CORONAVIRUS DISEASE 2019 (COVID-19): A RHEUMATOLOGIST’S THOUGHTS
https://doi.org/10.14412/1995-4484-2020-123-132
Abstract
current concepts, it is the «hyperimmune» response, and not just the effect only of the virus itself, that underlies lung damage and deaths from COVID-19, special attention is drawn to the effects of antirheumatic therapy that includes glucocorticoids, disease-modifying anti-rheumatic drugs (DMARDs), biological agents, and targeted DMARDs, which can have a multidirectional effect on the course of COVID-19. There are significant theoretical prerequisites for the repurposing of some drugs widely used in rheumatology for the treatment of COVID-19 and its complications. Consideration is given to the prospects of studying the immunopathology of COVID-19 and to the theoretical justifications for the use of antimalarial 4-aminoquinolines, anti-cytokine monoclonal antibodies (mAbs), and Janus kinase inhibitors for the prevention of complications and for the treatment of COVID-19.
About the Author
E. L. NasonovRussian Federation
34A, Kashirskoe Shosse, Moscow 115522
8, Trubetskaya St., Build. 2, Moscow 119991
References
1. Liu T, Zhang J, Yang Y, et al. The potential role of interleukin 6 in monitoring severe case of coronavirus disesase. MedRxiv. 2020. doi: 10.1101/2020/03/01/20029769
2. Richman DD, Whitley RJ, Hayden FG. Clinical Virology. 4th ed. Washington: ASM Press; 2016.
3. Gao Y, Li T, Han M, et al. Diagnostic utility of clinical laboratory data determinations for patients with the severe COVID-19. J Med Virol. 2020 Mar 17. doi: 10.1002/jmv.25770
4. Chan-Yeung M, Xu RH. SARS: epidemiology. Respirology. 2003;8:S9-14. doi: 10.1046/j.1440-1843.2003.00518.x
5. Shakoory B, Carcillo JA, Chatham WW, et al. Interleukin-1 receptor blockade is associated with reduced mortality in sepsis patients with features of macrophage activation syndrome: reanalysis of a prior phase iii trial. Crit Care Med. 2016;44:275-81. doi: 10.1097/CCM.0000000000001402
6. Middle East Respiratory Syndrome Coronavirus. Available at: https://www.who.int/emergencies/mers-cov/en/ (accessed 16.02.2020).
7. Eloseily EM, Weiser P, Crayne CB, et al. Benefit of anakinra in treating pediatric secondary hemophagocytic lymphohistiocytosis. Arthritis Rheum. 2020 Feb;72(2):326-34. doi: 10.1002/art.41103
8. Lu H, Stratton CW, Tang YW. Outbreak of pneumonia of unknown etiology in Wuhan China: the mystery and the miracle. J Med Virol. 2020 Jan 16. doi: 10.1002/jmv.25678
9. Nasonov EL, Lila AM. Inhibition of interleukin 6 in immune inflammatory rheumatic diseases: achievements, prospects, and hopes. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2017;55(6):590-9. doi: 10.14412/1995-4484-2017-590-599 (In Russ.)
10. WHO Coronavirus disease 2019 (COVID-19) situation report – 52. Available at: https://www.who.int/docs/default-source/coronaviruse/20200312-sitrep-52-covid-19.pdf?sfvrsn=e2bfc9c0_2
11. Koch C, Barrett D, Teachey T. Tocilizumab for the treatment of chimeric antigen receptor T cell-induced cytokine release syndrome. Exp Rev Clin Immunol. 2019;15:813-22. doi: 10.1080/1744666X.2019.1629904
12. Lai CC, Shih TP, Ko WC, et al. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int J Antimicrob Agents. 2020;55(3):105924. doi: 10.1016/j.ijantimicag.2020.105924
13. Norelli M, Camisa B, Barbiera G, et al. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat Med. 2019;24(6):739-48. doi: 10.1038/s41591-018-0036-4
14. Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10224):565-74. doi: 10.1016/S0140-6736(20)30251-8
15. Maude SL, Frey N, Shaw PA, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014 Oct 16;371(16):1507-17. doi: 10.1056/NEJMoa1407222
16. WHO. Coronavirus disease (COVID-2019) situation reports. 2020. Available at: https://www.who.int/emergencies/diseases/novelcoronavirus-2019/situation-reports (accessed 05.03.2020).
