Т-регуляторные клетки при ревматоидном артрите
https://doi.org/10.14412/1995-4484-2014-430-437
Аннотация
Аутоиммунные (иммуновоспалительные) ревматические болезни определяются как клинические синдромы, развитие которых связано с «патологической» активацией Т-клеток, В-клеток и других клеток иммунной системы, приводящей к прогрессирующему воспалению и деструкции внутренних органов. Несмотря на высокую эффективность комбинированной терапии геннонженерными биологическими препаратами (ГИБП) и стандартными базисными противовоспалительными препаратами, в первую очередь метотрексатом, менее чем у половины пациентов с ревматоидным артритом (РА) удается достигнуть значимого клинического эффекта и крайне редко – стойкой ремиссии. Комбинированное действие генетических и внешнесредовых факторов может приводить к потере иммунной толерантности, в основе которой лежит нарушение баланса между эффекторными и регуляторными компонентами иммунной системы. Восстановление толерантности без хронической неспецифической иммуносупрессии, наблюдаемой на фоне приема большинства современных противовоспалительных препаратов (включая ГИБП), рассматривается как важнейшая задача фармакотерапии РА. Целью обзора является, во-первых, обсуждение роли так называемых Т-регуляторных клеток (Трег) как одного из критических компонентов поддержания толерантности и, во-вторых, перспективы фармакотерапии РА, связанных с коррекцией функциональной активности Трег.
Об авторах
Е. Л. НасоновРоссия
директор ФГБНУ «НИИР им. В.А. Насоновой», академик РАН, докт. мед. наук, профессор
Е. Н. Александрова
Россия
заведующая лабораторией иммунологии и молекулярной биологии ревматических заболеваний ФГБНУ НИИР им. В.А. Насоновой, докт. мед. наук
А. С. Авдеева
Россия
научный сотрудник лаборатории иммунологии и молекулярной биологии ревматических
заболеваний ФГБНУ НИИР им. В.А. Насоновой, канд. мед. наук
Ю. П. Рубцов
Россия
Список литературы
1. Насонов ЕЛ, редактор. Генно-инженерные биологические препараты в лечении ревматоидного артрита. Москва: ИМА-ПРЕСС; 2013. 549 с. [Nasonov EL, editor. Genno-inzhenernye biologicheskie preparaty v lechenii revmatoidnogo artrita [Genetically engineered biological preparations in treatment of rheumatoid arthritis]. Moscow: IMA-PRESS; 2013. 549 p.]
2. Singh JA, Christensen R, Wells GA, et al. Biologics for rheumatoid arthritis: an overview of Cochrane reviews. Cochrane Database Syst Rev. 2009 Oct 7;(4):CD007848. DOI: 10.1002/14651858.CD007848.pub2.
3. Salliot C, Finckh A, Katchamart W, et al. Indirect comparisons of the efficacy of biological antirheumatic agents in rheumatoid arthritis in patients with an inadequate response to onventional
4. disease-modifying antirheumatic drugs or to an anti-tumor necrosis factor agents: a meta-analysis. Ann Rheum Dis. 2011;70(2):266–71. DOI: 10.1136/ard.2010.132134. Epub 2010 Nov 19.
5. Burmester G, Feist E, Dorner T. Emerging cell and cytokine targets in rheumatoid arthritis. Nat Rev Rheumatol. 2014;10(2):77–88. DOI: 10.1038/nrrheum.2013.168.
6. McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis. N Eng J Med. 2011;365(23):2205–19. DOI: 10.1056/NEJMra1004965.
7. Davidson A, Diamond B. Autoimmune diseases. N Engl J Med. 2001;345(5):340–50. DOI: http://dx.doi.org/10.1056/NEJM200108023450506.
8. Bluestone JA. Mechanisms of tolerance. Immunol Rev. 2011;24(1):5–19. DOI: 10.1111/j.1600-065X.2011.01019.x.
9. Nepom GT, St Clair EW, Turka LA. Challenges in the pursuit of immune tolerance. Immunol Rev. 2011;241(1):49–62. DOI: 10.1111/j.1600-065X.2011.01003.x.
