Preview

Научно-практическая ревматология

Расширенный поиск

Проблемы ранней системной красной волчанки в период пандемии COVID-19

https://doi.org/10.47360/1995-4484-2021-119-128

Полный текст:

Аннотация

Системная красная волчанка (СКВ) – аутоиммунное ревматическое заболевание неизвестной этиологии, характеризующееся гиперпродукцией органонеспецифических аутоантител к различным компонентам клеточного ядра и цитоплазмы и развитием иммуновоспалительных повреждений внутренних органов. Дебюту СКВ предшествует бессимптомный период, характеризующийся нарушениями иммунологической толерантности к собственным аутоантигенам, определяющимися многоплановым взаимодействием внешнесредовых, генетических и эпигенетических факторов, гормональными нарушениями, патологией микробиома, стрессорными воздействиями и др. Развитие определенного спектра характерных для СКВ клинических симптомов наряду с обнаружением «волчаночных» аутоантител отражает прогрессирование иммунопатологического процесса при СКВ, однако общепризнанный термин, определяющий состояние пациента, имеющее отдельные серологические и клинические признаки, характерные для этого заболевания, отсутствует. В ревматологии в настоящее время наиболее часто используется понятие «неполная» СКВ. Рассматриваются проблемы ранней диагностики СКВ, клинические и лабораторные «предикторы» трансформации «неполной» СКВ в «достоверную» СКВ, сложности диагностики СКВ в период пандемии COVID-19. Особое внимание уделено сравнительной характеристике иммунопатологических механизмов СКВ и COVID-19.

Об авторах

Е. Л. Насонов
ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой»; ФГАОУ ВО «Первый Московский государственный медицинский университет имени И.М. Сеченова» Минздрава России (Сеченовский Университет)
Россия

115522, Москва, Каширское шоссе, 34а
119991, Москва, ул. Трубецкая, 8, стр. 2



Т. В. Попкова
ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой»
Россия

115522, Москва, Каширское шоссе, 34а



Т. А. Панафидина
ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой»
Россия

115522, Москва, Каширское шоссе, 34а



Список литературы

1. Kaul A, Gordon C, Crow MK, Touma Z, Urowitz MB, van Vollenhoven R, et al. Systemic lupus erythematosus. Nat Rev Dis Primers. 2016;2:16039. doi: 10.1038/nrdp.2016.39

2. Tsokos GC, Lo MS, Costa Reis P, Sullivan KE. New insights into the immunopathogenesis of systemic lupus erythematosus. Nat Rev Rheumatol. 2016;12(12):716-730. doi: 10.1038/nrrheum

3. Rekvig OP. Autoimmunity and SLE: Factual and semantic evidence-based critical analyses of definitions, etiology, and pathogenesis. Front Immunol. 2020;11:569234. doi: 10.3389/fimmu.2020.569234

4. Piga M, Arnaud L. The main challenges in systemic lupus erythematosus: Where do we stand? J Clin Med. 2021;10(2):243. doi: 10.3390/jcm10020243

5. Lockshin MD, Barbhaiya M, Izmirly P, Buyon JP, Crow MK. SLE: Reconciling heterogeneity. Lupus Sci Med. 2019;6(1):e000280. doi: 10.1136/lupus-2018-000280

6. Lo MS, Tsokos GC. Recent developments in systemic lupus erythematosus pathogenesis and applications for therapy. Curr Opin Rheumatol. 2018;30(2):222-228. doi: 10.1097/BOR.0000000000

7. Niewold TB. Advances in lupus genetics. Curr Opin Rheumatol. 2015;27(5):440-447. doi: 10.1097/BOR.0000000000000205

8. Kuo CF, Grainge MJ, Valdes AM, See LC, Luo SF, Yu KH, et al. Familial aggregation of systemic lupus erythematosus and coaggregation of autoimmune diseases in affected families. JAMA Intern Med. 2015;175(9):1518-1526. doi: 10.1001/jamainternmed.2015.3528

9. Pisetsky DS, Lipsky PE. New insights into the role of antinuclear antibodies in systemic lupus erythematosus. Nat Rev Rheumatol. 2020;16(10):565-579. doi: 10.1038/s41584-020-0480-7

10. Doria A, Zen M, Canova M, Bettio S, Bassi N. SLE diagnosis and treatment: When early is early. Autoimmun Rev. 2010;10(1):55-60. doi: 10.1016/j.autrev.2010.08.014

