Development of the doctrine of auto-inflammatory diseases in the XXI century
https://doi.org/10.14412/1995-4484-2018-5-18
Abstract
About the Authors
E. S. FedorovRussian Federation
134A, Kashirskoe Shosse, Moscow 115522
S. O. Salugina
Russian Federation
134A, Kashirskoe Shosse, Moscow 115522
N. N. Kuzmina
Russian Federation
134A, Kashirskoe Shosse, Moscow 115522
References
1. Kuz'mina NN, Salugina SO, Fedorov ES. Autovospalitel'nye zabolevaniya i sindromy. Uchebno-metodicheskoe posobie [Autoinflammatory diseases and syndromes. Teaching guide]. Moscow: IMA-PRESS; 2012 (In Russ.).
2. Kuzmina NN, Fedorov ES, Movsisyan GR, Salugina SO. Autoinflammatory diseases – modern view on the problem. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2009;47(1):63-75 (In Russ.). doi: 10.14412/1995-4484-2009-144
3. Masters SL, Simon A, Aksentijevich I, Kastner DL. Horror autoinflammaticus: the molecular pathophysiology of autoinflammatory disease. Annu Rev Immunol. 2009;27:621-68. doi: 10.1146/annurev.immunol.25.022106.141627
4. Salugina SO, Fedorov ES, Kuzmina NN. Current approaches to diagnosis, treatment, and monitoring in patients with cryopyrin-associated periodic syndromes (CAPS). Sovremennaya Revmatologiya = Modern Rheumatology Journal. 2016;10(2):4-11 (In Russ.). doi: 10.14412/1996-7012-2016-2-4-11
5. Salugina SO Fedorov ES, Kuzmina NN, et al. Autoinflammatory diseases in rheumatology: Russian experience. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2016;54(3):271-80 (In Russ.). doi: 10.14412/1995-4484-2016-271-280
6. Gattorno M, Martini A. Beyond the NLRP3 Inflammasome. Autoinflammatory Diseases Reach Adolescence. Arthritis Rheum. 2013;65:1137-47. doi: 10.1002/art37882
7. Toutoui I, Galeotti C, Rossi-Semerano L. The expanding spectrum of rare monogenic autoinflammation diseases. Orpanet J Rare Diseases. 2013;8;132.
8. Fedorov ES. Proteasomal diseases are a new branch of autoinflammatory pathology. Sovremennaya Revmatologiya = Modern Rheumatology Journal. 2013;(4):38-46 (In Russ.). doi: 10.14412/1996-7012-2013-2437
9. Fedorov ES, Kamenets EA, Radenska-Lopovok SG, et al. Blau syndrome or early-onset sarcoidosis. Pediatriya. Zhurnal im. G.N. Speranskogo. 2016;95:86-95 (In Russ.).
10. Canna SW, Goldbach-Mansky R. New monogenic autoinflammatory diseases – a clinical overview. Semin Immunopathol. 2015;37(4):387-94. doi: 10.1007/s00281-015-0493-5
11. Syuji Takei. Systemic JIA as an Autoinflammatory Disease. Inflammat Regenerat. 2011;31:52-65. doi: 10.2492/inflammregen.31.52
12. Vaster SJ, Kuis W, Grom A. Systemic JIA. New Developments in Understanding of the Pathophysiology and Therapy. Best Pract Clin Rheumatol. 2009;23:655-64. doi: 10.1016/j.berh.2009.09.003
13. Efthimiou P, Nandini Moorthy L, Mavragani CP, et al. Adult Onset Still’s Disease and Autoinflammation. Intern J Inflammat. 2012;Article ID 964751. doi: 10.1155/2012/964751
14. Perez-Fernandez OM, Mantilla RD, Cruz-Tapias P, et al. Spondiloarthropathies in Autoimmune Disease and Vice Vera. Autoim Dis. 2012;Article ID736384. doi: 10.1155/2012/736384
15. Punzi L, Scanu A, Ramonda R, Oliviero F. Gout as autoinflammatory disease: new mechanisms for more appropriated treatment targets. Autoimm Rev. 2012;12:66-71. doi: 10.1016/j.autrev.2012.07.024
16. Bianco AM, Girardelly M, Tommasini A. Genetics of inflammatory bowel diseases from multifactorial to monogenic forms. World J Gastroenrerol. 2015;21:12296-310. doi: 10.3748/wjg.v21.i43.12296
17. Lachman HJ, Quartier P, So A, et al. The Emerging Role of Intertleukine-1β in Autoinflammatory Diseases. Arthritis Rheum. 2011;63:314-324. doi: 10.1002/art.30105
18. Nedospasov SA. Vrozhdennyi immunitet i ego mekhanizmy [Congenital immunity and its mechanisms]. Moscow: Nauchnyi mir; 2012 (In Russ.).
