Preview

Rheumatology Science and Practice

Advanced search

T-regulatory cells in systemic lupus erythematosus and rheumatoid arthritis

https://doi.org/10.14412/1995-4484-2009-1313

Abstract

Способность иммунной системы дискриминировать между «своим» и «чужим» контролируется механизмами центральной и периферической толерантности. Это может быть элиминация аутореактивных клонов Т-клеток на ранних стадиях развития тимуса (центральная толерантность) или на периферии, при участии таких механизмов, как анергия, игнорирование и супрессия. Супрессию осуществляют субклассы CD4+ Т-лимфоцитов, которые образуются для подавления аутореактивных Т-лимфоцитов и названы регуляторными Т-клетками (Трег) [1-3].Известно три наиболее изученных субкласса CD4+ Т-клеток, ответственных за иммуносупрессию, которые включают Т-регуляторные клетки 1 класса (Tr1), Th3 и CD4+CD25+ Т-клетки. Тr1 продуцируют интерлейкин (ИЛ)-10, и могут быть индуцированы из CD4+ T клеток повторной антигенной стимуляцией в присутствии ИЛ-10 или незрелых дендритных клеток (ДК) [4]. Клетки Th3 секретируют трансформирующий фактор роста-β (ТФР-β) и неспецифически ингибируют эффект активированных Т-лимфоцитов [5].Ведущая роль среди клеток с регуляторной активностью принадлежит уникальной популяции Т-лимфоцитов CD4+CD25+, которые рождаются в тимусе и заселяют периферические лимфоидные органы в первые 3-4 дня неонатального развития. Эти клетки называют естественными регуляторными клетками (еТрег); они составляют 5-10% периферических CD4+ Т-клеток мыши и человека и подавляют активацию и эффекторные функции аутореактивных Т-клеток [6, 7]. Неонатальная тимэктомия на 3-й день после рождения препятствует расселению Трег на периферию и вызывает развитие органоспецифических аутоиммунных заболеваний, таких как тиреоидиты, оофориты, артриты, гломерулонефриты [8].