11. Oglesby A, Korves C, Laliberté F, Dennis G, Rao S. Impact of early versus late systemic lupus erythematosus diagnosis on clinical and economic outcomes. Appl Health Econ Health Policy. 2014;12(2):179-190. doi: 10.1007/s40258-014-0085-x

12. Aggarwal R, Ringold S, Khanna D, Neogi T, Johnson SR. Distinctions between diagnostic and classification criteria? Arthritis Care Res (Hoboken). 2015;67(7):891-897. doi: 10.1002/acr.22583

13. Aringer M, Costenbader K, Daikh D, Brinks R, Mosca M, Ramsey-Goldman R, et al. 2019 European League Against Rheumatism/American College of Rheumatology classification criteria for systemic lupus erythematosus. Ann Rheum Dis. 2019;78(9):1151-1159. doi: 10.1136/annrheumdis-2018-214819

14. Fanouriakis A, Tziolos N, Bertsias G, Boumpas DT. Update οn the diagnosis and management of systemic lupus erythematosus. Ann Rheum Dis. 2021;80(1):14-25. doi: 10.1136/annrheumdis-2020-218272

15. Petri M, Orbai AM, Alarcón GS, Gordon C, Merrill JT, Fortin PR, et al. Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum. 2012;64(8):2677-2686. doi: 10.1002/art.34473

16. Inês L, Silva C, Galindo M, López-Longo FJ, Terroso G, Romão VC, et al.; Rheumatic Diseases Registry of the Portuguese Society of Rheumatology; Registry of Systemic Lupus Erythematosus Patients of the Spanish Society of Rheumatology. Classification of systemic lupus erythematosus: Systemic Lupus International Collaborating Clinics versus American College of Rheumatology criteria. A comparative study of 2,055 patients from a real-life, International Systemic Lupus Erythematosus Cohort. Arthritis Care Res (Hoboken). 2015;67(8):1180-1185. doi: 10.1002/acr.22539

17. Aringer M, Johnson SR. Classifying and diagnosing systemic lupus erythematosus in the 21st century. Rheumatology (Oxford). 2020;59(Suppl 5):v4-v11. doi: 10.1093/rheumatology/keaa379

18. Adamichou C, Nikolopoulos D, Genitsaridi I, Bortoluzzi A, Fanouriakis A, Papastefanakis E, et al. In an early SLE cohort the ACR-1997, SLICC-2012 and EULAR/ACR-2019 criteria classify non-overlapping groups of patients: use of all three criteria ensures optimal capture for clinical studies while their modification earlier classification and treatment. Ann Rheum Dis. 2020;79(2):232-241. doi: 10.1136/annrheumdis-2019-216155

19. Pons-Estel GJ, Ugarte-Gil MF, Harvey GB, Wojdyla D, Quintana R, Saurit V, et al.; Grupo Latino Americano De Estudio de Lupus (GLADEL). Applying the 2019 EULAR/ACR lupus criteria to patients from an established cohort: a Latin American perspective. RMD Open. 2020;6(1):e001097. doi: 10.1136/rmdopen-2019-001097

20. Adamichou C, Genitsaridi I, Nikolopoulos D, Nikoloudaki M, Repa A, Bortoluzzi A, et al. Lupus or not? SLE Risk Probability Index (SLERPI): a simple, clinician-friendly machine learning-based model to assist the diagnosis of systemic lupus erythematosus. Ann Rheum Dis. 2021 Feb 10:annrheumdis-2020-219069. doi: 10.1136/annrheumdis-2020-219069

21. Damoiseaux J, Andrade LEC, Carballo OG, Conrad K, Francescantonio PLC, Fritzler MJ, et al. Clinical relevance of HEp-2 indirect immunofluorescent patterns: the International Consensus on ANA patterns (ICAP) perspective. Ann Rheum Dis. 2019;78(7):879-889. doi: 10.1136/annrheumdis-2018-214436

22. Pisetsky DS, Bossuyt X, Meroni PL. ANA as an entry criterion for the classification of SLE. Autoimmun Rev. 2019;18(12):102400. doi: 10.1016/j.autrev.2019.102400

23. Choi MY, Clarke AE, StPierre Y, Hanly JG, Urowitz MB, RomeroDiaz J, et al. Antinuclear antibody-negative systemic lupus erythematosus in an International Inception Cohort. Arthritis Care Res (Hoboken). 2019;71(7):893-902. doi: 10.1002/acr.23712