17. Giavridis T, van der Stegen SJC, Eyquem J, et al. CAR T cellinduced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nat Med. 2018;24:731-8. doi: 10.1038/s41591-018-0041-7
18. Gorbalenya AE, Baker SC, Baric RS, et al. Severe acute respiratory syndrome-related coronaviruses: the species and its virus – a statement of the Coronavirus Study Group. bioRvxiv. 2020 Feb 11. doi: 10.1101/2020.02.07.937862
19. Xu X, Han M, Sun W, et al. Effective treatment of Severe COVID-19 patients with tocilizumab. ChinaXiv (internet) 2020 Mar 5. Available at: https://ser.es/wpcontent/uploads/2020/03/TCZ-and-COVID-19.pdf
20. Smatti MK, Cyprian FS, Nasrallah GK, et al. Viruses and autoimmunity: A review on the potential interaction and molecular mechanisms. Viruses. 2019;11(8). pii: E762. doi: 10.3390/v11080762
21. Canna SW, Girard C, Malle L, et al. Life-threatening NLRC4-associated hyperinflammation successfully treated with IL-18 inhibition. J Allergy Clin Immunol. 2017;139(5):1698-701. doi: 10.1016/j.jaci.2016.10.022
22. Joo YB, Lim YH, Kim KJ, et al. Respiratory viral infections and the risk of rheumatoid arthritis. Arthritis Res Ther. 2019;21(1):199. doi: 10.1186/s13075-019-1977-9
23. Lounder DT, Bin Q, de Min C, Jordan MB. Treatment of refractory hemophagocytic lymphohistiocytosis with emapalumab despite severe concurrent infections. Blood Adv. 2019 Jan 8;3(1):47-50. doi: 10.1182/bloodadvances.2018025858
24. Li G, Fan Y, Lai Y, et al. Coronavirus infections and immune responses. J Med Virol. 2020;92(4):424-32. doi: 10.1002/jmv.25685
25. Nasonov EL, Lila AM. Janus kinase inhibitors in immunoinflammatory rheumatic diseases: new opportunities and prospects. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2019;57(1):8-16. doi: 10.14412/1995-4484-2019-8-16 (In Russ.)
26. Kingsmore KM, Grammer AC, Lipsky PE. Drug repurposing to improve treatment of rheumatic autoimmune inflammatory diseases. Nat Rev Rheumatol. 2020;16(1):32-52. doi: 10.1038/s41584-019-0337-0
27. Schwartz DM, Kanno Y, Villarino A, et al. JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat Rev Drug Discov. 2017;16(12):843-62. doi: 10.1038/nrd.2017.201
28. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497-506. doi: 10.1016/S0140-6736(20)30183-5
29. Zhao Y, Zhao Z, Wang Y, et al. Single-cell RNA expression profiling of ACE2, the putative receptor of Wuhan 2019-nCov. Bio Rxiv. 2020 (pub. online Jan 26). doi: 10.1101/2020.01.26.919985
30. Ruan Q, Yang K, Wang W, et al. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020 (pub. online 2020 March 3). doi: 10.1007/s00134-020-05991-x
31. Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020 (pub. online Jan 30). doi: 10.1016/S0140-6736(20)30251-8
32. Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet. 2020;395(10223):P507-13. doi: 10.1016/S0140-6736(20)30211-7
33. Richardson P, Griffin I, Tucker C, et al. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet. 2020 Feb 15;395(10223):e30-e31. doi: 10.1016/S0140-6736(20)30304-4
34. Lei C, Huigo L, Wei L, et al. Analysis of clinical features of 29 patients with 2019 novel coronavirus pneumonia. Chin J Tuberc Respir Dis. 2020 Feb;43:E005.
