Preview

Rheumatology Science and Practice

Advanced search

MOLECULAR MECHANISMS OF INHIBITION OF COLLAGEN CLEAVAGE ACTIVITY BY DEFEROXAMINE IN THE CARTILAGE OF PATIENTS WITH OSTEOARTHRITIS

https://doi.org/10.14412/1995-4484-2017-48-53

Abstract

Objective: to study the molecular mechanisms underlying the suppression of collagenase activity in the presence of deferoxamine (DFO) in articular cartilage explants from patients with osteoarthritis (OA).

Subjects and methods. The knee joint cartilage obtained during arthroplasty from 33 patients (mean age, 61.8±10.3 years) with OA, and that derived at autopsy from 25 people (mean age 40±6.1 years) without this disease were investigated. The cartilage was cultured in the presence of 10 μm DFO. The gene expression in the cartilage explants was determined by real-time reverse transcriptase and polymerase chain reaction.

Results and discussion. The reduced collagenase activity in the presence of DFO in the articular cartilage explants from patients with OA, which had been shown earlier, was accompanied by the significantly inhibited expression of matrix metalloproteinases 1 and 13 and cathepsin K, which had collagenase activity, as well as the marker of hypertrophic chondrocytes, such as X type collagen, and the proinflammatory cytokines interleukin-1β and tumor necrosis factor-α. DFO did not change the expression levels of the phosphoglucomutase and pyruvate kinase genes responsible for the production of adenosine triphosphate (ATP) during glycolysis and the glucose transporter Glut 1. On the contrary, the expression of the genes associated with ATP generation in the tricarboxylic acid cycle: isocitrate dehydrogenase, succinate dehydrogenase, α-ketoglutarate dehydrogenase, malate dehydrogenase, and adenosine monophosphate- activated protein kinase (AMPK) significantly increased. The expression of AMPK in the articular cartilage of patients with OA was significantly lower than that in healthy individuals.

Conclusion. Inhibition of collagen cleavage in the presence of DFO in the articular cartilage explants from OA patients, which was accompanied by a considerable decrease in the expression of the proteases responsible for degradation of the extracellular matrix, proinflammatory cytokines and chondrocytes hypertrophy, was due to the enhanced activity of mitochondrial oxidative phosphorylation in the chondrocytes.

About the Authors

E. V. Chetina
V.A. Nasonova Research Institute of Rheumatology
Russian Federation

34A, Kashirskoe Shosse, Moscow 115522



G. A. Markova
V.A. Nasonova Research Institute of Rheumatology
Russian Federation
34A, Kashirskoe Shosse, Moscow 115522


A. L. Logunov
V.A. Nasonova Research Institute of Rheumatology
Russian Federation
34A, Kashirskoe Shosse, Moscow 115522


V. V. Kolomatsky
V.A. Nasonova Research Institute of Rheumatology
Russian Federation
34A, Kashirskoe Shosse, Moscow 115522


E. A. Naryshkin
V.A. Nasonova Research Institute of Rheumatology
Russian Federation
34A, Kashirskoe Shosse, Moscow 115522


S. A. Makarov
V.A. Nasonova Research Institute of Rheumatology
Russian Federation
34A, Kashirskoe Shosse, Moscow 115522


A. N. Kuzin
Bureau of Forensic and Medical Examination
Russian Federation

3, Tarnyi Passage, Moscow 115516



References

1. Tchetina EV. Developmental mechanisms in articular cartilage degradation in osteoarthritis. Arthritis. 2011;2011:683970. doi: 10.1155/2011/683970. Epub 2010 Dec 29.

2. Poole AR. Cartilage in Health and Disease. In: Koopman W, editor. Arthritis and Allied Conditions. 15th ed. Chapter 11. Philadelphia, PA, USA: Lippincott, Williams and Wilkins; 2005. P. 223-69.

3. Dahlberg L, Billinghurst RC, Manner P, et al. Selective enhancement of collagenase- mediated cleavage of resident type II collagen in cultured osteoarthritic cartilage and arrest with a synthetic inhibitor that’s speres collagenase (matrix metalloproteinase). Arthritis Rheum. 2000 Mar;43(3):673-82. doi: 10.1002/1529-0131(200003)43:3<673::AID-ANR25>3.0.CO;2-8

4. Poole AR, Howell DS. Etiopathogenesis of osteoarthritis. In: Moskowitz RW, Howell DS, Altman RD, Buckwalter JA, Goldberg VM, editors. Osteoarthritis: Diagnosis and Medical/Surgical Management. 3rd ed. Philadelphia: WB Saunders Co.; 2001. P. 29-47.