24. Frodlund M, Wetterö J, Dahle C, Dahlström Ö, Skogh T, Rönnelid J, et al. Longitudinal anti-nuclear antibody (ANA) seroconversion in system iclupusery the matosus: aprospectivestudy of Swedish cases with recent-onset disease. Clin Exp Immunol. 2020;199(3):245-254. doi: 10.1111/cei.13402

25. Tarazi M, Gaffney RG, Kushner CJ, Chakka S, Werth VP. Cutaneous lupus erythematosus patients with a negative antinuclear antibody meeting the American College of Rheumatology and/ or Systemic Lupus International Collaborating Clinics criteria for systemic lupus erythematosus. Arthritis Care Res (Hoboken). 2019;71(11):1404-1409. doi: 10.1002/acr.23916

26. Pashnina IA, Krivolapova IM, Fedotkina TV, Ryabkova VA, Chereshneva MV, Churilov LP, et al. Antinuclear autoantibodies in health: Autoimmunity is not a synonym of autoimmune disease. Antibodies (Basel). 2021;10(1):9. doi: 10.3390/antib10010009

27. Pisetsky DS. Antinuclear antibody testing – misunderstood or misbegotten? Nat Rev Rheumatol. 2017;13(8):495-502. doi: 10.1038/nrrheum.2017.74

28. Dinse GE, Parks CG, Weinberg CR, Co CA, Wilkerson J, Zeldin DC, et al. Increasing prevalence of antinuclear antibodies in the United States. Arthritis Rheumatol. 2020;72(6):1026-1035. doi: 10.1002/art.41214

29. Costenbader KH, Schur PH. We need better classification and terminology for “people at high risk of or in the process of developing lupus”. Arthritis Care Res (Hoboken). 2015;67(5):593-596. doi: 10.1002/acr.22484

30. Lambers WM, Westra J, Jonkman MF, Bootsma H, de Leeuw K. Incomplete systemic lupus erythematosus: What remains after application of American College of Rheumatology and Systemic Lupus International Collaborating Clinics criteria? Arthritis Care Res (Hoboken). 2020;72(5):607-614. doi: 10.1002/acr.23894

31. Lambers WM, Westra J, Bootsma H, de Leeuw K. From incomplete to complete systemic lupus erythematosus; A review of the predictive serological immune markers. Semin Arthritis Rheum. 2021;51(1):43-48. doi: 10.1016/j.semarthrit.2020.11.006

32. Gatto M, Saccon F, Zen M, Iaccarino L, Doria A. Preclinical and early systemic lupus erythematosus. Best Pract Res Clin Rheumatol. 2019;33(4):101422. doi: 10.1016/j.berh.2019.06.004

33. Arbuckle MR, McClain MT, Rubertone MV, Scofield RH, Dennis GJ, James JA, et al. Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N Engl J Med. 2003;349:1526-1533. doi: 10.1056/NEJMoa021933

34. Eriksson C, Kokkonen H, Johansson M, Hallmans G, Wadell G, Rantapää-Dahlqvist S. Autoantibodies predate the onset of systemic lupus erythematosus in northern Sweden. Arthritis Res Ther. 2011;13:R30. doi: 10.1186/ar3258

35. Chong BF, Tseng LC, Lee T, Vasquez R, Li QZ, Zhang S, et al. IgG and IgM autoantibody differences in discoid and systemic lupus patients. J Invest Dermatol. 2012;132(12):2770-2779. doi: 10.1038/jid.2012.207

36. Bhattacharya J, Pappas K, Toz B, Aranow C, Mackay M, Gregersen PK, et al. Serologic features of cohorts with variable genetic risk for systemic lupus erythematosus. Mol Med. 2018;24(1):24. doi: 10.1186/s10020-018-0019-4

37. Vilá LM, Mayor AM, Valentín AH, García-Soberal M, Vilá S. Clinical outcome and predictors of disease evolution in patients with incomplete lupus erythematosus. Lupus. 2000;9(2):110-115. doi: 10.1191/096120300678828073

38. Ståhl Hallengren C, Nived O, Sturfelt G. Outcome of incomplete systemic lupus erythematosus after 10 years. Lupus. 2004;13(2):8588. doi: 10.1191/0961203304lu477oa

39. Calvo-Alén J, Bastian HM, Straaton KV, Burgard SL, Mikhail IS, Alarcón GS. Identification of patient subsets among those presumptively diagnosed with, referred, and/or followed up for systemic lupus erythematosus at a large tertiary care center. Arthritis Rheum. 1995;38(10):1475-1484. doi: 10.1002/art.1780381014