10. Smiek DE, Ehlers MR, Nepom GT. Restoring the balance: immunotherapeutic combinations for autoimmune diseases. Dis Model Mech. 2014;7(5):503–13. DOI: 10.1242/dmm.015099.
11. Gershon RK, Kondo K. Cell unteractions in the induction of tolerance: the role of thymus lymphocytes. Immunology. 1970;18(5):723–37.
12. Sakaguchi S, Sakaguchi N, Asano M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor α-chains (CD25): breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol. 1995;155(3):1151–64.
13. Singer BD, King LS, D’Alessio FR. Regulatory T cell as immunotherapy. Frontiers Immunol. 2014;(5):1–7. DOI: 10.3389/fimmu.2014.00046.
14. Abbas AK, Benoist C, Bluestone JA, et al. Regulatory T cells: recommendations to simplify the nomenclature. Nat Immunol. 2013;14(4):300–8. DOI: 10.1038/ni.2554.
15. Быковская СН, Насонов ЕЛ. Роль дефектов иммуносупрессии в развитии аутоиммунных заболеваний. Научно-практическая ревматология. 2005;(4):81–4. [Bykovskaya SN, Nasonov EL. Role of immunosupression defects in the development of autoimmune diseases. Nauchno-prakticheskaya revmatologiya = Rheumatology Science and Practiсе. 2005;(4):81–4. (In Russ.)]. DOI: http://dx.doi.org/10.14412/1995-4484-2005-623.
16. Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell. 2008;133(5):775–87. DOI: 10.1016/j.cell.2008.05.009.
17. Rudensky AY. Regulatory T cells and FoxP3. Immunol Rev. 2011;241;260–8. DOI: 10.1111/j.1600-065X.2011.01018.x.
18. Lahl K, Loddenkemper C, Drouin C, et al. Selective depletion of Foxp3+ regulatory T cells induces a scurfy-like disease. J Exp Med. 2007;204(1):57–63. DOI:http://dx.doi.org/10.1084/jem.20061852. Epub 2007 Jan 2.
19. Kim JM, Rasmussen JP, Rudensky AY. Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nat Immunol. 2007;8(2):191–7. DOI: http://dx.doi.org/10.1038/ni1428. Epub 2006 Nov 30.
20. Wildin RS, Freitas A. IPEX and FOXP3: clinical and research perspectives. J Autoimmun. 2005;25 Suppl:56–62. DOI: http://dx.doi.org/10.1016/j.jaut.2005.04.008.
21. Zeng H, Chi H. The interplay between regulatory T cells and metabolism in immune regulation. OncoImmunology. 2013;2(11):e26586. Epub 2013 Oct 21. DOI: http://dx.doi.org/10.4161/onci.26586.
22. Tse K, Tse H, Sidney J, et al. T cells in atherosclerosis. Int Immunol. 2013;25(11):615–22. DOI: 10.1093/intimm/dxt043.
23. Miyara M, Yoshioka Y, Kitoh A, et al. Functional delineation and differentiation dynamics of human CD4+ T cells expressing the Foxp3 transcription factor. Immunity. 2009;30(6):899–911. DOI: 10.1016/j.immuni.2009.03.019. Epub 2009 May 21.
24. Miyara M, Ito Y, Sakaguchi S. T reg-cell therapies for autoimmune rheumatic duseases. Nat Rev Rheumatol. 2014. DOI: 10.1038/nrhheum.2014.105.
25. Prakken B, Wehrens E, van Wijl F. Quality or Quantity? Unraveling the role of T reg cells in rheumatoid arthritis. Arthritis Rheum. 2013;65(3):552–4. DOI: 10.1002/art.37831.
26. Shevach EM. Mechanisms of Foxp3+ T regulatory cell-mediated suppression. Immunity. 2009;30(5):636–45. DOI: 10.1016/j.immuni. 2009.04.010.
