Preview

Научно-практическая ревматология

Расширенный поиск

Деплеция В-клеток при иммуновоспалительных ревматических заболеваниях и коронавирусная болезнь 2019 (COVID-19)

https://doi.org/10.47360/1995-4484-2021-384-393

Полный текст:

Аннотация

У пациентов с иммуновоспалительными (аутоиммунными) ревматическими заболеваниями (ИВРЗ) существует ряд факторов (пожилой возраст, неконтролируемое воспаление, исходно необратимое повреждение внутренних органов, коморбидная патология, генетические и другие факторы), которые потенциально могут приводить к увеличению «чувствительности» к SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2) и сопутствующим вирусным и бактериальным инфекциям, нарастанию риска тяжелого течения COVID-19 (coronavirus disease 2019), снижению эффективности терапии как ИВРЗ, так и COVID-19. Важное направление фармакотерапии ИВРЗ и других аутоиммунных заболеваний связано с использованием анти-В-клеточных препаратов, в первую очередь ритуксимаба (РТМ), представляющего собой химерные (мышь/человек) моноклональные антитела (мАТ) к CD20 антигену В-клеток. В настоящее время в России широко применяется биоаналог РТМ – ацеллбия (БИОКАД), – не уступающий РТМ по эффективности и безопасности. Рассмотрены проблемы анти-В-клеточной терапии в период пандемии COVID-19 в отношении риска инфицирования, тяжелого течения и недостаточной эффективности вакцинации против SARS-CoV-2. Согласно рекомендациям Ассоциации ревматологов России, необходима более строгая оценка показаний к проведению индукционной и поддерживающей терапии РТМ и гармонизации сроков введения препарата и вакцинации.

Об авторах

Е. Л. Насонов
ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой»; ФГАОУ ВО «Первый Московский государственный медицинский университет имени И.М. Сеченова» Минздрава России (Сеченовский Университет)
Россия

115522, Российская Федерация, Москва, Каширское шоссе, 34а

119991, Российская Федерация, Москва, ул. Трубецкая, 8, стр. 2



А. С. Авдеева
ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой»
Россия

115522, Российская Федерация, Москва, Каширское шоссе, 34а



Список литературы

1. Насонов ЕЛ. Коронавирусная болезнь 2019 (COVID-19): раз- мышления ревматолога. Научно-практическая ревматология. 2020;58(2):123-132.

2. Насонов ЕЛ. Коронавирусная болезнь 2019 (COVID-19) и аутоиммунитет. Научно-практическая ревматология. 2021;59(1):5-30.

3. Isaacs JD, Burmester GR. Smart battles: Immunosuppression versus immunomodulation in the inflammatory RMDs. Ann Rheum Dis. 2020;79(8):991-993. doi: 10.1136/annrheumdis-2020-218019

4. Nissen CB, Sciascia S, de Andrade D, Atsumi T, Bruce IN, Cron RQ, et al. The role of antirheumatics in patients with COVID-19. Lancet Rheumatol. 2021;3(6):e447-e459. doi: 10.1016/S2665-9913(21)00062-X

5. Mehta P, Porter JC, Chambers RC, Isenberg DA, Reddy V. B-cell depletion with rituximab in the COVID-19 pandemic: Where do we stand? Lancet Rheumatol. 2020;2(10):e589-e590. doi: 10.1016/S2665-9913(20)30270-8

6. Dougados M. Managing patients with rheumatic diseases treated with rituximab during the COVID-19 pandemic. Lancet Rheumatol. 2021;3(6):e395-e396. doi: 10.1016/S2665-9913(21)00077-1

7. Rosenblum MD, Remedios KA, Abbas AK. Mechanisms of human autoimmunity. J Clin Invest. 2015;125(6):2228-2233. doi: 10.1172/JCI78088

8. Theofilopoulos AN, Kono DH, Baccala R. The multiple pathways to autoimmunity. Nat Immunol. 2017;18(7):716-724. doi: 10.1038/ni.3731