40. Swaak AJ, van de Brink H, Smeenk RJ, Manger K, Kalden JR, Tosi S, et al.; Study group on incomplete SLE and SLE with disease duration longer than 10 years. Incomplete lupus erythematosus: results of a multicentre study under the supervision of the EULAR Standing Committee on International Clinical Studies Including Therapeutic Trials (ESCISIT). Rheumatology (Oxford). 2001;40(1):89-94. doi: 10.1093/rheumatology/40.1.89

41. Al Daabil M, Massarotti EM, Fine A, Tsao H, Ho P, Schur PH, et al. Development of SLE among “potential SLE” patients seen in consultation: long-term follow-up. Int J Clin Pract. 2014;68(12):1508-1513. doi: 10.1111/ijcp.12466

42. Mosca M, Costenbader KH, Johnson SR, Lorenzoni V, Sebastiani GD, Hoyer BF, et al. Brief report: How do patients with newly diagnosed systemic lupus erythematosus present? A multicenter cohort of early systemic lupus erythematosus to inform the development of new classification criteria. Arthritis Rheumatol. 2019;71(1):91-98. doi: 10.1002/art.40674

43. Young KA, Munroe ME, Guthridge JM, Kamen DL, Gilkensen GS, Harley JB, et al. Screening characteristics for enrichment of individuals at higher risk for transitioning to classified SLE. Lupus. 2019;28(5):597-606. doi: 10.1177/0961203319834675

44. Насонов ЕЛ, Авдеева АС. Иммуновоспалительные ревматические заболевания, связанные с интерфероном типа I: новые данные. Научно-практическая ревматология. 2019;57(4):452-461. doi: 10.14412/1995-4484-2019-452-461

45. Rönnblom L, Leonard D. Interferon pathway in SLE: One key to unlocking the mystery of the disease. Lupus Sci Med. 2019;6(1):e000270. doi: 10.1136/lupus-2018-000270

46. Muskardin TLW, Niewold TB. Type I interferon in rheumatic diseases. Nat Rev Rheumatol. 2018;14(4):214-228. doi: 10.1038/nrrheum.2018.31

47. Li QZ, Zhou J, Lian Y, Zhang B, Branch VK, Carr-Johnson F, et al. Interferon signature gene expression is correlated with autoantibody profiles in patients with incomplete lupus syndromes. Clin Exp Immunol. 2010;159(3):281-291. doi: 10.1111/j.1365-2249.2009.04057.x

48. Lambers WM, de Leeuw K, Doornbos BD, Diercks GFH, Bootsma H, Westra J. Interferon score is increased in incomplete systemic lupus erythematosus and correlates with myxovirus-resistance protein A in blood and skin. Arthritis Res Ther. 2019;21(1):260. doi: 10.1186/s13075-019-2034-4

49. Md Yusof MY, Psarras A, El-Sherbiny YM, Hensor EMA, Dutton K, Ul-Hassan S, et al. Prediction of autoimmune connective tissue disease in an at-risk cohort: prognostic value of a novel two-score system for interferon status. Ann Rheum Dis. 2018;77(10):1432-1439. doi: 10.1136/annrheumdis-2018-213386

50. Munroe ME, Lu R, Zhao YD, Fife DA, Robertson JM, Guthridge JM, et al. Altered type II interferon precedes autoantibody accrual and elevated type I interferon activity prior to systemic lupus erythematosus classification. Ann Rheum Dis. 2016;75(11):2014-2021. doi: 10.1136/annrheumdis-2015-208140

51. Eriksson C, Rantapää-Dahlqvist S. Cytokines in relation to autoantibodies before onset of symptoms for systemic lupus erythematosus. Lupus. 2014;23:691-696. doi: 10.1177/0961203314523869

52. Munroe ME, Young KA, Kamen DL, Guthridge JM, Niewold TB, Costenbader KH, et al. Discerning risk of disease transition in relatives of systemic lupus erythematosus patients utilizing soluble mediators and clinical features. Arthritis Rheumatol. 2017;69(3):630-642. doi: 10.1002/art.40004

53. Hafiz W, Nori R, Bregasi A, Noamani B, Bonilla D. Fatigue severity in anti-nuclear antibody-positive individuals does not correlate with pro-inflammatory cytokine levels or predict imminent progression to symptomatic disease. Arthritis Res Ther. 2019;21(1):223. doi: 10.1186/s13075-019-2013-9