35. Stebbing J, Phelan A, Griffin I, et al. COVID-19: combining antiviral and anti-inflammatory treatments. Lancet Infect Dis. 2020 Feb 27. doi: 10.1016/S1473-3099(20)30132-8
36. Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020 Feb 7. doi: 10.1001/jama.2020.1585
37. Ahmed A, Merrill SA, Alsawah F, et al. Ruxolitinib in adult patients with secondary haemophagocytic lymphohistiocytosis: an open-label, single-centre, pilot trial. Lancet Haematol. 20192019;6(12):e630-e637. doi: 10.1016/S2352-3026(19)30156-5
38. Shi H, Han X, Jiang N, et al. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect Dis. 2020 Feb 24. doi: 10.1016/S1473-3099(20)30086-4
39. Henter JI, Horne A, Arico M, et al. HLH-2004: Diagnostic and therapeutic guidelines for hemophagocytic lymphohistiocytosis. Pediatr Blood Cancer. 2007 Feb;48(2):124-31. doi: 10.1002/pbc.21039
40. Adhikari SP, Meng S, Wu YJ, et al. Epidemiology, causes, clinical manifestation and diagnosis, prevention and control of coronavirus disease (COVID-19) during the early outbreak period: a scoping review. Infect Dis Poverty. 2020;9(1):29. doi: 10.1186/s40249-020-00646-x
41. Fardet L, Galicier L, Lambotte O, et al. Development and validation of the HScore for the diagnosis of reactive hemophagocytic syndrome. Arthritis Rheum. 2014;66(9):2613-20. doi: 10.1002/art.38690
42. He F, Deng Y, Li W. Coronavirus Disease 2019 (COVID-19): What we know? J Med Virol. 2020 Mar 14. doi: 10.1002/jmv.25766
43. Li LQ, Huang T, Wang YQ, et al. 2019 novel coronavirus patients' clinical characteristics, discharge rate and fatality rate of metaanalysis. J Med Virol. 2020 Mar 12. doi: 10.1002/jmv.25757
44. Yang Y, Peng F, Wang R, et al. The deadly coronaviruses: The 2003 SARS pandemic and the 2020 novel coronavirus epidemic in China. J Autoimmun. 2020 Mar 3:102434. doi: 10.1016/j.jaut.2020.102434
45. Rodriguez-Morales AJ, Cardona-Ospina JA, Gutierrez-Ocampo E, et al.; Latin American Network of Coronavirus Disease 2019-COVID-19 Research (LANCOVID-19). Electronic address: https://www.lancovid.org. Clinical, laboratory and imaging features of COVID-19: A systematic review and meta-analysis. Travel Med Infect Dis. 2020 Mar 13:101623. doi: 10.1016/j.tmaid.2020.101623
46. Xu Z, Shi L, Wang Y, et al. Pathological finding of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020. (Pub. Feb 18, 2020). doi: 10.1016/S2213-2600(20)30076-X
47. Tian S, Hu W, Niu L, et al. Pulmonary pathology of erarly phase 2019 novel coronavirus (COVID-19) pneumonia in two patients with lung cancer. J Thorac Oncol. 2020. doi: 10.20944/preprints202002.0220.v2
48. Fung SY, Yuen KS, Ye ZW, et al. A tug-of-war between severe acute respiratory syndrome coronavirus 2 and host antiviral defence: lessons from other pathogenic viruses. Emerg Microbes Infect. 2020 Mar 14;9(1):558-70. doi: 10.1080/22221751.2020.1736644
49. Matthay MA, Zemans RL, Zimmerman GA, et al. Acute respiratory distress syndrome. Nat Rev Dis Primers. 2019;5(1):18. doi: 10.1038/s41572-019-0069-0
50. Clerkin KJ, Fried JA, Raikhelkar J, et al. Coronavirus Disease 2019 (COVID-19) and Cardiovascular Disease. Circulation. 2020 Mar 21. doi: 10.1161/CIRCULATIONAHA.120.046941
51. Yang J, Sheng Y, Gou X, et al. Prevalence of comorbidities in the novel Wuhan coronavirus (COVID-19) infection: a systemic reviews and meta-analysis. Int J Infect Dis. 2020. doi: 10.1016/J.ijid.2020.03.017
52. Gordeev AV, Galushko EA, Nasonov EL. The concept of multimorbidity in rheumatologic practice. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2014;52(4):362-5. doi: 10.14412/1995-4484-2014-362-365 (In Russ.)
53. Ferguson LD, Siebert S, McInnes IB, Sattar N. Cardiometabolic comorbidities in RA and PsA: lessons learned and future directions. Nat Rev Rheumatol. 2019;15(8):461-74. doi: 10.1038/s41584-019-0256-0
54. Arrossi AV. Pulmonary Pathology in Rheumatic Disease. Clin Chest Med. 2019;40(3):667-77. doi: 10.1016/j.ccm.2019.05.011
55. Antin-Ozerkis D, Hinchcliff M. Connective tissue disease-associated interstitial lung disease: evaluation and management. Clin Chest Med. 2019;40(3):617-36. doi: 10.1016/j.ccm.2019.05.008
56. Panafidina TA, Kondratyeva LV, Gerasimova EV, et al. Comorbidity in rheumatoid arthritis. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2014;52(3):283-9. doi: 10.14412/1995-4484-2014-283-289 (In Russ.)