19. Ozkurede VU, Franchi L. Immunology in clinic review series; focus on autoinflammatory diseases: role of inflammasomes in autoinflammattory syndromes. Clin Exp Immunol. 2011;167:382- 90. doi: 10.1111/j.1365.2011.04535
20. Garlanda C, Dinarello CA, Mantovani A. The Interleukin-1 family: back to the future. Immunity. 2013;39:1003-18. doi: 10.1016/j.immuni2013.11.010
21. Nasonov EL, Eliseev MS. Role of interleukin 1 in the development of human diseases. NauchnoPrakticheskaya Revmatologiya = Rheumatology Science and Practice. 2016;54(1):60-77 (In Russ.). doi: 10.14412/1995-4484-2016-60-77
22. De Torre-Minguela C, Mesa del Castillo P, Pelegrin P. The NLRP3 and Pyrin Inflammasomes: Implications in the Pathophysiology of Autoinflammatory Diseases. Front Immunol. 2017;8:43. doi: 10.3389/fimmu.2017.00043
23. Goldbach-Mansky R, Kastner DL. Autoinflammation: The prominent role of IL-1 in monogenic autoinflammatoty diseases and implications for common illnesses. J Allergy Clin Immunol. 2009;124:1141-51. doi: 10.1016/j.jaci.2009.11.016
24. Aksentijevich I, Masters SL, Fergusson PD, et al. An autoinflammatory disease with Deficiency of the Interleukin-1-Receptor Antagonist. N Engl J Med. 2009;360:2426-37. doi: 10.1056/NEJMoa0807865
25. Reddy S, Jia S, Geoffrey R, et al. An autoinflammatory disease due to homozygous deletion of the IL1RN locus. N Engl J Med. 2009;360:2438-44. doi: 10.1056/NEJMoa0809568
26. Stenerson M, Dufendach K, Aksentijevich I, et al. The first case of compound heterozygous IL1RN mutations causing deficiency of the interleukin-1-receptor antagonist. Arthritis Rheum. 2011;63:4018-22. doi: 10.1002/art.30565
27. Jesus AA, Osman M, Silva CA, et al. A novel mutation of IL1RN in the deficiency of interleukin-1 receptor antagonist syndrome. Description of two unrelated cases from Brazil. Arthritis Rheum. 2011;63:4007-17. doi: 10.1002/art.30588
28. Drenth JP, Guisset L, Grateau G, et al. Mutation in the gene encoding mevalonate kinase cause hyper-IgD and periodic fever syndrome. Nat Genet. 1999;22:178-81. doi: 10.1038/9696
29. Jordan CT, Cao L, Roberson ED, et al. PSORS2 is due to mutations in CARD14. Am J Hum Genet. 2012;90:784-95. doi: 10.1016/j.ajhg.2012.03.012
30. Stern SH, Ferguson PJ. Autoinflammatory Bone Diseases. Rheum Dis Clin North Am. 2013;39(4):735-49. doi: 10.1016/j.rdc.2013.05.002
31. Kopchak OL, Kostik MM, Mushkin AYu. Chronic non-bacterial (“sterile”) osteomyelitis in the practice of pediatric rheumatology, modern approaches to diagnosis and treatment: a review of the literature and analysis of its own data. Voprosy Sovremennoi Pediatrii. 2016;15(1):33-44 (In Russ.). doi: 10.15690/vsp.v15i1.1498
32. Jansson AF, Renner ED, Ramser J, et al. Classification of nonbacterial osteitis retrospective study of clinical, immunological and genetic aspects in 89 patients. Rheumatology. 2007;46:154-60. doi: 10.1093/rheumatology/kel190
33. Jansson A, Muller TH, Gileria L, et al. Clinical score of non-bacterial osteitis in children and adults. Arthritis Rheum. 2009;60:1152-9. doi: 10.1002/art.24402
34. Generali E, Bose T, Selmi C, et al. Nature versus nurture in the spectrum of rheumatic diseases: Classification of spondyloarthritis as autoimmune or autoinflammatory. Autoimmun Rev. 2018;17(9):935-41. doi: 10.1016/j.autrev.2018.04.002
35. Ferguson P, Chen S, Tayeh M, et al. Homozygous mutations in LPIN2 are responsible for the syndrome of chronic recurrent multifocal osteomyelitis and congenital dyserythropoietic anaemia (Majeed syndrome). Med Genet. 2005;42:551-7. doi: 10.1136/jmg.2005.030759