54. Lu R, Munroe ME, Guthridge JM, Bean KM, Fife DA, Chen H, et al. Dysregulation of innate and adaptive serum mediators precedes systemic lupus erythematosus classification and improves prognostic accuracy of autoantibodies. J Autoimmun. 2016;74:182193. doi: 10.1016/j.jaut.2016.06.001

55. Olsen NJ, Karp DR. Finding lupus in the ANA haystack. Lupus Sci Med. 2020;7(1):e000384. doi: 10.1136/lupus-2020-000384

56. Liang E, Taylor M, McMahon M. Utility of the AVISE Connective Tissue Disease test in predicting lupus diagnosis and progression. Lupus Sci Med. 2020;7(1):e000345. doi: 10.1136/lupus-2019-000345

57. Slight-Webb S, Smith M, Bylinska A, Macwana S, Guthridge C, Lu R, et al. Autoantibody-positive healthy individuals with lower lupus risk display a unique immune endotype. J Allergy Clin Immunol. 2020;146(6):1419-1433. doi: 10.1016/j.jaci.2020.04.047

58. World Health Organization. Novel Coronavirus (‎2019-nCoV)‎: situation report, 19. 2020. URL: https://apps.who.int/iris/handle/10665/330988.

59. Brodin P. Immune determinants of COVID-19 disease presentation and severity. Nat Med. 2021;27:28-33. doi: 10.1038/s41591020-01202-8

60. Zhou T, Su TT, Mudianto T, Wang J. Immune asynchrony in COVID-19 pathogenesis and potential immunotherapies. J Exp Med. 2020;217(10):e20200674. doi: 10.1084/jem.20200674

61. Weatherhead JE, Clark E, Vogel TP, Atmar RL, Kulkarni PA. Inflammatory syndromes associated with SARS-CoV-2 infection: dysregulation of the immune response across the age spectrum. J Clin Invest. 2020;130(12):6194-6197. doi: 10.1172/JCI145301

62. Fajgenbaum DC, June CH, Cytokine storm. N Engl J Med. 2020;383:2255-2273. doi: 10.1056/NEJMra2026131

63. McGonagle D, Ramanan AV, Bridgewood C. Immune cartography of macrophage activation syndrome in the COVID-19 era. Nat Rev Rheumatol. 2021;17:145-157. doi: 10.1038/s41584-020-00571-1

64. Carter SJ, Tattersall RS, Ramanan AV. Macrophage activation syndrome in adults: recent advances in pathophysiology, diagnosis and treatment. Rheumatology (Oxford). 2019;58(1):5-17. doi: 10.1093/rheumatology/key006

65. Danza A, Ruiz-Irastorza G. Infection risk in systemic lupus erythematosus patients: susceptibility factors and preventive strategies. Lupus. 2013;22(12):1286-1294. doi: 10.1177/0961203313493032

66. Quaglia M, Merlotti G, De Andrea M, Borgogna C, Cantaluppi V. Viral infections and systemic lupus erythematosus: New players in an old story. Viruses. 2021;13(2):277. doi: 10.3390/v13020277

67. Katsuyama E, Suarez-Fueyo A, Bradley SJ, Mizui M, Marin AV, Mulki L, et al. The CD38/NAD/SIRTUIN1/EZH2 axis mitigates cytotoxic CD8 T cell function and identifies patients with SLE prone to infections. Cell Rep. 2020;30(1):112-123.e4. doi: 10.1016/j.celrep.2019.12.014

68. Chen PM, Tsokos GC. T cell abnormalities in the pathogenesis of systemic lupus erythematosus: An update. Curr Rheumatol Rep. 2021;23(2):12. doi: 10.1007/s11926-020-00978-5

69. Sawalha AH, Zhao M, Coit P, Lu Q. Epigenetic dysregulation of ACE2 and interferon-regulated genes might suggest increased COVID-19 susceptibility and severity in lupus patients. Clin Immunol. 2020;215:108410. doi: 10.1016/j.clim.2020.108410

70. Spihlman AP, Gadi N, Wu SC, Moulton VR. COVID-19 and systemic lupus erythematosus: Focus on immune response and therapeutics. Front Immunol. 2020;11:589474. doi: 10.3389/fimmu.2020.589474

71. Fernandez-Ruiz R, Paredes JL, Niewold TB. COVID-19 in patients with systemic lupus erythematosus: lessons learned from the inflammatory disease. Transl Res. 2020:S1931-5244(20)303029. doi: 10.1016/j.trsl.2020.12.007