9. Bonasia CG, Abdulahad WH, Rutgers A, Heeringa P, Bos NA. B cell activation and escape of tolerance checkpoints: Recent insights from studying autoreactive B cells. Cells. 2021;10(5):1190. doi: 10.3390/cells10051190

10. Suurmond J, Diamond B. Autoantibodies in systemic autoimmune diseases: Specificity and pathogenicity. J Clin Invest. 2015;125(6):2194-2202. doi: 10.1172/JCI78084

11. Lee DSW, Rojas OL, Gommerman JL. B cell depletion therapies in autoimmune disease: Advances and mechanistic insights. Nat Rev Drug Discov. 2021;20(3):179-199. doi: 10.1038/s41573-020-00092-2

12. Насонов ЕЛ, Бекетова ТВ, Ананьева ЛП, Васильев ВИ, Соловьев СК, Авдеева АС. Перспективы анти-В-клеточной терапии при иммуновоспалительных ревматических заболеваниях. Научно-практическая ревматология. 2019;57:1-40.

13. Насонов ЕЛ (ред.). Анти-В-клеточная терапия в ревматологии: Фокус на ритуксимаб. М.: ИМА- ПРЕСС;2012:119-152.

14. Garcia-Montoya L, Villota-Eraso C, Yosof MDY, Vital EM, Emery P. Lessons for rituximab therapy in patients with rheumatoid arthritis. Lancet Rheumatol. 2020;2:e497-509.

15. Wise LM, Stohl W. Belimumab and rituximab in systemic lupus erythematosus: A tale of two B cell-targeting agents. Front Med (Lausanne). 2020;7:303. doi: 10.3389/fmed.2020.00303

16. Shah K, Cragg M, Leandro M, Reddy V. Anti-CD20 monoclonal antibodies in systemic lupus erythematosus. Biologicals. 2021;69:1-14. doi: 10.1016/j.biologicals.2020.11.002

17. Tieu J, Smith R, Basu N, Brogan P, D’Cruz D, Dhaun N, et al. Rituximab for maintenance of remission in ANCA-associated vasculitis: expert consensus guidelines. Rheumatology (Oxford). 2020;59(4):e24-e32. doi: 10.1093/rheumatology/kez640

18. Grigoriadou S, Chowdhury F, Pontarini E, Tappuni A, Bowman SJ, Bombardieri M. B cell depletion with rituximab in the treatment of primary Sjögren’s syndrome: What have we learnt? Clin Exp Rheumatol. 2019;37(Suppl 118(3)):217-224.

19. Tang R, Yu J, Shi Y, Zou P, Zeng Z, Tang B, et al. Safety and efficacy of rituximab in systemic sclerosis: A systematic review and meta-analysis. Int Immunopharmacol. 2020;83:106389. doi: 10.1016/j.intimp.2020.106389

20. de Figueiredo Caldas MMV, de Azevedo KPM, de França Nunes AC, de Oliveira VH, Pimenta IDSF, de Araújo IDT, et al. Is rituximab effective for systemic sclerosis? A systematic review and meta-analysis. Adv Rheumatol. 2021;61(1):15. doi: 10.1186/s42358-021-00170-y

21. Khoo T, Limaye V. Biologic therapy in the idiopathic inflammatory myopathies. Rheumatol Int. 2020;40(2):191-205. doi: 10.1007/s00296-019-04467-6

22. Frampton JE. Rituximab: A review in pemphigus vulgaris. Am J Clin Dermatol. 2020;21(1):149-156. doi: 10.1007/s40257-019-00497-9

23. Tandan R, Hehir MK 2nd, Waheed W, Howard DB. Rituximab treatment of myasthenia gravis: A systematic review. Muscle Nerve. 2017;56(2):185-196. doi: 10.1002/mus.25597

24. Lucchini E, Zaja F, Bussel J. Rituximab in the treatment of immune thrombocytopenia: What is the role of this agent in 2019? Haematologica. 2019;104(6):1124-1135. doi: 10.3324/haematol.2019.218883