36. Ueki Y, Tiziani V, Santanna C, et al. Mutations in the gene encoding c-Abl-binding protein SH3BP2 cause cherubism. Nat Genet. 2001;28:125-6. doi: 10.1038/88832
37. Papadaki ME, Lietman SA, Levine M, et al. Cherubism: best clinical practice. Orphanet J of Rare Diseases. 2012;7(Suppl 1):56. doi: 10.1186/1750-1172-7-S1-S6
38. Smith EJ, Allantaz F, Bennett L, et al. Clinical, Molecular, and Genetic Characteristics of PAPA Syndrome: A Review. Current Genomics. 2010;11:519-27. doi: 10.2174/138920210793175921
39. Ben-Chetrit E, Peleg H, Aamar S, Heyman SN. The spectrum of MEFV clinical presentations – is it familial Mediterranean fever only? Rheumatology (Oxford). 2009;48:1455-9. doi: 10.1093/rheumatology/kep296
40. Romberg N, Al Moussawi K, Nelson-Williams C, et al. Mutation of NLRC4 causes a syndrome enterocolitis and autoinflammation. Nat Genet. 2014;46:1135-9. doi: 10.1038/ng.3066
41. Canna SW, Almeida de Jesus A, Gouni S, et al. An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome. Nat Genet. 2014;46:1140-6. doi: 10.1038/ng.3089
42. Lo MS. Insights Gained From the Study of Pediatric Systemic Lupus Erythematosus. Front Immunol. 2018;9:1278. doi: 10.3389/fimmu.2018.01
43. Haas D, Hoffmans GF. Mevalonate kinase deficiencies: from mevalonic aciduria to hyperimmunoglobulinemia D syndrome. Orphanet J Rare Dis. 2006;1:13-8. doi: 10.1186/1750-1172-1-13
44. Jeru I. Cochet E, Duquesnoy P, et al. Involvement of TNFRSF11A Molecular Defects in Autoinflammatory Disorders. Arthritis Rheum. 2014;66:2621-7. doi: 10.1002/art.38727
45. Agarwal AK, Xing C, De Martino GN. PSMB8 encoding the β5i proteasome subunit is mutated in joint contractures, muscle atrophy, microcytic anemia and panniculitis-indused lipodystrophy syndrome. Am J Hum Genet. 2010;87:866-72. doi: 10.1016/j.ajhg.2010.10.031
46. Liu Y, Ramot Y, Torrelo A, et al. Mutation in Proteasome Subunit β Type 8 cause Chronic Atypical Neutrophilic Dermatosis With Lipodystrophy and Elevated Temperature With Evidence of Genetic and Phenotypic Heterogenety. Arthritis Rheum. 2012;64:895-907. doi: 10.1002/art.33368
47. Garg A, Hernandez MD, Sousa AB, et al. An autosomal recessive syndrome of joint contracture, muscular atrophy, microcytic anemia and panniculitis-associated lipodystrophy. J Clin Endocrinol Metab. 2010;95:E58-63. doi: 10.1210/jc.2010-0488
48. Brehm A, Liu Y, Sheikh A, et al Additive loss-of-function proteasome subunit mutations in CANDLE/PRAAS patients promote type I IFN production. J Clin Invest. 2016;126:795. doi: 10.1172/JCI86020
49. Volpi S, Picco P, Caorsi R, et al. Type I interferonopathies in pediatric rheumatology. Pediatr Rheum. 2016;14:35. doi: 10.1186/s12969-016-0094-4
50. Arima K, Kinoshita A, Mishima H, et al. Proteasome assembly defect due to a proteasome subunit beta type 8 (PSMB8) mutation causes the autoinflammatory disorder, Nakajo – Nishimura syndrome. Proc Nat Acad Sci USA. 2011;108(36):14914-9. doi: 10.1073/pnas.1106015108
51. Liu Y, Jesus AA, Marrero B, et al. Activated STING in a Vascular and Pulmonary Syndrome. New Engl J Med. 2015;371(6):507-18. doi: 10.1056/NEJMoa1312625
52. Chia J, Eroglu FK, ö zen S, et al. Failure to thrive, interstitial lung disease, and progressive digital necrosis with onset in infancy. J Am Acad Dermatol. 2016;74:186-9. doi: 10.1016/j.jaad.2015.10.007
53. Zhou Q, Ombrello AK, Zavialov A, et al. Early-Onset Stroke and Vasculopathy Associated with Mutation in ADA2. New Engl J Med. 2014;370:911-20. doi: 10.1056/NEJMoa1307361