72. Gracia-Ramos AE, Saavedra-Salinas MÁ. Can the SARS-CoV-2 infection trigger systemic lupus erythematosus? A case-based review. Rheumatol Int 2021;41:799-809. doi: 10.1007/s00296-021-04794-7

73. Liu M, Gao Y, Zhang Y, Shi S, Chen Y, Tian J. The association between severe or dead COVID-19 and autoimmune diseases: A systematic review and meta-analysis. J Infect. 2020;81(3):e93e95. doi: 10.1016/j.jinf.2020.05.065

74. Peach E, Rutter M, Lanyon P, Grainge MJ, Hubbard R, Aston J, et al. Risk of death among people with rare autoimmune diseases compared to the general population in England during the 2020 COVID-19 pandemic. Rheumatology. 2020;60(4):1902-1909. doi: 10.1093/rheumatology/keaa855

75. Strangfeld A, Schäfer M, Gianfrancesco MA, Lawson-Tovey S, Liew JW, Ljung L, et al.; COVID-19 Global Rheumatology Alliance. Factors associated with COVID-19-related death in people with rheumatic diseases: results from the COVID-19 Global Rheumatology Alliance physician-reported registry. Ann Rheum Dis. 2021;Jan 27:annrheumdis-2020-219498. doi: 10.1136/annrheumdis-2020-219498

76. Avouac J, Drumez E, Hachulla E, Seror R, Georgin-Lavialle S, El Mahou S, et al.; FAI2R/SFR/SNFMI/SOFREMIP/CRI/ IMIDIATE consortium and contributors. COVID-19 outcomes in patients with inflammatory rheumatic and musculoskeletal diseases treated with rituximab: a cohort study. Lancet Rheumatol. 2021;Mar 25. doi: 10.1016/S2665-9913(21)00059-X

77. Novelli L, Motta F, De Santis M, Ansari AA, Gershwin ME, Selmi C. The JANUS of chronic inflammatory and autoimmune diseases onset during COVID-19 – A systematic review of the literature. J Autoimmunity. 2021;117:102592.

78. Насонов ЕЛ. Коронавирусная болезнь 2019 (COVID-19) и аутоиммунитет. Научно-практическая ревматология. 2021;59(1):5-30. doi: 10.47360/1995-4484-2021-5-30

79. Smatti MK, Cyprian FS, Nasrallah GK, Thani AA, Almishal RO, Yassine HM. Viruses and autoimmunity: A review on the potential interaction and molecular mechanisms. Viruses. 2019;11(8):762. doi: 10.3390/v11080762

80. Halpert G, Shoenfeld Y. SARS-CoV-2, the autoimmune virus. Autoimmun Rev. 2020;19(12):102695. doi: 10.1016/j.autrev.2020.102695

81. Насонов ЕЛ, Решетняк ТМ, Алекберова ЗС. Тромботическая микроангиопатия в ревматологии: связь тромбовоспаления и аутоиммунитета. Терапевтический архив. 2020;92(5):4-14. doi: 10.26442/00403660.2020.05.000697

82. Насонов ЕЛ, Бекетова ТВ, Решетняк ТМ, Лила АМ, Ананьева ЛП, Лисицина ТА, и др. Коронавирусная болезнь 2019 (COVID-19) и иммуновоспалительные ревматические заболевания: на перекрестке проблем тромбовоспаления и аутоиммунитета. Научно-практическая ревматология. 2020;58(4):353-367. doi: 10.47360/1995-4484-2020-353-367

83. Merrill JT, Erkan D, Winakur J. James JA. Emerging evidence of a COVID-19 thrombotic syndrome has treatment implications. Nat Rev Rheumatol. 2020;16(10):581-589. doi: 10.1038/s41584-020-0474-5

84. Perico L, Benigni A, Casiraghi F, Ng LFP, Renia L, Remuzzi G. Immunity, endothelial injury and complement-induced coagulopathy in COVID-19. Nat Rev Nephrol. 2021;17(1):46-64. doi: 10.1038/s41581-020-00357-4

85. El Hasbani G, Taher AT, Jawad A, Uthman I. COVID-19, Antiphospholipid antibodies, and catastrophic antiphospholipid syndrome: A possible association? Clin Med Insights Arthritis Musculoskelet Disord. 2020;13:1179544120978667. doi: 10.1177/1179544120978667