57. Jin YH, Cai L, Cheng ZS, et al. A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus [2019-nCoV] infected pneumonia. Mil Med Res. 2020;7:4. doi: 10.1186/s40779-020-0233-6
58. Lippi G, Plebani M. Laboratory abnormalities in patients with COVID-2019 infection. Clin Chem Lab Med. 2020. doi: org/10.1515/ccim-2020-0198
59. Lippi G. Sepsis biomarkers: past present and future. Clin Chem Lab Med. 2019;57:1281-3. doi: 10.1515/cclm-2018-1347
60. Belov BS, Tarasova GM, Muravyeva NV. Role of biomarkers in the diagnosis of bacterial infections in rheumatic diseases. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2019;57(3):333-8. doi: 10.14412/1995-4484-2019-333-338 (In Russ.)
61. Han H, Yang L, Liu R, et al. Prominent changes in blood coagulation of patients with SARS-CoV-2 infection. Clin Chem Lab Med. 2020 Mar 16. doi: 10.1515/cclm-2020-0188
62. Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020 Feb 19. doi: 10.1111/jth.14768
63. Lippi G, Plebani M, Michael Henry B. Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A meta-analysis. Clin Chim Acta. 2020 Mar 13. doi: 10.1016/j.cca.2020.03.022
64. Li T. Diagnosis and clinical management of severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) infection: an operational recommendation of Peking Union Medical College Hospital (V2.0). Emerg Microbes Infect. 2020 Mar 14;9(1):582-5. doi: 10.1080/22221751.2020.1735265
65. Loeffelholz MJ, Tang YW. Laboratory diagnosis of emerging human coronavirus infections – the state of the art. Emerg Microbes Infect. 2020 Mar 20:1-26. doi: 10.1080/22221751.2020.1745095
66. Lippi G, Simundic AM, Plebani M. Potential preanalytical and analytical vulnerabilities in the laboratory diagnosis of coronavirus disease 2019 (COVID-19). Clin Chem Lab Med. 2020 Mar 16. doi: 10.1515/cclm-2020-0285
67. Chung M, Bernheim A, Mei X, et al. CT imaging features of 2019 novel coronavirus (2019-nCoV). Radiology. 2020. doi: 10.1148/radio.2020200230
68. Huang O, Liu T, Huang L, et al. Use of chest CT in combination with negative RT-PCR assay for the 2019 novel coronavirus but high clinical suspicion. Radiology. 2020. doi: 10.1148/radiol.2020200330
69. Xie X, Zghong Z, Zhao M, et al. Chest CT for typical 2019-nCoV pneumonia: relationship to negative RT-PCR testing. Radiology. 2020. doi: 10.1148/radiol.2020200343
70. Tao Ai, Zhenlu Yang, Hongyan Hou, et al. Correlation of Chest CT and RT-PCR Testing in Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases. Radiology. 2020;200642. doi: 10.1148/radiol.2020200642
71. Bai HX, Hsieh B, Xiong Z, et al. Performance of radiologists in differentiating COVID-19 from viral pneumonia on chest CT. Radiology 2020 Mar 10:200823. doi: 10.1148/radiol.2020200823
72. Yan Li, Liming Xia Coronavirus disease 2019 (COVID-19): Role of Chest CT in diagnosis and management. Am J Roentgen: 1-7. doi: 10.2214/AJR.20.22954
73. Han R, Huang L, Jiang H, et al. Early clinical and CT manifestations of coronavirus disease 2019 (COVID-19) pneumonia. AJR Am J Roentgenol. 2020 Mar 17:1-6. doi: 10.2214/AJR.20.22961
74. Liu C, Zhou Q, Li Y, et al. Research and development on therapeutic agents and vaccines for COVID-19 and related coronavirus diseases. ACS Cent Sci. 2020. doi: 10.1021/acscentsci.0c00272
75. Dhama K, Sharun K, Tiwari R, et al. COVID-19, an emerging coronavirus infection: advances and prospects in designing and developing vaccines, immunotherapeutics, and therapeutics. Hum Vaccin Immunother. 2020 Mar 18:1-7. doi: 10.1080/21645515.2020.1735227
76. Channappanavar R, Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol. 2017;39(5):529-39. doi: 10.1007/s00281-017-0629-x
77. Schrezenmeier E, Dörner T. Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology. Nat Rev Rheumatol. 2020;16(3):155-66. doi: 10.1038/s41584-020-0372-x
78. Nasonov EL, Avdeeva AS. Immunoinflammatory rheumatic diseases associated with type I interferon: new evidence. NauchnoPrakticheskaya Revmatologiya = Rheumatology Science and Practice. 2019;57(4):452-61. doi: 10.14412/1995-4484-2019-452-461 (In Russ.)