25. Stan MN, Salvi M. Management of endocrine disease: Rituximab therapy for Graves’ orbitopathy – Lessons from randomized control trials. Eur J Endocrinol. 2017;176(2):R101-R109. doi: 10.1530/EJE-16-0552

26. Chisari CG, Sgarlata E, Arena S, Toscano S, Luca M, Patti F. Rituximab for the treatment of multiple sclerosis: A review. J Neurol. 2021 Jan 8:1-25. doi: 10.1007/s00415-020-10362-z

27. Muley SA, Jacobsen B, Parry G, Usman U, Ortega E, Walk D, et al. Rituximab in refractory chronic inflammatory demyelinating polyneuropathy. Muscle Nerve. 2020;61(5):575-579. doi: 10.1002/mus.26804

28. Uematsu-Uchida M, Ohira T, Tomita S, Satonaka H, Tojo A, Ishimitsu T. Rituximab in treatment of anti-GBM antibody glomerulonephritis: A case report and literature review. Medicine (Baltimore). 2019;98(44):e17801. doi: 10.1097/MD.0000000000017801

29. Gauckler P, Shin JI, Alberici F, Audard V, Bruchfeld A, Busch M, et al.; RITERM study group. Rituximab in adult minimal change disease and focal segmental glomerulosclerosis – What is known and what is still unknown? Autoimmun Rev. 2020;19(11):102671. doi: 10.1016/j.autrev.2020.102671

30. Chauhan K, Mehta AA. Rituximab in kidney disease and transplant. Animal Model Exp Med. 2019;2(2):76-82. doi: 10.1002/ame2.12064

31. Gauckler P, Shin JI, Alberici F, Audard V, Bruchfeld A, Busch M, et al.; RITERM study group. Rituximab in membranous nephropathy. Kidney Int Rep. 2021;6(4):881-893. doi: 10.1016/j.ekir.2020.12.035

32. Насонов ЕЛ, Зонова ЕВ, Иванова ОН, Князева ЛА, Мазуров ВИ, Самигуллина РР, и др. Результаты сравнительного клинического исследования III фазы препаратов ритуксимаба (ацеллбия® и Мабтера®) при ревматоидном артрите (исследование BIORA). Научно-практическая ревматология. 2016;54(5):510-519.

33. Mélet J, Mulleman D, Goupille P, Ribourtout B, Watier H, Thibault G. Rituximab-induced T cell depletion in patients with rheumatoid arthritis: Association with clinical response. Arthritis Rheum. 2013;65(11):2783-2790. doi: 10.1002/art.38107

34. Yates M, Watts RA, Bajema IM, Cid MC, Crestani B, Hauser T, et al. EULAR/ERA-EDTA recommendations for the management of ANCA-associated vasculitis. Ann Rheum Dis. 2016;75(9):1583-1594. doi: 10.1136/annrheumdis-2016-209133

35. Gordon C, Amissah-Arthur MB, Gayed M, Brown S, Bruce IN, D’Cruz D, et al. The British Society for Rheumatology guideline for the management of systemic lupus erythematosus in adults. Rheumatology (Oxford). 2018;57(1):e1-e45. doi: 10.1093/rheumatology/kex286

36. Fanouriakis A, Kostopoulou M, Alunno A, Aringer M, Bajema I, Boletis JN, et al. 2019 update of the EULAR recommendations for the management of systemic lupus erythematosus. Ann Rheum Dis. 2019;78(6):736-745. doi: 10.1136/annrheumdis-2019-215089

37. van den Hoogen LL, van Laar JM. Targeted therapies in systemic sclerosis, myositis, antiphospholipid syndrome, and Sjögren’s syndrome. Best Pract Res Clin Rheumatol. 2020;34(1):101485. doi: 10.1016/j.berh.2020.101485