References

1. <div><p>Sakaguchi S. Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu. Rev. Immunol., 2004, 22, 531-62.</p><p>Shevach E.M., DiPaolo R.A., Andersson J. et al. The lifestyle of naturally occurring CD4+ CD25+ Foxp3+ regulatory T cells. Immunol. Rev., 2006, 212, 60-73.</p><p>Bluestone J.A., Abbas A.K. Natural versus adaptive regulatory T cells. Nat. Rev. Immunol., 2003, 3, 253–7.</p><p>Groux H., O’Garra A., Bigler M. et al. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature., 1997, 389(6652), 737-42.</p><p>Chen Y., Inobe J., Kuchroo V.K. et al. Oral tolerance in myelin basic protein T-cell receptor transgenic mice: suppression of autoimmune encephalomyelitis and dose-dependent induction of regulatory cells. Proc. Natl. Acad. Sci. U S A, 1996, 93(1), 388-91.</p><p>Sakaguchi S., Sakaguchi N., Asano M. et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol., 1995, 155, 1151-64.</p><p>Shevach E.M., McHugh R.S., Piccirillo C.A., Thornton A.M.. Control of T-cell activation by CD4+ CD25+ suppressor T cells. Immunol. Rev., 2001, 182, 58-67.</p><p>Tung K.S., Setiady Y.Y., Samy E.T. et al. Autoimmune ovarian disease in day 3-thymectomized mice: the neonatal time window, antigen specificity of disease suppression, and genetic control. Curr. Top. Microbiol. Immunol., 2005, 293, 209-47.</p><p>Suri-Payer E., Amar A.Z., Thornton A.M., et al. CD4+CD25+ T Cells Inhibit Both the Induction and Effector Function of Autoreactive T Cells and Represent a Unique Lineage of Immunoregulatory Cells. J. Immunol., 1998, 160, 1212–18.</p><p>Thornton A.M., Shevach E.M. CD4+CD25+ immunoregulatory T cells suppress polyclonal T-cell activation in vitro by inhibiting interleukin-2 production. J. Exp. Med., 1998, 188, 287–96.</p><p>Lim H.W., Hillsamer P., Banham A.H. et al. Cutting edge: direct suppression of B cells by CD4+CD25+ regulatory T cells. J. Immunol., 2005, 175(7), 4180-3</p><p>Smyth M.J., Teng M.W., Swann J. et al. CD4+CD25+ T regulatory cells suppress NK cell-mediated immunotherapy of cancer. J. Immunol., 2006, 176(3), 1582-7.</p><p>Trzonkowski P., Szmit E., Myśliwska J. et al. CD4+CD25+ T regulatory cells inhibit cytotoxic activity of T CD8+ and NK lymphocytes in the direct cell-to-cell interaction. Clin. Immunol., 2004,112(3), 258-67.</p><p>Grossman W.J., Verbsky J.W., Barchet W. et al. Human T regulatory cells can use the perforin pathway to cause autologous target cell death. Immunity, 2004, 21(4), 589-601.</p><p>Alvarado-Sanchez B., Hernandez-Castro B., Portales-Perez D. et al. Regulatory T cells in patients with systemic lupus erythematosus. J. Autoimmun., 2006, 27, 110-8</p><p>Boyer O., Saadoun D., Abriol J. et al. CD4+CD25+ regulatory T-cell deficiency in patients with hepatitis C–mixed cryoglobulinemiavasculitis. Blood., 2004, 103, 3428-30.</p><p>Bolacchi F., Sinistro A., Ciaprini C. et al. Increased hepatitis C virus (HCV)-specific CD4+CD25+ regulatory T lymphocytes and reduced HCV-specific CD4+ T cell response in HCV-infected patients with normal versus abnormal alanine aminotransferase levels. Clin Exp. Immunol., 2006, 144(2), 188-96.</p><p>Brunkow M.E., Jeffery E.W., Hjerrild K.A. et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat. Genet., 2001, 27(1), 68-73.</p><p>Hori S., Takahashi T., Sakaguchi S. Control of autoimmunity by naturally arising regulatory CD4+ T cells. Adv. Immunol., 2003, 81, 331-71.</p><p>Fontenot J.D., Gavin M.A., Rudensky A.Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol., 2003, 4(4), 330-6.