54. Navon Elkan P, Pierce SB, Segel R, et al. Mutant Adenosine Deaminase 2 in a Polyarteritis Nodosa Vasculopaphy. New Engl J Med. 2014;370:921-31. doi: 10.1056/NEJMoa1307362
55. Thorlacius GE, Wahren-Herlenius M, Rönnblom L. An update on the role of type I interferons in systemic lupus erythematosus and Sjö gren's syndrome. Curr Opin Rheumatol. 2018;30(5):471-81. doi: 10.1097/BOR.0000000000000524
56. Psarras A, Emery P, Vital EM. Type I interferon-mediated autoimmune diseases: pathogenesis, diagnosis and targeted therapy. Rheumatology (Oxford). 2017;56(10):1662-75. doi: 10.1093/rheumatology/kew431
57. Molho-Pessach V, Lerer I, Abelovich D, et al. The H syndrome is caused by mutation in the nucleoside transporter hENT. Am J Hum Genet. 2008;83:101-7. doi: 10.1016/j.ajhg.2008.09.013
58. Zhou Q, Lee GS, Brady J, et al. A hypermorphic missense mutation in PLCG2, encoding phospholipase Cγ2, causes a dominantly inherited autoinflammatory disease with immunodeficiency. Am J Hum Genet. 2012;91:713-20. doi: 10.1016/j.ajhg.2012.08.006
59. Ozen S, Bilginer Y. A clinical guide to autoinflammatory diseases: familial Mediterranean fever and next-of-kin. Nat Rev Rheumatol. 2014;10:135-47. doi: 10.1038/nrrheum.2013.174
60. Giannelou A, Zhou Q, Kastner DL. When less is more: primary immunodeficiency with an autoinflammatory kick. Curr Opinion Allergy Clin Immunol. 2014;14:491-500. doi: 10.1091.ACI.0000000000000117
61. Zhou Q, Yu X, Demirkaya E, et al. Biallelic hipomotphic mutations in linear deubquitinase define otulipenia, an early-onset autoinflammatory disease. Proc Natl Acad Sci USA. 2016;113:10127-32. doi: 10.1073/pnas.1612594113
62. Zhou Q, Wang H, Schwartz DM, et al. Loss-of-function mutations in TNFAIP3 leading to A20 haploinsufficiency cause an early onset autoinflammatory syndrome. Nat Genet. 2016;48:67- 73. doi: 10.1038/ng3459
63. Shigemura T, Kaneko N, Kobayashi N, et al. Novel heterozygous C243Y A20/TNFAIP3 gene mutation is responsible for chronic inflammation in autosomaldominant Behcet’s disease. RMD Open. 2016;2:e000223. doi: 10.1136/rmdopen-2015-000223
64. Bens S, Zichner T, Stü tz AM, et al. SPAG7 is a candidate gene for the periodic fever, aphtous stomatitis, pharyngitis and adenopathy (PFAPA) syndrome. Genes Imun. 2014;15:190-4. doi: 10.1038/gene.2013.73
65. Di Giola S, Bedoni N, von Scheven-Gete A, et al. Analisis of the genetic basis of periodic fever with aphtous stomatitis, pharingitis, and cervical adenitis (PFAPA) syndrome. Scient Rep. 2015;10200. doi: 10.1038/srep10200
66. Duncan CJA, Dinnigan E, Theobald R, et al. Early onset autoimmune disease due to a heterozygous loss-of-function mutation in TNFAIP3(A20). Ann Rheum Dis. 2017. pii: annrheumdis-2016- 210944. doi: 10.1136/annrheumdis-2016-210944
67. Boisson B, Laplanite E, Prando C, et al. Immunodeficiency, autoinflammation and amylopectinosis with inherited HOIL-1 and LUBAC deficiency. Nat Immunol. 2012;13:1178-86. doi: 10.1038/ni2457
68. Shcherbina AYu. Autoinflammatory diseases: An immunologist’s view. Sovremennaya Revmatologiya = Modern Rheumatology Journal. 2015;(1):48-54 (In Russ.). doi: 10.14412/1996-7012-2015-1-48-54
69. Schmidt RE, Grimbacher B, Witte T. Autoimmunity and primary immunodeficiency: two sides of the same coin? Nat Rev Rheumatol. 2017;14(1):7-18. doi: 10.1038/nrrheum.2017.19
70. Al-Herz W, Bousgiha A, Casanova JL Primary Immunodeficiency Diseases: An Update on the Classification from the International Union of Immunological Societies Expert Committee for Primary Immunodeficiency. Front Immunol. 2014;225:162.