5. Lee RB, Urban JP. Evidence for a negative Pasteur effect in articular cartilage. Biochem J. 1997 Jan 1;321(Pt 1):95-102. doi: 10.1042/bj3210095

6. Johnson K, Jung A, Murphy A, et al. Mitochondrial oxidative phosphorylation is a downstream regulator of nitric oxide effects on chondrocyte matrix synthesis and mineralization. Arthritis Rheum. 2000 Jul;43(7):1560-70. doi: 10.1002/1529-0131(200007)43:7<1560::AID-ANR21>3.0.CO;2-S

7. Johnson K, Svensson CI, Etten DV, et al. Mediation of spontaneous knee osteoarthritis by progressive chondrocyte ATP depletion in Hartley guinea pigs. Arthritis Rheum. 2004 Apr;50(4):1216- 25. doi: 10.1002/art.20149

8. Kahn BB, Alquier T, Carling D, Hardie DG. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 2005 Jan;1(1):15-25. doi: 10.1016/j.cmet.2004.12.003

9. Terkeltaub R, Yang B, Lotz M, Liu-Bryan R. Chondrocyte AMPactivated protein kinase activity suppresses matrix degradation responses to proinflammatory cytokines interleukin-1β and tumor necrosis factor α. Arthritis Rheum. 2011 Jul;63(7):1928-37. doi: 10.1002/art.30333

10. Stockwell RA. Morphometry of cytoplasmic components of mammalian articular chondrocytes and corneal keratocytes: species and zonal variations of mitochondria in relation to nutrition. J Anat. 1991 Apr;175:251-61.

11. Mignotte F, Champagne AM, Froger-Gaillard B, et al. Mitochondrial biogenesis in rabbit articular chondrocytes transferred to culture. Biol Cell. 1991;71(1-2):67-72. doi: 10.1016/0248-4900(91)90052-O

12. Otte P. Basic cell metabolism of articular cartilage. Manometric studies. Z Rheumatol. 1991 Sep-Oct;50(5):304-12.

13. Mobasheri A, Vannucci SJ, Bondy CA, et al. Glucose transport and metabolism in chondrocytes: a key to understanding chondrogenesis, skeletal development and cartilage degradation in osteoarthritis. Histol Histopathol. 2002 Oct;17(4):1239-67.

14. Brucker PU, Izzo NJ, Chu CR. Tonic activation of hypoxiainducible factor 1alpha in avascular articular cartilage and implications for metabolic homeostasis. Arthritis Rheum. 2005 Oct;52(10):3181-91. doi: 10.1002/art.21346

15. Martin JA, Martini A, Molinari A, et al. Mitochondrial electron transport and glycolysis are coupled in articular cartilage. Osteoarthritis Cartilage. 2012 Apr;20(4):323-9. doi: 10.1016/j.joca.2012.01.003. Epub 2012 Jan 16.

16. Sauter E, Buckwalter JA, McKinley TO, Martin JA. Cytoskeletal dissolution blocks oxidant release and cell death in injured cartilage. J Orthop Res. 2012 Apr;30(4):593-8. doi: 10.1002/jor.21552.Epub 2011 Sep 16.

17. Goodwin W, McCabe D, Sauter E, et al. Rotenone prevents impact-induced chondrocyte death. J Orthop Res. 2010 Aug;28(8):1057-63. doi: 10.1002/jor.21091

18. Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009 Jan 1;417(1):1-13. doi: 10.1042/BJ20081386

19. Milner PI, Wilkins RJ, Gibson JS. The role of mitochondrial reactive oxygen species in pH regulation in articular chondrocytes. Osteoarthritis Cartilage. 2007 Jul;15(7):735-42. doi: 10.1016/j.joca.2007.01.008. Epub 2007 Feb 15.

20. Loeser RF. Aging and osteoarthritis. Curr Opin Rheumatol. 2011 Sep;23(5):492-6. doi: 10.1097/BOR.0b013e3283494005

21. Turrens JF. Superoxide production by the mitochondrial respiratory chain. Biosci Rep. 1997 Feb;17(1):3-8. doi: 10.1023/A:1027374931887

22. Ramakrishnan P, Hecht BA, Pedersen DR, et al. Oxidant conditioning protects cartilage from mechanically induced damage. J Orthop Res. 2010 Jul;28(7):914-20. doi: 10.1002/jor.21072

23. Henrotin YE, Bruckner P, Pujol JP. The role of reactive oxygen species in homeostasis and degradation of cartilage. Osteoarthritis Cartilage. 2003 Oct;11(10):747-55. doi: 10.1016/S1063-4584(03)00150-X

24. Kobayashi M, Squires GR, Mousa A, et al. Role of interleukin-1 and tumor necrosis factor alpha in matrix degradation of human osteoarthritic cartilage. Arthritis Rheum. 2005 Jan;52(1):128-35. doi: 10.1002/art.20776

25. Blanco FJ, Ochs RL, Schwarz RL, Lotz M. Chondrocyte apoptosis induced by nitric oxide. Am J Pathol. 1995 Jan;146(1):75-85.