</p><p>Bennett C.L., Christie J., Ramsdell F. et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat. Genet., 2001, 27(1), 20-1.</p><p>Matarese G., De Rosa V., La Cava A. Regulatory CD4+ T cells: sensing the environment. Trends Immunol., 2008, 29(1), 12-7</p><p>Curotto de Lafaille M. A., Lino A. C., Kutchukhidze N. et al. CD25+ T Cells generate CD25+Foxp3+ regulatory T Cells by peripheral expansion. The Journal of Immunology, 2004, 173, 7259–68.</p><p>Horwitz D.. Regulatory T cells in systemic lupus erythematosus: past, present and future. Arthritis Res. Ther. 2008, 10, 227</p><p>Wu H.Y., Staines N.A. A deficiency of CD4+CD25+ T cells permits the development of spontaneous lupus-like disease in mice, and can be reversed by induction of mucosal tolerance to histone peptide autoantigen. Lupus, 2004, 13, 192-200.</p><p>Cao D., Malmstrom V., Baecher-Allan C. et al. Isolation and functional characterization of regulatory CD25brightCD4. T cells from the target organ of patients with rheumatoid arthritis. Eur. J. Immunol., 2003, 33, 215–23.</p><p>Viglietta V., Baecher-Allan C., Weiner H.L. et al. Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J. Exp. Med., 2004, 5, 199(7), 971-9.</p><p>Sugiyama H., Gyulai R., Toichi E. et al. Dysfunctional blood and target tissue CD4+CD25high regulatory T cells in psoriasis: mechanism underlying unrestrained pathogenic effector T cell proliferation. J. Immunol., 2005, 1,174(1), 164-73.</p><p>Lindley S., Dayan C.M., Bishop A. et al. Defective suppressor function in CD4+CD25+ T cells from patients with type 1 diabetes. Diabetes, 2005, 54, 92-9.</p><p>Wolf D., Hochegger K., Wolf A.M., et al. CD4+CD25+ regulatory T cells inhibit experimental anti-glomerular basement membrane glomerulonephritis in mice, J. Am. Soc. Nephrol., 2005, 16, 1360–70.</p><p>Tsokos G.C.,Wong H.K., Enyedy E.J. et al. Immune cell signaling in lupus. Curr. Opin. Rheumatol., 2000, 12, 355–63.</p><p>Liu M.F., Wang C.R., Fung L.L. et al. Decreased CD4+CD25+ T cells in peripheral blood of patients with systemic lupus erythematosus. Scand. J. Immunol., 2004, 59, 198–202.</p><p>Crispin J.C., Martinez A., Alcocer-Varela J. Quantification of regulatory T cells in patients with systemic lupus erythematosus. J. Autoimmun., 2003, 21, 273–6.</p><p>Valencia X., Yarboro C. Illei G. et al. Deficient CD4+CD25high T regulatory cell function in patients with active systemic lupus erythematosus. J. Immunol., 2007, 178, 2579–88.</p><p>Miyara M., Amoura Z., Parizot C. et al. Global natural regulatory T cell depletion in active systemic lupus erythematosus. J. Immunol., 2005, 175, 8392–400.</p><p>Lee J.H., Wang L.C., Lin Y.T. et al. Inverse correlation between CD4+ regulatory T-cell population and autoantibody levels in pediatric patients with systemic lupus erythematosus. Immunology, 2006, 117, 280-6. 57</p><p>Pillai V., Ortega S.B., Wang C.K. et al. Transient regulatory T-cells: A state attained by all activated human T-cells. Clin. Immunol., 2007, 123(1), 18-29.</p><p>Gavin M.A., Torgerson T.R., Houston E. et al. Single-cell analysis of normal and FOXP3-mutant human T cells: FOXP3expression without regulatory T cell development. Proc. Natl. Acad. Sci. U S A, 2006, 103(17), 6659-64.</p><p>Wang J., Ioan-Facsinay A., van der Voort E.I. et al. Transient expression of FOXP3 in human activated nonregulatory CD4+ T cells. Eur. J. Immunol., 2007, 37(1), 129-38.