79. Rolain JM, Colson P, Raoult D. Recycling of chloroquine and its hydroxyl analogue to face bacterial, fungal and viral infection in the 21st century. Int J Antimicrob Agents. 2007;30:297-308.
80. Devaux CA, Rolain JM, Colson P, Raoult D. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? Int J Antimicrob Agents. 2020 Mar 11:105938. doi: 10.1016/j.ijantimicag.2020.105938
81. Boelaert JR, Piette J, Sperber K. The potential place of chloroquine in the treatment of HIV-1-infected patients. J Clin Virol. 2001;20:137-40. doi: 10.1016/S1386-6532(00)00140-2
82. Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30:269-71. doi: 10.1038/s41422-020-0282-0
83. Gao J, Tian Z, Yang X. Breakthrough: chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends. 2020 Feb. doi: 10.5582/bst.2020.01047
84. Zhou D, Dai SM, Tong Q. COVID-19: a recommendation to examine the effect of hydroxychloroquine in preventing infection and progression. J Antimicrob Chemother. 2020 Mar 20. doi: 10.1093/jac/dkaa114
85. Liu J, Cao R, Xu M, et al. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov. 2020;6:16. doi: 10.1038/s41421-020-0156-0. eCollection 2020.
86. Cortegiani A, Ingoglia G, Ippolito M, et al. A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. J Crit Care. 2020 Mar 10. doi: 10.1016/j.jcrc.2020.03.005
87. Russell CD, Millar JE, Baillie JK. Clinical evidence does not suppot corticosteroid treatment for 2019-nCoV lung injury. Lancet. 2020;395:473-5. doi: 10.1016/S0140-6736(20)30317-2
88. Ni Y-N, Chen G, Sun J, et al. The effect of corticosteroids on mortality of patients with influenza pneumonia: a systematic review and meta-analysis. Crit Care. 2019;23:99. doi: 10.1186/s13054-019-2395-8
89. Strehl C, Ehlers L, Gaber T, Buttgereit F. Glucocorticoids-allrounders tackling the versatile players of the immune system. Front Immunol. 2019 Jul 24;10:1744. doi: 10.3389/fimmu.2019.01744. eCollection 2019.
90. Hardy RS, Raza K, Cooper MS. Therapeutic glucocorticoids: mechanisms of actions in rheumatic disease. Nat Rev Rheumatol. 2020. doi: 10.1038/s415840020-0371-y
91. Cain DW, Cidlowski JA. Immune regulation by glucocorticoids. Nat Rev Immunol. 2017. doi: 10.1038/nri2017.1
92. Oray M, Abu Samra K, Ebrahimiadib N, et al. Long-term side effects of glucocorticoids. Expert Opin Drug Saf. 2016;15(4):457-65. doi: 10.1517/14740338.2016.1140743
93. Heming N, Sivanandamoorthy S, Meng P, et al. Immune effects of corticosteroids in sepsis. Front Immunol. 2018;9:1736. doi: 10.3389/fimmu.2018.01736
94. Rygard SL, Butler E, Granholm A, et al. Low-dose corticosteroids for adult patients with septic shock: a systematic review with meta-analysis and trial sequential analysis. Intensive Care Med. 2018 Jul;44(7):1003-16. doi: 10.1007/s00134-018-5197-6
95. Meduri GU, Bridges L, Shih MC, et al. Prolonged glucocorticoid treatment is associated with improved ARDS outcomes: analysis of individual patients' data from four randomized trials and triallevel meta-analysis of the updated literature. Intensive Care Med. 2016;42(5):829-40. doi: 10.1007/s00134-015-4095-4
96. Chan ED, Chan MM, Chan MM, Marik PE. Use of glucocorticoids in the critical care setting: Science and clinical evidence. Pharmacol Ther. 2020;206:107428. doi: 10.1016/j.pharmthera.2019.107428
97. Arabi YM, Mandouran Y, Al-Hameed F, et al. Glucocosteroid therapy for critically ill parients with middle east respiratory syndrome. Am J Resp Crit Care Med. 2018;197L757-767. doi: 10.1164/rccm.201706-1172OC
98. Peiris JSM, Chu CM, Cheng VCC, et al. Clinical progression and viral load in a community outbreak or coronavirus-associated SARS pneumonia: a prospective study. Lancet. 2003;361:1767-72. doi: 10.1016/S0140-6736(03)13412-5
99. Zhou Y-H, Qin Y-Y, Lu Y-Q, et al. Effectiveness of glucocorticoid therapy in patients with severe novel coronavirus pneumonia: protocol of a randomized controlled trial. Chin Med J. 2020. doi: 10.1097/CM9/ 0000000000000791
100. WHO. Clinical management of severe acute respiratory infection when novel coronavirus [nCoV] infection is suspected. Available at: https://www.who.int/publications-detail/clinical-management-of-severe-acute-respiratory-infection-when-novelcoronavirus-[ncov]-infection-is-suspected (accessed 09.02.2020).