26. Ahmad R, Sylvester J, Ahmad M, Zafarullah M. Involvement of H-Ras and reactive oxygen species in proinflammatory cytokine-induced matrix metalloproteinase-13 expression in human articular chondrocytes. Arch Biochem Biophys. 2011 Mar 15;507(2):350-5. doi: 10.1016/j.abb.2010.12.032. Epub 2011 Jan 3.

27. Del Carlo M, Schwartz D, Erickson EA, Loeser RF. Endogenous production of reactive oxygen species is required for stimulation of human articular chondrocyte matrix metalloproteinase production by fibronectin fragments. Free Radic Biol Med. 2007 May 1;42(9):1350-8. doi: 10.1016/j.freeradbiomed.2007.01.035. Epub 2007 Jan 24.

28. Kishimoto H, Akagi M, Zushi S, et al. Induction of hypertrophic chondrocyte-like phenotypes by oxidized LDL in cultured bovine articular chondrocytes through increase in oxidative stress. Osteoarthritis Cartilage. 2010 Oct;18(10):1284-90. doi: 10.1016/j.joca.2010.05.021. Epub 2010 Jul 13.

29. Baker MS, Feigan J, Lowther DA. The mechanism of chondrocyte hydrogen peroxide damage. Depletion of intracellular ATP due to suppression of glycolysis caused by oxidation of glyceraldehyde- 3-phosphate dehydrogenase. J Rheumatol. 1989 Jan;16(1):7-14.

30. Ruiz-Romero C, Carreira V, Rego I, et al. Proteomic analysis of human osteoarthritic chondrocytes reveals protein changes in stress and glycolysis. Proteomics. 2008 Feb;8(3):495-507. doi: 10.1002/pmic.200700249

31. Grishko VI, Ho R, Wilson GL, Pearsall AW 4th. Diminished mitochondrial DNA integrity and repair capacity in OA chondrocytes. Osteoarthritis Cartilage. 2009 Jan;17(1):107-13. doi: 10.1016/j.joca.2008.05.009. Epub 2008 Jun 18.

32. Mathy-Hartert M, Hogge L, Sanchez C, et al. Interleukin-1beta and interleukin-6 disturb the antioxidant enzyme system in bovine chondrocytes: a possible explanation for oxidative stress generation. Osteoarthritis Cartilage. 2008 Jul;16(7):756-63. doi: 10.1016/j.joca.2007.10.009. Epub 2008 Mar 4.

33. Maneiro E, Martin MA, de Andres MC, et al. Mitochondrial respiratory activity is altered in osteoarthritic human articular chondrocytes. Arthritis Rheum. 2003 Mar;48(3):700-8. doi: 10.1002/art.10837

34. Regan EA, Bowler RP, Crapo JD. Joint fluid antioxidants are decreased in osteoarthritic joints compared to joints with macroscopically intact cartilage and subacute injury. Osteoarthritis Cartilage. 2008 Apr;16(4):515-21. doi: 10.1016/j.joca.2007.09.001. Epub 2008 Jan 18.

35. Fukui N, Purple CR, Sandell LJ. Cell biology of osteoarthritis: the chondrocyte’s response to injury. Curr Rheumatol Rep. 2001 Dec;3(6):496-505. doi: 10.1007/s11926-001-0064-8

36. Huser CA, Davies ME. Calcium signaling leads to mitochondrial depolarization in impact- induced chondrocyte death in equine articular cartilage explants. Arthritis Rheum. 2007 Jul;56(7):2322-34. doi: 10.1002/art.22717

37. Kim J, Xu M, Xo R, et al. Mitochondrial DNA damage is involved in apoptosis caused by proinflammatory cytokines in human OA chondrocytes. Osteoarthritis Cartilage. 2010 Mar;18(3):424-32. doi: 10.1016/j.joca.2009.09.008. Epub 2009 Oct 1.

38. Ruiz-Romero C, Calamia V, Mateos J, et al. Mitochondrial dysregulation of osteoarthritic human articular chondrocytes analyzed by proteomics: a decrease in mitochondrial superoxide dismutase points to a redox imbalance. Mol Cell Proteomics. 2009 Jan;8(1):172- 89. doi: 10.1074/mcp.M800292-MCP200. Epub 2008 Sep 9.