86. Zuo Y, Estes SK, Ali RA, Gandhi AA, Yalavarthi S, Shi H, et al. Prothrombotic autoantibodies in serum from patients hospitalized with COVID-19. Sci Transl Med. 2020;12(570):eabd3876. doi: 10.1126/scitranslmed.abd3876

87. Pascolini S, Vannini A, Deleonardi G, Ciordinik M, Sensoli A, Carletti I, et al. COVID-19 and immunological dysregulation: can autoantibodies be useful? Clin Transl Sci. 2020;10.1111/cts.12908. doi: 10.1111/cts.12908

88. Gazzaruso C, Carlo Stella N, Mariani G, Nai C, Coppola A, Naldani D, et al. High prevalence of antinuclear antibodies and lupus anticoagulant in patients hospitalized for SARS-CoV2 pneumonia. Clin Rheumatol. 2020;39(7):2095-2097. doi: 10.1007/s10067-020-05180-7

89. Gomes C, Zuniga M, Crotty KA, Qian K, Lin LH, Argyropoulos KV, et al. Autoimmune anti-DNA antibodies predict disease severity in COVID-19 patients. medRxiv. 2021.01.04.20249054. doi: 10.1101/2021.01.04.20249054

90. Cheng AP, Cheng MP, Gu W, Lenz JS, Hsu E, Schurr E, et al. Cell-free DNA in blood reveals significant cell, tissue and organ specific injury and predicts COVID-19 severity. medRxiv. 2020.07.27.20163188. doi: 10.1101/2020.07.27.20163188

91. Fujii H, Tsuji T, Yuba T, Tanaka S, Suga Y, Matsuyama A, et al. High levels of anti-SSA/Ro antibodies in COVID-19 patients with severe respiratory failure: a case-based review: High levels of antiSSA/Ro antibodies in COVID-19. Clin Rheumatol. 2020;39(11):3171-3175. doi: 10.1007/s10067-020-05359-y

92. Huang PI, Lin TC, Liu FC, Ho YJ, Lu JW, Lin TY. Positive antiSSA/Ro antibody in a woman with SARS-CoV-2 infection using immunophenotyping: A case report. Medicina (Kaunas). 2020;56(10):521. doi: 10.3390/medicina56100521

93. Moritz CP, Paul S, Stoevesandt O, Tholance Y, Camdessanché JP, Antoine JC. Autoantigenomics: Holistic characterization of autoantigen repertoires for a better understanding of autoimmune diseases. Autoimmun Rev. 2020;19(2):102450. doi: 10.1016/j.autrev.2019.102450

94. Wang EY, Mao T, Klein J, Dai Y, Huck JD, Liu F, et al. Diverse functional autoantibodies in patients with COVID-19. medRxiv. 2020:2020.12.10.20247205. doi: 10.1101/2020.12.10.20247205

95. Maier C, Wong A, Woodhouse I, Schneider F, Kulpa D, Silvestri G. Broad auto-reactive IgM responses are common in critically ill COVID-19 patients. Res Sq. 2020:rs.3.rs-128348. doi: 10.21203/rs.3.rs-128348/v1

96. Blanco-Melo D, Nilsson-Payant BE, Liu WC, Uhl S, Hoagland D, Møller R, et al. Imbalanced host response to SARSCoV-2 drives development of COVID-19. Cell. 2020;181(5):10361045.e9. doi: 10.1016/j.cell.2020.04.026

97. Hadjadj J, Yatim N, Barnabei L, Corneau A, Boussier J, Smith N, et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science. 2020;369(6504):718-724. doi: 10.1126/science.abc6027

98. Zhang Q, Bastard P, Liu Z, Le Pen J, Moncada-Velez M, Chen J, et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science. 2020;370(6515):eabd4570. doi: 10.1126/science.abd4570

99. Bastard P, Rosen LB, Zhang Q, Michailidis E, Hoffmann HH, Zhang Y, et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science. 2020;370(6515):eabd4585. doi: 10.1126/science.abd4585

100. Goncalves DG, Mezidi M, Bastard P, Perret M, Saker K, et al. Antibodies against type-I interferon: Detection and association with severe clinical outcome in COVID-19 patients. medRxiv. 2021.04.02.21253262. doi: 10.1101/2021.04.02.21253262

101. Combes AJ, Courau T, Kuhn NF, Hu KH, Ray A, Chen WS, et al. Global absence and targeting of protective immune states in severe COVID-19. Nature. 2021;591(7848):124-130. doi: 10.1038/s41586021-03234-7