</p><p>Bonelli M., Dalwigk K., Savitskaya A. et al. Foxp3 expression in CD4+ T cells of patients withsystemic lupus erythematosus (SLE): A comparative phenotypic analysis. Ann. Rheum. Dis., 2008, 67(5), 664-71.</p><p>Alvarado-Sanchez B., Hernandez-Castro B., Portales- Perez D. et al. Regulatory T cells in patients with systemic lupus erythematosus. J. Autoimmun., 2006, 27, 110-8.</p><p>Lyssuk E.Y., Torgashina A.V., Soloviev S.K. et al. Reduced number and function of CD4+CD25highFoxP3+ regulatory T cells in patients with systemic lupus ery- thematosus. Adv. Exp. Med. Biol., 2007, 601, 113–9.</p><p>Franz B., Fritzsching B., Riehl A., et al. Low number of regulatory T cells in skin lesions of patients with cutaneous lupus erythematosus. Arthritis Rheum., 2007, 56(6),1910-20.</p><p>Taams L.S., Smith J., Rustin M.H. et al. Human anergic/suppressive CD4+CD25+ T cells: a highly differentiated and apoptosis-prone population. Eur. J. Immunol., 2001, 31, 1122–31.</p><p>Vargas-Rojas M.I., Crispín J.C., Richaud-Patin Y. et al. Quantitative and qualitative normal regulatory T cells are not capable of inducing suppression in SLE patients due to T-cell resistance. Lupus, 2008,17(4),289-94.</p><p>Suárez A., López P., Gómez J. et al. Enrichment of CD4+CD25high T cell population in patients with systemic lupus erythematosus treated with glucocorti- coids. Ann. Rheum. Dis., 2006, 65, 1512-7.</p><p>Chung I.Y., Dong H.F., Zhang X. et al. Effects of IL-7 and dexamethasone: induction of CD25, the high affinity IL-2 receptor, on human CD4+ cells. Cell Immunol., 2004, 232, 57-63.</p><p>Chen X., Murakami T., Oppenheim J.J., Howard O.M. Differential response of murine CD4+CD25+ and CD4+. Eur. J. Immunol., 2004, 34, 859-69.</p><p>Vallerskog T., Gunnarsson I., Widhe M. et al. Treatment with rituximab affects both the cellular and the humoral arm of the immune system in patients with SLE. Clin. Immun., 2007, 122, 62-74.</p><p>Sfikakis P.P., Boletis J.N., Lionaki S. et al. Remission of proliferative lupus nephritis following B cell depletion therapy is preceded by down-regulation of the T cell costimulatory molecule CD40 ligand: an openlabel trial. Arthritis Rheum., 52 (2005), 501–13.</p><p>Sfikakis P.P., Souliotis V.L., Fragiadaki K.G. et al. Increased expression of the FoxP3 functional marker of regulatory T cells following B cell depletion with rituximab in patients with lupus nephritis. Clin. Immun., 2007, 123, 66-73.</p><p>Vigna-Perez M., Hernandez-Castro B., Paredes- Saharopulos O. et al. Clinical and immunological effects of rituximab in patients with lupus nephritis refractory to conventional therapy: a pilot study. Arthritis Res. Ther., 8 (2006), R83, 48.</p><p>Pawelec G., Barnett Y., Forsey R. et al. T cells and aging, Front. Biosci., 2002, 7, 1056–1183.</p><p>Tone M., Tone Y., Adams E. et al. Mouse glucocorticoid-induced tumor necrosis factor receptor ligand is costimulatory for T cells. Proc. Natl. Acad. Sci. USA, 2003, 100, 15059-64.</p><p>Shevach E.M. Regulatory/suppressor T cells in health and disease. Arthritis Rheum., 2004, 50, 2721-4.</p><p>Ehrenstein M.R., Evans J.G., Singh A. et al. Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNF-alpha therapy. J. Exp. Med., 2004, 200, 277-85.</p><p>Monk C.R., Spachidou M., Rovis F. et al. MRL/Mp CD4+CD25- T cells show reduced sensitivity to suppression by CD4+CD25+regulatory T cells in vitro: a novel defect of T cell regulation in systemic lupus ery- thematosus. Arthritis Rheum., 2005, 52, 1180-4</p><p>Torgashina A.V., Lyssuk E.Yu., Bykovskaia S.N. et al. Increased number of CD4+CD25highFoxP3+ regulatory T cells in patients with systemic lupus erythema- tosus following rituximab therapy. Ann. Rheum. Dis., 2008, 67, S II.