38. Carsons SE, Vivino FB, Parke A, Carteron N, Sankar V, Brasington R, et al. Treatment guidelines for rheumatologic manifestations of Sjögren’s syndrome: Use of biologic agents, management of fatigue, and inflammatory musculoskeletal pain. Arthritis Care Res (Hoboken). 2017;69(4):517-527. doi: 10.1002/acr.22968

39. Price EJ, Rauz S, Tappuni AR, Sutcliffe N, Hackett KL, Barone F, et al. The British Society for Rheumatology guideline for the management of adults with primary Sjögren’s syndrome. Rheumatology (Oxford). 2017;56(10):e24-e48. doi: 10.1093/rheumatology/kex166

40. Selva-O’Callaghan A, Pinal-Fernandez I, Trallero-Araguás E, Milisenda JC, Grau-Junyent JM, Mammen AL. Classification and management of adult inflammatory myopathies. Lancet Neurol. 2018;17(9):816-828. doi: 10.1016/S1474-4422(18)30254-0

41. NHS England. Clinical Commissioning Policy: Rituximab for the treatment of dermatomyositis and polymyositis. 2017;16036/P.

42. Fernández-Codina A, Walker KM, Pope JE; Scleroderma Algorithm Group. Treatment algorithms for systemic sclerosis according to experts. Arthritis Rheumatol. 2018;70(11):1820-1828. doi: 10.1002/art.40560

43. Ahmad T, Chaudhuri R, Joshi MC, Almatroudi A, Rahmani AH, Ali SM. COVID-19: The emerging immunopathological determinants for recovery or death. Front Microbiol. 2020;11:588409. doi: 10.3389/fmicb.2020.588409

44. Galipeau Y, Greig M, Liu G, Driedger M, Langlois MA. Humoral responses and serological assays in SARS-CoV-2 infections. Front Immunol. 2020;11:610688. doi: 10.3389/fimmu.2020.610688

45. Cox RJ, Brokstad KA. Not just antibodies: B cells and T cells mediate immunity to COVID-19. Nat Rev Immunol. 2020;20(10):581-582. doi: 10.1038/s41577-020-00436-4

46. Zohar T, Alter G. Dissecting antibody-mediated protection against SARS-CoV-2. Nat Rev Immunol. 2020;20(7):392-394. doi: 10.1038/s41577-020-0359-5

47. Zhao J, Yuan Q, Wang H, Liu W, Liao X, Su Y, et al. Antibody responses to SARS-CoV-2 in patients with novel coronavirus disease 2019. Clin Infect Dis. 2020;71(16):2027-2034. doi: 10.1093/cid/ciaa344

48. Wölfel R, Corman VM, Guggemos W, Seilmaier M, Zange S, Müller MA, et al. Virological assessment of hospitalized patients with COVID-2019. Nature. 2020;581(7809):465-469. doi: 10.1038/s41586-020-2196-x

49. Corbett KS, Flynn B, Foulds KE, Francica JR, Boyoglu- Barnum S, Werner AP, et al. Evaluation of the mRNA-1273 vaccine against SARS-CoV-2 in nonhuman primates. N Engl J Med. 2020;383(16):1544-1555. doi: 10.1056/NEJMoa2024671

50. Corbett KS, Nason MC, Flach B, Gagne M, O’Connell S, Johnston TS, et al. Immune correlates of protection by mRNA-1273 immunization against SARS-CoV-2 infection in nonhuman primates. bioRxiv. 2021 Apr 23:2021.04.20.440647. doi: 10.1101/2021.04.20.440647

51. van Doremalen N, Lambe T, Spencer A, Belij-Rammerstorfer S, Purushotham JN, Port JR, et al. ChAdOx1 nCoV-19 vaccine prevents SARS-CoV-2 pneumonia in rhesus macaques. Nature. 2020;586(7830):578-582. doi: 10.1038/s41586-020-2608-y

52. Weinreich DM, Sivapalasingam S, Norton T, Ali S, Gao H, Bhore R, et al. REGN-COV2, a neutralizing antibody cocktail, in outpatients with Covid-19. N Engl J Med. 2021;384(3):238-251. doi: 10.1056/NEJMoa2035002