102. Howe HS, Leung BPL. Anti-cytokine autoantibodies in systemic lupus erythematosus. Cells. 2019;9(1):72. doi: 10.3390/cells9010072

103. Gupta S, Tatouli IP, Rosen LB, Hasni S, Alevizos I, Manna ZG, et al. Distinct functions of autoantibodies against interferon in systemic lupus erythematosus: A comprehensive analysis of anticytokine autoantibodies in common rheumatic diseases. Arthritis Rheumatol. 2016;68(7):1677-1687. doi: 10.1002/art.39607

104. Gupta S, Nakabo S, Chu J, Hasni S, Kaplan MJ. Association between anti-interferon-alpha autoantibodies and COVID-19 in systemic lupus erythematosus. medRxiv. 2020;2020.10.29.20222000. doi: 10.1101/2020.10.29.20222000

105. Morand EF, Furie R, Tanaka Y, Bruce IN, Askanase AD, Richez C, et al.; TULIP-2 Trial Investigators. Trial of Anifrolumab in active systemic lupus erythematosus. N Engl J Med. 2020;382(3):211-221. doi: 10.1056/NEJMoa1912196

106. Woodruff MC, Ramonell RP, Nguyen DC, Cashman KS, Saini AS, Haddad NS, et al. Extrafollicular B cell responses correlate with neutralizing antibodies and morbidity in COVID-19. Nat Immunol. 2020;21(12):1506-1516. doi: 10.1038/s41590-020-00814-z

107. Jenks SA, Cashman KS, Zumaquero E, Marigorta UM, Patel AV, Wang X, et al. Distinct effector B cells induced by unregulated tolllike receptor 7 contribute to pathogenic responses in systemic lupus erythematosus. Immunity. 2018;49(4):725-739.e6. doi: 10.1016/j.immuni.2018.08.015. Erratum in: Immunity. 2020;52(1):203.

108. Jenks SA, Cashman KS, Woodruff MC, Lee FE, Sanz I. Extrafollicular responses in humans and SLE. Immunol Rev. 2019;288(1):136-148. doi: 10.1111/imr.12741

109. Chen Z, John Wherry E. T cell responses in patients with COVID-19. Nat Rev Immunol. 2020;20(9):529-536. doi: 10.1038/s41577-020-0402-6

110. Chen PM, Tsokos GC. T cell abnormalities in the pathogenesis of systemic lupus erythematosus: An update. Curr Rheumatol Rep. 2021;23(2):12. doi: 10.1007/s11926-020-00978-5

111. Farris AD, Guthridge JM. Overlapping B cell pathways in severe COVID-19 and lupus. Nat Immunol. 2020;21(12):1478-1480. doi: 10.1038/s41590-020-00822-z

112. Nalbandian A, Sehgal K, Gupta A, Madhavan MV, McGroder C, Stevens JS, et al. Post-acute COVID-19 syndrome. Nat Med. 2021;27(4):601-615. doi: 10.1038/s41591-021-01283-z

113. Lopez-Leon S, Wegman-Ostrosky T, Perelman C, Sepulveda R, Rebolledo PA, Cuapio A, et al. More than 50 Long-term effects of COVID-19: a systematic review and meta-analysis. medRxiv 2021.01.27.21250617. doi: 10.1101/2021.01.27.21250617

114. Bhadelia N, Belkina AC, Olson A, Winters T, Urick P, Lin N, et al. Distinct autoimmune antibody signatures between hospitalized acute COVID-19 patients, SARS-CoV-2 convalescent Individuals, and unexposed pre-pandemic controls. medRxiv 2021.01.21.21249176. doi: 10.1101/2021.01.21.21249176


Для цитирования:


Насонов Е.Л., Попкова Т.В., Панафидина Т.А. Проблемы ранней системной красной волчанки в период пандемии COVID-19. Научно-практическая ревматология. 2021;59(2):119-128. https://doi.org/10.47360/1995-4484-2021-119-128

For citation:


Nasonov E.L., Popkova T.V., Panafidina T.A. Problems of early diagnosis of systemic lupus erythematosus during the COVID-19 pandemic. Rheumatology Science and Practice. 2021;59(2):119-128. (In Russ.) https://doi.org/10.47360/1995-4484-2021-119-128

Просмотров: 214


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1995-4484 (Print)
ISSN 1995-4492 (Online)