic enzyme mRNA levels. J Biol Chem 2003; 278: 28547—52.</p><p>McClain D.A., Hazel M., Parker G. et al. Adipocytes with increased hexosamine flux exhibit insulin resistance, increased glucose uptake, and increased synthesis and storage of lipid. Am J Physiol Endocrinol Metab 2005; 288: T973— T979.</p><p>Swagell C.D., Henly D.C., Morris C.P. Expression analysis of a human hepatic cell line in response to palmitate. Biochem Biophys Res Commun 2005; 328: 432—41.</p><p>Planey S.L., Keay S.K., Zhang C.O. et al. Palmitoylation of cytoskeleton associated protein 4 by DHHC2 regulates antiproliferative factor-mediated signaling. Mol Biol Cell 2009; 20: 1454—63.</p></div><br />


Review

For citations:


Chetina E.V., Bratygina E.A., Zaitseva E.M., Sharapova E.P., Alekseyeva A.L., Demin N.V., Makarov S.A. IMPAIRED REGULATORY MECHANISMS OF THE mTOR SIGNALING PATHWAY IN OSTEOARTHROSIS. Rheumatology Science and Practice. 2012;50(6):33-37. (In Russ.) https://doi.org/10.14412/1995-4484-2012-1290

Views: 1142


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1995-4484 (Print)
ISSN 1995-4492 (Online)