101. Behrens EM, Koretzky GA. Review: Cytokine storm syndrome: looking toward the precision medicine era. Arthritis Rheum. 2017;69(6):1135-43. doi: 10.1002/art.40071
102. Gupta KK, Khan MA, Singh SK. Constitutive inflammatory cytokine storm: a major threat to human health. J Interferon Cytokine Res. 2020;40(1):19-23. doi: 10.1089/jir.2019.0085
103. Ramos-Casals M, Brito-Zeron P, Lopez-Guillermo A, et al. Adult haemophagocytic syndrome. Lancet. 2014;383:1503-16. doi: 10.1016/S0140-6736(13)61048-X
104. Crayne CB, Albeituni S, Nichols KE, Cron RQ. The Immunology of Macrophage Activation Syndrome. Front Immunol. 2019 Feb 1;10:119. doi: 10.3389/fimmu.2019.00119
105. Karakike E, Giamarellos-Bourboulis EJ. Macrophage activationlike syndrome: a distinct entity leading to early death in sepsis. Front Immunol. 2019 Jan 31;10:55. doi: 10.3389/fimmu.2019.00055
106. Shimabukuro-Vornhagen A, Gö del P, Subklewe M, et al. Cytokine release syndrome. J Immunother Cancer. 2018;6(1):56. doi: 10.1186/s40425-018-0343-9
107. Wu D, Yang XO. Th17 responses in cytokine storm of COVID-19: an emerging target of JAK2 inhibitor fedratinib. J Microb Immun Infect. 2020. doi: 1016/j.jmii.2020.03.005
108. Faure E, Poissy J, Goffard C, et al. Distinct immune response in two MERS-CoV-infected patients: can we go from bench to bedside. PLoS One. 2014;9:e88776. doi: 10.1371/journal.pone.0088716
109. Josset L, Menachery VD, Graliski LE, et al. Cell host response to infection with novel human coronavirus EMC predict potential antiviral and important differences with SARS coronavirus. mBio. 2013;4:e00165-00113. doi: 10.1128/mBio.00165-13
110. Bermejo-Martin JE, Ortiz de Lejarazu R, Pumarola T, et al. Th1 and Th17 hypercytokinemia as early host response signature in severe pandemic influenza. Crit Care. 2009;13:R201. doi: 10.1186/cc8208
111. Zhou Y, Fu B, Zheng X, et al. Abberant pathogenic GM-CSF+T cells and inflammatory CD14+CD16+ monocyte in severe pulmonary syndrome patients of a new coronavirus. bioRxiv. 2020. doi: 10.1101/2020.02.12.945576
112. Liu T, Zhang J, Yang Y, et al. The potential role of interleukin 6 in monitoring severe case of coronavirus disesase. MedRxiv. 2020. doi: 10.1101/2020/03/01/20029769
113. Gao Y, Li T, Han M, et al. Diagnostic utility of clinical laboratory data determinations for patients with the severe COVID-19. J Med Virol. 2020 Mar 17. doi: 10.1002/jmv.25770
114. Shakoory B, Carcillo JA, Chatham WW, et al. Interleukin-1 receptor blockade is associated with reduced mortality in sepsis patients with features of macrophage activation syndrome: reanalysis of a prior phase iii trial. Crit Care Med. 2016;44:275-81. doi: 10.1097/CCM.0000000000001402
115. Eloseily EM, Weiser P, Crayne CB, et al. Benefit of anakinra in treating pediatric secondary hemophagocytic lymphohistiocytosis. Arthritis Rheum. 2020 Feb;72(2):326-34. doi: 10.1002/art.41103
116. Nasonov EL, Lila AM. Inhibition of interleukin 6 in immune inflammatory rheumatic diseases: achievements, prospects, and hopes. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2017;55(6):590-9. doi: 10.14412/1995-4484-2017-590-599 (In Russ.)