27. Sakaguchi S, Wing K, Onishi Y, et al. Regulatory T cells: how do they suppress immune responses? Int Immunol. 2009;21(10):1105–11. DOI: 10.1093/intimm/dxp095. Epub 2009 Sep 7.
28. Cribbs AP, Kennedy A, Penn H, et al. Regulatory T cell function in rheumatoid arthritis is compromised by CTLA-4 promoter methylation resulting in a failure to activate the IDO pathway. Arthritis Rheum. 2014. DOI: 10.1002/art.38715
29. Thornton AM, Shevach EM. Suppressor effector function of CD4+CD25+ immunoregulatory T cells is antigen nonspecific. J Immunol. 2000;164(1):183–90. DOI: http://dx.doi.org/10.4049/jimmunol.164.1.183.
30. Sakaguchi S, Vignali DA, Rudensky AY, et al. The plasticity and stability of regulatory T cells. Nat Rev Immunol. 2013;13(6):461–7. DOI: 10.1038/nri3464. Epub 2013 May 17.
31. Suzuki H, Kundig TM, Furlonger C, et al. Deregulated T cell activation and autoimmunity in mice lacking interleukin-2 receptor β. Science. 1995;268(5216):1472–6. DOI: http://dx.doi.org/10.1126/science.7770771.
32. Caudy AA, Reddy ST, Chatila T, et al. CD25 deficiency causes an immune dysregulation, polyendocrinopathy, enteropathy, Xlinked-like syndrome, and defective IL-10 expression from CD4 lymphocytes. J Allergy Clin Immunol. 2007;119(2):482–7. DOI: http://dx.doi.org/10.1016/j.jaci.2006.10.007. Epub 2006 Dec 27.
33. Cao D, van Vollenhoven R, Klareskog L, et al. CD25brightCD4+regulatory T cells are enriched in inflamed joints of patients with chronic rheumatic disease. Arthritis Res Ther. 2004;6(4):R335–46. DOI: http://dx.doi.org/10.1186/ar1192. Epub 2004 Jun 7.
34. Van Amelsfort JMR, Jacobs KMG, Bijlsma JWJ, et al. CD4+CD25+ regulatory T cells in rheumatoid arthritis: differences in the presence, phenotype, and function between peripheral blood and synovial fluid. Arthritis Rheum. 2004;50(9):2775–85. DOI: http://dx.doi.org/10.1002/art.20499.
35. Lawson CA, Brown AK, Bejarano V, et al. Early rheumatoid arthritis is associated with a deficit in the CD4+CD25high regulatory T cell population in peripheral blood. Rheumatology (Oxford). 2006;45(10):1210–7. DOI: http://dx.doi.org/10.1093/rheumatology/kel089. Epub 2006 Mar 29.
36. Jiao Z, Wang W, Jia R, et al. Accumulation of FoxP3-expressing CD4+CD25+ T cells with distinct chemokine receptors in synovial fluid of patients with active rheumatoid arthritis. Scand J Rheumatol. 2007;36(6):428–33. DOI: http://dx.doi.org/10.1080/03009740701482800.
37. Kawashiri SY, Kawakami A, Okada A, et al. CD4+CD25highCD127low/- Treg cell frequency from peripheral blood correlates with disease activity in patients with rheumatoid arthritis. J Rheumatol. 2011;38(12):2517–21. DOI: 10.3899/jrheum.110283. Epub 2011 Sep 15.
38. Ponchel F, Goeb V, Parmar R, et al. An immunological biomarker to predict MTX response in early RA. Ann Rheum Dis. 2013. DOI: 10.1136/annrheumdis-2013-203566.
39. Han GM, O’Neil-Andersen NJ, Zurier RB, Lawrence DA. CD4+CD25high T cell numbers are enriched in the peripheral blood of patients with rheumatoid arthritis. Cell Immunol. 2008;253(1–2):92–101. DOi: 10.1016/j.cellimm.2008.05.007. Epub 2008 Jul 22.