53. Lumley SF, O’Donnell D, Stoesser NE, Matthews PC, Howarth A, Hatch SB, et al.; Oxford University Hospitals Staff Testing Group. Antibody status and incidence of SARS-CoV-2 infection in health care workers. N Engl J Med. 2021;384(6):533-540. doi: 10.1056/NEJMoa2034545

54. Knies A, Ladage D, Braun RJ, Kimpel J, Schneider M. Persistence of humoral response upon SARS-CoV-2 infection. Rev Med Virol. 2021 Jun 30:e2272. doi: 10.1002/rmv.2272

55. Long QX, Liu BZ, Deng HJ, Wu GC, Deng K, Chen YK, et al. Antibody responses to SARS-CoV-2 in patients with COVID-19. Nat Med. 2020;26(6):845-848. doi: 10.1038/s41591-020-0897-1

56. Scourfield DO, Reed SG, Quastel M, Alderson J, Bart VMT, Teijeira Crespo A, et al.; Oxford-Cardiff COVID-19 Literature Consortium. The role and uses of antibodies in COVID-19 infections: A living review. Oxf Open Immunol. 2021;2(1):iqab003. doi: 10.1093/oxfimm/iqab003

57. Piccoli L, Park Y-J, Tortorici MA, Czudnochowski N, Walls AC, Beltramello M, et al. Mapping neutralizing and immunodominant sites on the SARS-CoV-2 spike receptor-binding domain by structure-guided high-resolution serology. Cell. 2020;183(4):1024-1042. e21. doi: 10.1016/j.cell.2020.09.037

58. Robbiani DF, Gaebler C, Muecksch F, Lorenzi JCC, Wang Z, Cho A, et al. Convergent antibody responses to SARS-CoV-2 in convalescent individuals. Nature. 2020;584(7821):437-442. doi: 10.1038/s41586-020-2456-9

59. Taylor PC, Adams AC, Hufford MM, de la Torre I, Winthrop K, Gottlieb RL. Neutralizing monoclonal antibodies for treatment of COVID-19. Nat Rev Immunol. 2021;21(6):382-393. doi: 10.1038/s41577-021-00542-x

60. Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, et al. Dysregulation of immune response in patients with coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis. 2020;71(15):762-768. doi: 10.1093/cid/ciaa248

61. Lenti MV, Aronico N, Pellegrino I, Boveri E, Giuffrida P, Borrelli de Andreis F, et al. Depletion of circulating IgM memory B cells predicts unfavourable outcome in COVID-19. Sci Rep. 2020;10(1):20836. doi: 10.1038/s41598-020-77945-8

62. Quinti I, Lougaris V, Milito C, Cinetto F, Pecoraro A, Mezzaroma I, et al. A possible role for B cells in COVID-19? Lesson from patients with agammaglobulinemia. J Allergy Clin Immunol. 2020;146(1):211-213.e4. doi: 10.1016/j.jaci.2020.04.013

63. Sauer K, Harris T. An effective COVID-19 vaccine needs to engage T cells. Front Immunol. 2020;11:581807. doi: 10.3389/fimmu.2020.581807

64. Shi Y, Wu Y, Ren Y, Jiang Y, Chen Y. Infection risks of rituximab versus non-rituximab treatment for rheumatoid arthritis: A systematic review and meta-analysis. Int J Rheum Dis. 2019;22:1361-1370. doi: 10.1111/1756-185X.13596

65. Lopez-Olivo MA, Amezaga Urruela M, McGahan L, Pollono EN, Suarez-Almazor ME. Rituximab for rheumatoid arthritis. Cochrane Database Syst Rev. 2015;1:CD007356. doi: 10.1002/14651858.CD007356.pub2