117. Koch C, Barrett D, Teachey T. Tocilizumab for the treatment of chimeric antigen receptor T cell-induced cytokine release syndrome. Exp Rev Clin Immunol. 2019;15:813-22. doi: 10.1080/1744666X.2019.1629904
118. Norelli M, Camisa B, Barbiera G, et al. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat Med. 2019;24(6):739-48. doi: 10.1038/s41591-018-0036-4
119. Maude SL, Frey N, Shaw PA, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014 Oct 16;371(16):1507-17. doi: 10.1056/NEJMoa1407222
120. Giavridis T, van der Stegen SJC, Eyquem J, et al. CAR T cellinduced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nat Med. 2018;24:731-8. doi: 10.1038/s41591-018-0041-7
121. Xu X, Han M, Sun W, et al. Effective treatment of Severe COVID-19 patients with tocilizumab. ChinaXiv (internet) 2020 Mar 5. Available at: https://ser.es/wpcontent/uploads/2020/03/TCZ-and-COVID-19.pdf
122. Canna SW, Girard C, Malle L, et al. Life-threatening NLRC4-associated hyperinflammation successfully treated with IL-18 inhibition. J Allergy Clin Immunol. 2017;139(5):1698-701. doi: 10.1016/j.jaci.2016.10.022
123. Lounder DT, Bin Q, de Min C, Jordan MB. Treatment of refractory hemophagocytic lymphohistiocytosis with emapalumab despite severe concurrent infections. Blood Adv. 2019 Jan 8;3(1):47-50. doi: 10.1182/bloodadvances.2018025858
124. Nasonov EL, Lila AM. Janus kinase inhibitors in immunoinflammatory rheumatic diseases: new opportunities and prospects. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2019;57(1):8-16. doi: 10.14412/1995-4484-2019-8-16 (In Russ.)
125. Schwartz DM, Kanno Y, Villarino A, et al. JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat Rev Drug Discov. 2017;16(12):843-62. doi: 10.1038/nrd.2017.201
126. Zhao Y, Zhao Z, Wang Y, et al. Single-cell RNA expression profiling of ACE2, the putative receptor of Wuhan 2019-nCov. Bio Rxiv. 2020 (pub. online Jan 26). doi: 10.1101/2020.01.26.919985
127. Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020 (pub. online Jan 30). doi: 10.1016/S0140-6736(20)30251-8
128. Richardson P, Griffin I, Tucker C, et al. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet. 2020 Feb 15;395(10223):e30-e31. doi: 10.1016/S0140-6736(20)30304-4
129. Stebbing J, Phelan A, Griffin I, et al. COVID-19: combining antiviral and anti-inflammatory treatments. Lancet Infect Dis. 2020 Feb 27. doi: 10.1016/S1473-3099(20)30132-8
130. Ahmed A, Merrill SA, Alsawah F, et al. Ruxolitinib in adult patients with secondary haemophagocytic lymphohistiocytosis: an open-label, single-centre, pilot trial. Lancet Haematol. 20192019;6(12):e630-e637. doi: 10.1016/S2352-3026(19)30156-5
131. Henter JI, Horne A, Arico M, et al. HLH-2004: Diagnostic and therapeutic guidelines for hemophagocytic lymphohistiocytosis. Pediatr Blood Cancer. 2007 Feb;48(2):124-31. doi: 10.1002/pbc.21039
132. Fardet L, Galicier L, Lambotte O, et al. Development and validation of the HScore for the diagnosis of reactive hemophagocytic syndrome. Arthritis Rheum. 2014;66(9):2613-20. doi: 10.1002/art.38690
Review
For citations:
Nasonov E.L. CORONAVIRUS DISEASE 2019 (COVID-19): A RHEUMATOLOGIST’S THOUGHTS. Rheumatology Science and Practice. 2020;58(2):123-132. https://doi.org/10.14412/1995-4484-2020-123-132