40. Cao D, Malmström V, Baecher-Allan C, et al. Isolation and functional characterization of regulatory CD25brightCD4+ T cells from the target organ of patients with rheumatoid arthritis. Eur J Immunol. 2003;33(1):215–23. DOI: http://dx.doi.org/10.1002/immu.200390024.
41. Mö ttö nen M, Heikkinen J, Mustonen L, et al. CD4+ CD25+ T cells with the phenotypic and functional characteristics of regulatory T cells are enriched in the synovial fluid of patients with rheumatoid arthritis. Clin Exp Immunol. 2005;140(2):360–7. DOI: http://dx.doi.org/10.1111/j.1365-2249.2005.02754.x.
42. Moradi B, Schnatzer P, Hagmann S, et al. CD4+CD25+higyhCD127low-regulatory T cell are enriched in rheumatoid arthritis and osteoarthritis joints – analysis of frequency and phenotype in synovial membrane, synovial fluide and peripheral blood. Arthritis Res Ther. 2014;16(2):R97. DOI: http://dx.doi.org/10.1186/ar4545.
43. Hensor RMA, Hunt L, Patmar R, et al. Predicting the evaluation of inflammatory arthritis in ACPA-positive individuals: can T-cell subset help? Ann Rheum Dis. 2014;73 (Suppl 1):A14. DOI: http://dx.doi.org/10.1136/annrheumdis-2013-205124.32.
44. Ehrenstein, MR, Evans JG, Singt A, et al. Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFα therapy. J Exp Med. 2004;200(3):277–85. DOI: http://dx.doi.org/10.1084/jem.20040165. Epub 2004 Jul 26.
45. McGovern JL, Nguyen DX, Notley CA, et al. Th17 cells are restarained by T reg cells via the inhibition of interleukin-6 in patients with rheumatoid arthritis responding to anti-tumor necrosis factor antibody therapy. Arthritis Rheum. 2012;64(10):3129–38. DOI: 10.1002/art.34565.
46. Herrath J, Muller M, Amoudzur P, et al. The inflammatory milieu in the rheumatic joint reduce regulatory T-cell function. Eur J Immunol. 2011;41(8):2279–90. DOI: 10.1002/eji.201041004. Epub 2011 Jul 4.
47. Valencia X, Stephens G, Goldbach-Mansky R, et al. TNF down modulate the function of human CD4+CG25hiT-regulatory cells. Blood. 2006;108(1):253–61. DOI: http://dx.doi.org/10.1182/blood-2005-11-4567. Epub 2006 Mar 14.
48. Blache C, Lequerre T, Roucheux A, et al. Number and phenotype of rheumatoid artritis patients` CD4+CD26hi regulatory T cells are not affected by adalimumab or etanercept. Rheumatology (Oxford). 2011;50(10):1814–22. DOI: 10.1093/rheumatology/ker183. Epub 2011 Jul 26.
49. Vigna-Perez M, Abud-Mendoza C, Portillo-Salazar H, et al. Immune effects of therapy with adalimumab in patients with rheumatoid arthritis. Clin Exp Immunol. 2005;141(2):372–80.DOI; http://dx.doi.org/10.1111/j.1365-2249.2005.02859.x.
50. Dombrecht EJ, Aerts NE, Schuermegh AJ, et al. Influence of anti-tumor necrosis factor therapy (adalimumab) on regulatory T cells and dendritic cells in rheumatoid arthritis. Clin Exp Rheumatol. 2006;24(1):31–7.
51. Nadkarni S, Mauri C, Ehrenstein MR. Anti-TNF-alpha therapy induces a distinct regulatory T cell population in patients with rheumatoid arthritis via TGF-beta. J Exp Med. 2007;204(1):33–9. DOI: http://dx.doi.org/10.1084/jem.20061531. Epub 2007 Jan 2.