71. Melki I, Lambot K, Couloigner V, et al. Mutation of the SLC29A3 Gene: A New Cause of a Monogenic Autoinflammatory Condition. Pediatrics. 2013;131:e1308 doi: 10.1542/peds.2012-2255
72. Marshall GS, Edwards KM, Butter Y, et al. Syndrome of periodic fever, pharingitis and aphtous stomatitis. J Pediatr. 1987;110:43. doi: 10.1016/S0022-3476(87)80285-8
73. Tatochenko VK, Fedorov AM, Bakradze MD, et al. Syndrome of periodic fever, aphthous stomatitis, pharyngitis and cervical lymphadenitis (Marshall syndrome). Voprosy Sovremennoi Pediatrii. 2003;2(6):42- 5 (In Russ.).
74. Maidannik VG. Modern aspects of periodic fever syndrome with aphthous stomatitis, pharyngitis and cervical lymphadenitis (Marshall syndrome) in children. Mezhdunarodnyi Zhurnal Pediatrii, Akusherstva I Ginekologii. 2013;3(3):63-74 (In Russ.).
75. Cochard M, Clet J, Le L, et al. PFAPA syndrome is not sporadic disease. Rheumatology. 2010;49:1984-7. doi: 10.1093/rheumatology/keq187
76. Hofer M, Pillet P, Cochard M-M, et al. International periodic fever, aphtous stomatitis, pharyngitis and cervical adenitis syndrome cohort: Discription of distinct phenotypes in 301 patients. Rheumatology. 2014;53:1125-9. doi: 10.1093/rheumatology/ket460
77. Perko D, Dabeljak M, Toplak N, Avcin T. Clinical Features and Genetic Background of the Periodic Fever, Aphtous Stomatitis, Pharyngitis and Adenitis: a Single Center Longitudinal Study of 81 Patients. Mediat Inflammat. 2015:Article ID 563876. doi: 10.1115/2015/293417
78. Padeh S, Berezniak N, Zemer D, et al. Periodic fever, aphtous stomatitis, pharyngitis and adenopathy syndrome: clinical characteristics and outcome. J Peadiatr. 1999;135:98-101. doi: 10.1016/S0022-3476(99)70335-5
79. Dagan E, Gershoni-Baruch R, Khatib I, et al. MEFV, TNF1rA, CARD15 and NLRP3mutation analisis un PFAPA. Rheumatol Int. 2010;30:633-6. doi: 10.1007/s00296-009-1037-x
80. Berkun Y, Levy R, Hurwitz A, et al. The familial Mediterranean fever gene as a modifier of periodic fever, aphtous stomatitis, pharyngitis and adenopathy syndrome. Sem Arthritis Rheum. 2011;40:467-72. doi: 10.1016/j.semarthrit.2010.06.009
81. Kraszewska-Glomba B, Matkowska-Kocjan A, Szenborn L. The Pathogenesis of Periodic fever, Aphtous Stomatitis, Pharyngitis and Cervical Adenitis syndrome: A Review of Current Research. Mediat Inflammat. 2015:Article ID 563876. doi: 10.1115/2015/563876
82. Yamazaki T, Hokibara S, Shigemura T, et al. Markedly elevated CD64 expression on neutrophils and monocytes are useful for diagnosis of periodic fever, aphtous stomatitis, pharyngitis and cervical adenitis (PFAPA) syndrome during flares. Clin Rheum. 2014;33:677-83. doi: 10.1007/s10067-014-2542-1
83. Stojanov S, Lapidus S, Chitkara P, et al. Periodic fever, aphthous stomatitis, pharyngitis, and adenitis (PFAPA) is a disorder of innate immunity and Th1 activation responsive to IL-1 blockade. Proc Natl Acad Sci USA. 2011;108:7148-53. doi: 10.1073/pnas.1103681108
84. Toutoui I. Inheritance of autoinflammatory diseases: shifting paradigms and nomenclature. J Med Genet. 2013;50:349-59. doi: 10.1136/jmedgenet-2013-101577
Review
For citations:
Fedorov E.S., Salugina S.O., Kuzmina N.N. Development of the doctrine of auto-inflammatory diseases in the XXI century. Rheumatology Science and Practice. 2018;56:5-18. (In Russ.) https://doi.org/10.14412/1995-4484-2018-5-18