</p><p>Weyand C.M. New insights into the pathogenesis of rheumatoid arthritis. Rheumatology, 2000, 39, suppl 1, 3–8.</p><p>Frey O., Petrow P.K., Gajda M. et al. The role of regulatory T cells in antigen-induced arthritis: aggravation of arthritis after depletion and amelioration after transfer of CD4+CD25+ T cells. Arthritis Res. Ther., 2005, 7(2), R291-301.</p><p>Cao D., van Vollenhoven R., Klareskog L. et al. CD25brightCD4+ regulatory T cells are enriched in inflamed joints of patients with chronic rheumatic disease. Arthritis Res. Ther., 2004, 6, R335–46.</p><p>van Amelsfort J.M., Jacobs K.M., Bijlsma J.W. et al. CD4+CD25+ regulatory T cells in rheumatoid arthritis. Differences in the presence, phenotype, and function between peripheral blood and synovial fluid. Arthritis Rheum., 2004, 50, 2775–85.</p><p>Mottonen M., Heikkinen J., Mustonen L. et al. CD4+CD25+ T cells with the phenotypic and functional characteristics of regulatory T cells are enriched in the synovial fluid of patients with rheumatoid arthritis. Clin. Exp. Immunol., 2005, 140, 360–7.</p><p>Lawson C.A., Brown A.K., Bejarano V. et al. Early rheumatoid arthritis is associated with a deficit in the CD4+CD25highregulatory T cell population in peripheral blood. Rheumatology (Oxford), 2006, 45, 1210-7.</p><p>Leipe J., Skapenko A., Lipsky P.E. et al. Regulatory T cells in rheumatoid arthritis. Arthritis Res. Ther., 2005, 7, 93-9.</p><p>Behrens F., Himsel A., Rehart S. et al. Imbalance in distribution of functional autologous regulatory T cells in rheumatoid arthritis. Ann. Rheum. Dis., 2007, 66(9),1151-6.</p><p>de Kleer I.M., Wedderburn L.R., Taams L.S. et al. CD4+CD25bright regulatory T cells actively regulate inflammation in the joints of patients with the remitting form of juvenile idiopathic arthritis. J. Immunol., 2004, 172, 6435-43.</p><p>Iellem A., Mariani M., Lang R. et al. Unique chemotactic response profile and specific expression of chemokine receptors CCR4 and CCR8 by CD4+CD25+ regulatory T cells. J Exp. Med., 2001, 194, 847-53.</p><p>Radstake T.R., Van Der Voort R., Ten Brummelhuis M. et al. Increased expression of CCL18, CCL19, and CCL17 by dendritic cells from patients with rheumatoid arthritis and regulation by Fc gamma receptors. Ann. Rheum. Dis., 2005, 64(3), 359-67</p><p>Buckley C.D., Amft N., Bradfield P.F. et al. Persistent induction of the chemokine receptor CXCR4 by TGF-beta 1 on synovial T cells contributes to their accumulation within the rheumatoid synovium. J. Immunol., 2000, 165, 3423-9.</p><p>Nanki T., Hayashida K., El-Gabalawy H.S. et al. Stromal cell-derived factor-1-CXC chemokine receptor 4 interactions play a central role in CD4+T cell accumulation in rheumatoid arthritis synovium. J. Immunol., 2000, 165, 6590-8.</p><p>Zou L., Barnett B., Safah H. et al. Bone marrow is a reservoir for CD4+CD25+ regulatory T cells that traffic through CXCL12/CXCR4 signals. Cancer Res.,2004, 64, 8451- 5.</p><p>van Amelsfort J.M., Noordegraaf M. Influence of the inflammatory milieu on the suppressive function of CD4+CD25+ T cells in rheumatoid arthritis. Arthritis Rheum., 2004, 50, S526.</p><p>Stephens G.L., McHugh R.S., Whitters M.J. et al. Engagement of glucocorticoid-induced TNFR familyrelated receptor on effector T cells by its ligand mediates resistance to suppression by CD4+CD25+ T cells. J. Immunol., 2004,173, 5008-20.