52. Julir A, Erra A, Palacio C, et al. An eight-gene blood expression profile predicts the response to infliximab in rheumatoid arthritis. PLoS One. 2009;4(10):e7556. DOI: 10.1371/journal.pone.0007556.
53. Nie H, Zheng Y, Li R, et al. Phosphorilation of FOXP3 controls regulatory T cell function and is inhibited by TNFα in rheumatoid arthritis. Nat Med. 2013:19(3):322–8. DOI: 10.1038/nm.3085. Epub 2013 Feb 10.
54. Chen X, Oppenheim JJ. Contrasting effects of TNG and anti-TNF on the activation of effector T cells and regulatory T cells in autoimmunity. FEBS Letters. 2011;585(23):3611–8. DOI: 10.1016/j.febslet.2011.04.025. Epub 2011 Apr 15.
55. Ali Y, Shah S. Infliximab-induced systemic lupus erythematosus. Ann Intern Med. 2002;137(7):625–6.
56. Favalli EG, Sinigaglia L, Varenna M, Arnoldi C. Drug-induced lupus following treatment with infliximab in rheumatoid arthritis. Lupus. 2002;11(11):753–5.
57. Noack M, Miossec P. Th17 and regulatory T cell balance in autoimmune and inflammatory diseases. Autoimmunity Rev. 2014;13(6):668–77. DOI: 10.1016/j.autrev.2013.12.004. Epub 2014 Jan 11.
58. Насонов ЕЛ, Денисов ЛН, Станислав МЛ. Интерлейкин 17 – новая мишень для антицитокиновой терапии иммуновоспалительных ревматических заболеваний. Научно-практическая ревматология. 2013;51(5):545–52. [Nasonov EL, Denisov LN, Stanislav ML. Interleukin-17 is a new target for anti-cytokine therapy of immune inflammatory rheumatic diseases. Nauchnoprakticheskaya revmatologiya = Rheumatology Science and Practiсе. 2013;51(5):545–52. (In Russ.)]. DOI: http://dx.doi.org/10.14412/1995-4484-2013-1547.
59. Gaffen SL. Role of IL-17 in the pathogenesis of rheumatoid arthritis. Curr Rheumatol Rep. 2009;11(5):365–70.
60. Насонов ЕЛ, Александрова ЕН, Авдеева АС, Панасюк ЕЮ. Ингибиция интерлейкина 6 – новые возможности фармакотерапии иммуновоспалительных ревматических заболеваний. Научно-практическая ревматология. 2013;51(4):416–27. [Nasonov EL, Aleksandrova EN, Avdeeva AS, Panasyuk EYu. Interleukin 6 inhibition: new possibilities of pharmacotherapy for immunoinflammatory rheumatic diseases. Nauchno-prakticheskaya revmatologiya = Rheumatology Science and Practiсе. 2013;51(4):416–27. (In Russ.)]. DOI: http://dx.doi.org/10.14412/1995-4484-2013-1254.
61. Kimura A., Kishimoto T. IL 6: regulator of Treg/Th17 balance. Eur J Immunol. 2010;40(7):1830–5. DOI: 10.1002/eji.201040391.
62. Samson M, Audia S, Janikashvilili N, et al. Inhibition of interleukin 6 function corrects Th17/Treg imbalance in patients with rheumatoid arthritis. Arthritis Rheum. 2012;64(8):2499–503. DOI: 10.1002/art.34477.
63. Sarantopoulos A, Tselios I, Gkougkourelas I, et al. Tocilizumab leads to a rapid and sustained increase of T regulatory cells in rheumatoid arthritis patients. Arthritis Rheum. 2014. DOI 10.1002/art.38714.
64. Pesce B, Soto L, Sabugo F, et al. Effect of interleukin-6 receptor blockade on the balabce between regulatory T cells and T helper type 17 cells in rheumatoid arthritis patients. Clin Exp Immunol. 2013;171(3):237–42. DOI: 10.1111/cei.12017.