39. Tchetina EV, Antoniou J, Tanzer M, et al. TGFbeta2 suppresses collagen cleavage in cultured human osteoarthritic cartilage, reduces expression of genes associated with chondrocyte hypertrophy and degradation, and increases prostaglandin E2 production. Am J Pathol. 2006 Jan;168(1):131-40. doi: 10.2353/ajpath.2006.050369

40. Tchetina EV, Di Battista JA, Zukor DL, Poole AR. Prostaglandin E2 suppresses collagen cleavage in cultured human osteoarthritic cartilage, involves a reduction in expression of proinflammatory cytokines and those associated with chondrocyte hypertrophy. Arthritis Res Ther. 2007;9(4):R75. doi: 10.1186/ar2273

41. Jallali N, Ridha H, Thrasivoulou C, et al. Modulation of intracellular reactive oxygen species level in chondrocytes by IGF-1, FGF, and TGF-beta1. Connect Tissue Res. 2007 48(3):149-58. doi: 10.1080/03008200701331516

42. Hiran TS, Moulton PJ, Hancock JT. Detection of superoxide and NADPH oxidase in porcine articular chondrocytes. Free Radic Biol Med. 1997;23(5):736-43. doi: 10.1016/S0891-5849(97)00054-3

43. Biemond P, Swaak AJ, van Eijk HG, Koster JF. Superoxide dependent iron release from ferritin in inflammatory diseases. Free Radic Biol Med. 1988 4(3):185-98. doi: 10.1016/0891-5849(88)90026-3

44. Четина ЕВ. Ингибирование активности расщепления коллагена в хряще больных остеоартрозом при активации гликолиза. Остеопороз и остеопатии. 2011;(1):8-12 [Chetina EV. Inhibition of collagen cleavage in cartilage of patients with osteoarthritis at the activation of glycolysis. Osteoporoz i Osteopatii. 2011;(1):8-12 (In Russ.)].

45. Chua AC, Ingram HA, Raymond KN, Baker E. Multidentate pyridinones inhibit the metabolism of nontransferrin-bound iron by hepatocytes and hepatoma cells. Eur J Biochem. 2003 Apr;270(8):1689-98. doi: 10.1046/j.1432-1033.2003.03525.x

46. Altman R, Asch E, Bloch D, et al. Development of criteria for the classification and reporting of osteoarthritis: classification of osteoarthritis of the knee. Arthritis Rheum. 1986 Aug;29(8):1039-49. doi: 10.1002/art.1780290816

47. Buckwalter JA, Brown TD. Joint injury, repair, and remodeling: roles in posttraumatic osteoarthritis. Clin Orthop Relat Res. 2004 Jun;(423):7-16. doi: 10.1097/01.blo.0000131638.81519.de

48. Martin JA, Scherb MB, Lembke LA, et al. Damage control mechanisms in articular cartilage: the role of the insulin-like growth factor I axis. Iowa Orthop J. 2000;20:1-10.

49. Petursson F, Husa M, June R, et al. Linked decreases in liver kinase B1 and AMP- activated protein kinase activity modulate matrix catabolic responses to biomechanical injury in chondrocytes. Arthritis Res Ther. 2013 Jul 25;15(4):R77. doi: 10.1186/ar4254

50. Husa M, Petursson F, Lotz M, et al. C/EBP homologous protein drives pro-catabolic responses in chondrocytes. Arthritis Res Ther. 2013;15(6):R218. doi: 10.1186/ar4415

51. Ruiz-Romero C, Calamia V, Rocha B, et al. Hypoxia conditions differentially modulate human normal and osteoarthritic chondrocyte proteomes. Proteome Res. 2010 Jun 4;9(6):3035-45. doi: 10.1021/pr901209s

52. Tomita M, Sato EF, Nishikawa M, et al. Nitric oxide regulates mitochondrial respiration and functions of articular chondrocytes. Arthritis Rheum. 2001 Jan;44(1):96-104. doi: 10.1002/1529-0131(200101)44:1<96::AID-ANR13>3.0.CO;2-#

53. Lopez-Armada MJ, Carames B, Martin MA, et al. Mitochondrial activity is modulated by TNFα and IL-1β in normal human chondrocyte cells. Osteoarthritis Cartilage. 2006 Oct;14(10):1011-22. doi: 10.1016/j.joca.2006.03.008. Epub 2006 May 5.

54. Blanco FJ, Rego I, Ruiz-Romero C. The role of mitochondria in osteoarthritis. Nat Rev Rheumatol. 2011 Mar;7(3):161-9. doi: 10.1038/nrrheum.2010.213. Epub 2011 Jan 4.


Review

For citations:


Chetina E.V., Markova G.A., Logunov A.L., Kolomatsky V.V., Naryshkin E.A., Makarov S.A., Kuzin A.N. MOLECULAR MECHANISMS OF INHIBITION OF COLLAGEN CLEAVAGE ACTIVITY BY DEFEROXAMINE IN THE CARTILAGE OF PATIENTS WITH OSTEOARTHRITIS. Rheumatology Science and Practice. 2017;55(1):48-53. (In Russ.) https://doi.org/10.14412/1995-4484-2017-48-53

Views: 732


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1995-4484 (Print)
ISSN 1995-4492 (Online)