</p><p>Hirano T., Matsuda T., Turner M. et al. Excessive production of interleukin 6/B cell stimulatory factor- 2 in rheumatoid arthritis. Eur. J. Immunol., 1988, 18, 1797-801.</p><p>Pasare C., Medzhitov R. Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science, 2003, 299, 1033-6. Feldmann M. Development of anti-TNF therapy for rheumatoid arthritis. Nat. Rev. Immunol., 2002, 2, 364-71.</p><p>Valencia X., Stephens G., Goldbach-Mansky R. et al. TNF downmodulates the function of human CD4+CD25high T-regulatory cells. Blood, 2006,108, 253–61.</p><p>Nadkarni S., Mauri C., Ehrenstein M.R. Anti-TNF-alpha therapy induces a distinct regulatory T cell population in patients with rheumatoid arthritis via TGF-beta. J. Exp. Med., 2007, 22, 204(1), 33-9.</p><p>Fousteri G., Matthias G. von Herrath. A novel vicious cycle in rheumatoid arthritis. Blood, 2006, 108 (1), 3-4.</p><p>Bluestone J.A., Tang Q. Therapeutic vaccination using CD4+CD25+ antigen-specific regulatory T cells. Proc. Natl. Acad. Sci. USA, 2004, 101, 14622-6.</p><p>Mekala D.J., Geiger T.L. Immunotherapy of autoimmune encephalomyelitis with redirected CD4+CD25+ T lymphocytes. Blood, 2005, 105, 2090-2.</p><p>Jaeckel E., von Boehmer H., Manns M.P. Antigen- specific FoxP3-transduced T-cells can control established type 1 diabetes. Diabetes, 2005, 54, 306-10.</p><p>Kochetkova I., Trunkle T., Callis G. et al. Vaccination without autoantigen protects against collagen II-induced arthritis via immune deviation and regula- tory T cells. J. Immunol., 2008, 15, 181(4), 2741-52.</p><p>Prakken B.J., Samodal R., Le T.D. et al. Epitope- specific immunotherapy induces immune deviation of proinflammatory T cells in rheumatoid arthritis. Proc. Natl. Acad. Sci. USA, 2004, 101, 4228-33.</p><p>Gonzalez-Rey E., Fernandez-Martin A., Chorny A. et al. Vasoactive intestinal peptide induces CD4+CD25+ T regulatory cells with therapeutic effect in collageninduced arthritis. Arthritis Rheum., 2006, 54, 864-76.</p><p>Gonzalez-Rey E., Chorny A., O’Valle F. et al. Adrenomedullin protects from experimental arthritis by down-regulating inflammation and Th1 response and inducing regulatory T cells. Am. J. Pathol., 2007, 170, 263-71.</p><p>Gonzalez-Rey E., Chorny A., Varela N. et al. Therapeutic effect of urocortin on collagen-induced arthritis by down-regulation of inflammatory and Th1 responses and induction of regulatory T cells. Arthritis Rheum., 2007, 56, 531-43.</p><p>Gonzalez-Rey E., Chorny A., Fernandez-Martin A. et al. Vasoactive intestinal peptide generates human tolerogenic dendritic cells that induce CD4 and CD8 59 regulatory T cells. Blood, 2006, 107, 3632-8.</p><p>Anderson A.E., Isaacs J.D. T regs and rheumatoid arthritis. Acta Rheumatol. Port., 2008, 33, 17-33. Chen G., Li N., Zang Y.C. et al. Vaccination with selected synovial T cells in rheumatoid arthritis. Arthritis Rheum., 2007, 56, 453-63.</p><p>Morgan M.E., Flierman R., van Duivenvoorde L.M. et al. Effective treatment of collagen-induced arthri- tis by adoptive transfer of CD25+ regulatory T cells. Arthritis Rheum., 2005, 52(7), 2212-21.</p></div><br />


Review

For citations:


Torgashina A.V., Biykovskaya S.Y., Soloviev S.K., Nasonov E.L. T-regulatory cells in systemic lupus erythematosus and rheumatoid arthritis. Rheumatology Science and Practice. 2009;47(3):50-59. (In Russ.) https://doi.org/10.14412/1995-4484-2009-1313

Views: 1090


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1995-4484 (Print)
ISSN 1995-4492 (Online)