65. Thiolat A, Swmerano L, Pers YM, et al. Interleukin-6 receptor blockade enhances CD39+ regulatory T cell development in rheumatoid arthritis and in experimaental arthritis. Arthritis Rheum. 2014;66(2):273–83. DOI: 10.1002/art.38246.
66. Borsellino G, Kleinewietfeld M, Di Mitri D, et al. Expression of ectonucleotidase CD39 by FoxP3+ Treg: hydrolysis of extracellular ATP and immune supression. Blood. 2007;110(4):1225–32. Epub 2007 Apr 20.
67. Fletcher JM, Lonergan R, Costelloe L, et al. CD39+FoxP3+ regulatory T cells supress pathogenic Th17 cells and are impaired in multiple sclerosis. J Immunol. 2009;183(11):7602–10. DOI: 10.4049/jimmunol.0901881. Epub 2009 Nov 16.
68. Kochetkova I, Thornburg T, Callis G, Pascual DW. Segregated regulatory CD39+CD4+ T cell function: TGF-beta-producing FoxP3- and IL-10-prodicing FoxpP3+ cells are interdependebt for protection against collagen-induced arthritis. J Immunol. 2011;187(9):4654–66. DOI: 10.4049/jimmunol.1100530. Epub 2011 Oct 3.
69. Hamel KM, Cao Y, Ashaye A, et al. B cell depletion enhance T regulatory cell activity essential in the supression of arthritis. J Immunol. 2011;187(9):4900–6. DOI: 10.4049/jimmunol. 1101844. Epub 2011 Sep 23.
70. Feuchtenberger M, Muller S, Roll P, et al. Frequency of regulatory T cells is not affected by transient B cell depletion using anti-CD20 antibodies in rheumatoid arthritis. Open Rheumatol J. 2008;2:81–8. DOI: 10.2174/1874312900802010081. Epub 2008 Dec 3.
71. Pieper J, Herrath J, Raghavan S, et al. CTLA4-IgG (abatacept) therapy modulates T cell effector function in autoantibody-positive rheumatoid arthritis patients. BMC Immunology. 2013;14:34. DOI: 10.1186/1471-2172-14-34.
72. Alvarez-Quiroga C, Abud-Mendoza C, Donuz-Padilla L, et al. CTLA-4-Ig therapy diminishes the frequency but enhances the function of Treg cells in patients with rheumatoid arthritis. J Clin Immunool. 2011;31(4):588–95. DOI: 10.1007/s10875-011-9527-5. Epub 2011 Apr 13.
73. Насонов ЕЛ, Каратеев ДЕ, Чичасова НВ. Новые рекомендации по лечению ревматоидного артрита (EULAR, 2013): место метотрексата. Научно-практическая ревматология. 2014;52(1):8–26. [Nasonov EL, Karateev DE, Chichasova NV. New recommendations for the management of rheumatoid arthritis (EULAR, 2013): the role of methotrexate. Nauchno-prakticheskaya revmatologiya = Rheumatology Science and Practiсе. 2014;52(1):8–26. (In Russ.)]. DOI: http://dx.doi.org/10.14412/1995-4484-2014-8-26.
74. Lina C, Conghua W, Nan L, Ping Z. Combined treatment of etanercept and MTX reserves Th1/Th2, Th17/Treg inbalance in patients with rheumatoid arthritis. J Clin Immunol. 2011;31(4):596–606. DOI: 10.1007/s10875-011-9542-6. Epub 2011 May 12.
75. Xinqiang S, Fei L, Nan L, et al. Therapeutic efficacy of experimental rheumatoid arthritis with low-doses methotrexate by increasing partially CD4+CD25+ Treg and inducing Th1 to Th2 shift in both cells and cytokines. Biomed Pharmacother. 2010;64(7):463–71. DOI: 10.1016/j.biopha.2010.01.007. Epub 2010 Feb 25.
76. Suarez A, Lopez P, Gomez J, Gutierrez C. Enrichment of CD4+CD25high T cell population in patients with systemic lupus erythematosus treated with glucocorticoids. Ann Rheum Dis. 2006;65(11):1512–7. DOI: http://dx.doi.org/10.1136/ard.2005.049924. Epub 2006 Apr 10.
77. Cousens LP, Tassone R, Mazer B, et al. Tregitope update: Mechanism of action parallels IVIg. Autoimmun Rev. 2013;12(3):436–43. DOI: 10.1016/j.autrev.2012.08.017. Epub 2012 Aug 28.
78. Czeloth N. Selective activation of naturally occurring regulatory T cells (TREGs) by the monoclonal antibody BT-061 as a novel therapeutic opportunity: pre-clinical and early clinical results [abstract OP0138]. Ann Rheum Dis. 2010;69 (Suppl. 3):99.
79. Uherek C. The novel regulatory T cell (TREG) agonistic monoclonal antibody (mAb) tregalizumab (BT-061): further characterization of mechanism of action, epitope binding, and clinical effects in patients with rheumatoid arthritis. Available from: www.biotest.de [online] (2011).
80. Suntharalingam G, Perry M, Ward S, et al. Cytokine storm in a phase 1 trial of anti-CD28 monoclonal antibody TGN1412. N Engl J Med. 2006;355(10):1018–28. DOI: http://dx.doi.org/10.1056/NEJMoa063842.
81. Tabares P, Berr S, Romer PS, et al. Human regulatory T cells are selectively activated by low-dose application of the CD28 superagonist TGN1412/TAB08. Eur J Immunol. 2014;44(4):1225–36. DOI: 10.1002/eji.201343967. Epub 2014 Feb 1.
82. Koreth J, Phil D, Matsuoka K et al. Interleukin-2 and regulatory T cells in graft-versus-host disease. N Engl J Med. 2011;365(22):2055–66. DOI: 10.1056/NEJMoa1108188.
83. Saadoun D, Rosenzwaig M, Joly F, et al. Regulatory T-cell responses to low-dose interleukin-2 in HCV-induced vasculitis. N Engl J Med. 2011;365(22):2067–77. DOI: 10.1056/NEJMoa1105143.
84. Long SA, Rieck M, Sanda S, et al. Rapamycin/IL-2 combination therapy in patients with type 1 diabetes augments TREGS yet transiently impairs beta-cell function. Diabetes. 2012;61(9):2340–8. DOI: 10.2337/db12-0049. Epub 2012 Jun 20.
85. Joller N, Kutchroo VK. Good guyes gone bad: exTreg cells promote autoimmune arthritis. Nat Med. 2014;20(1):15–7. DOI: 10.1038/nm.3439.
86. Komatsu N, Okamoto K, Sawa S, et al. Pathogenic conversion of Foxp3 T cell into Th17 cells in autoimmune arthritis. Nat Med. 2014;20(1):62–8. DOI: 10.1038/nm.3432. Epub 2013 Dec 22.
87. Wang T, Sun X, Zhao J, et al. Regulatory T cell in rheumatoid arthritis showed increased plasticity toward Th17 but retained suppressive function in peripheral blood. Ann Rheum Dis. 2014 Feb 12. DOI: 10.1136/annrheumdis-2013-204228.
Рецензия
Для цитирования:
Насонов Е.Л., Александрова Е.Н., Авдеева А.С., Рубцов Ю.П. Т-регуляторные клетки при ревматоидном артрите. Научно-практическая ревматология. 2014;52(4):430-437. https://doi.org/10.14412/1995-4484-2014-430-437
For citation:
Nasonov E.L., Aleksandrova E.N., Avdeeva A.S., Rubtsov Yu.P. T-REGULATORY CELLS IN RHEUMATOID ARTHRITIS. Rheumatology Science and Practice. 2014;52(4):430-437. (In Russ.) https://doi.org/10.14412/1995-4484-2014-430-437