66. Sepriano A, Kerschbaumer A, Smolen JS, van der Heijde D, Dougados M, van Vollenhoven R, et al. Safety of synthetic and biological DMARDs: A systematic literature review Informing the 2019 update of the EULAR recommendations for the management of rheumatoid arthritis. Ann Rheum Dis. 2020;79:annrheumdis-2019-216653:760-770. doi: 10.1136/annrheumdis-2019-216653

67. Grøn KL, Arkema EV, Glintborg B, Mehnert F, Østergaard M, Dreyer L, et al.; ARTIS Study Group. Risk of serious infections in patients with rheumatoid arthritis treated in routine care with abatacept, rituximab and tocilizumab in Denmark and Sweden. Ann Rheum Dis. 2019;78(3):320-327. doi: 10.1136/annrheumdis-2018-214326

68. Yun H, Xie F, Delzell E, Levitan EB, Chen L, Lewis JD, et al. Comparative risk of hospitalized infection associated with biologic agents in rheumatoid arthritis patients enrolled in medicare. Arthritis Rheumatol. 2016;68(1):56-66. doi: 10.1002/art.39399

69. Loarce-Martos J, García-Fernández A, López-Gutiérrez F, García-García V, Calvo-Sanz L, et al. High rates of severe disease and death due to SARS-CoV-2 infection in rheumatic disease patients treated with rituximab: A descriptive study. Rheumatol Int. 2020;40(12):2015-2021. doi: 10.1007/s00296-020-04699-x

70. Sanchez-Piedra C, Diaz-Torne C, Manero J, Pego-Reigosa JM, Rúa-Figueroa Í, Gonzalez-Gay MA, et al. Clinical features and outcomes of COVID-19 in patients with rheumatic diseases treated with biological and synthetic targeted therapies. Ann Rheum Dis. 2020;79(7):988-990. doi: 10.1136/annrheumdis-2020-217948

71. Strangfeld A, Schäfer M, Gianfrancesco MA, Lawson-Tovey S, Liew JW, Ljung L, et al.; COVID-19 Global Rheumatology Alliance. Factors associated with COVID-19-related death in people with rheumatic diseases: Results from the COVID-19 Global Rheumatology Alliance physician-reported registry. Ann Rheum Dis. 2021;80(7):930-942. doi: 10.1136/annrheumdis-2020-219498

72. FAI2R /SFR/SNFMI/SOFREMIP/CRI/IMIDIATE Consortium and Contributors. Severity of COVID-19 and survival in patients with rheumatic and inflammatory diseases: Data from the French RMD COVID-19 cohort of 694 patients. Ann Rheum Dis. 2020;80(4):527-538. doi: 10.1136/annrheumdis-2020-218310

73. Avouac J, Drumez E, Hachulla E, Seror R, Georgin-Lavialle S, El Mahou S, et al.; FAI2R/SFR/SNFMI/SOFREMIP/CRI/IMIDIATE consortium and contributors; FAIR/SFR/SNFMI/SOFREMIP/CRI/IMIDIATE consortium and contributors. COVID-

74. outcomes in patients with inflammatory rheumatic and musculoskeletal diseases treated with rituximab: A cohort study. Lancet Rheumatol. 2021;3(6):e419-e426. doi: 10.1016/S2665-9913(21)00059-X

75. Jones JM, Faruqi AJ, Sullivan JK, Calabrese C, Calabrese LH. COVID-19 outcomes in patients undergoing B cell depletion therapy and those with humoral immunodeficiency states: A scoping review. Pathog Immun. 2021;6(1):76-103. doi: 10.20411/pai.v6i1.435

76. Sparks JA, Wallace ZS, Seet AM, Gianfrancesco MA, Izadi Z, Hyrich KL, et al.; COVID-19 Global Rheumatology Alliance. Associations of baseline use of biologic or targeted synthetic DMARDs with COVID-19 severity in rheumatoid arthritis: Results from the COVID-19 Global Rheumatology Alliance physician registry. Ann Rheum Dis. 2021 May 28:annrheumdis-2021-220418. doi: 10.1136/annrheumdis-2021-220418

77. Rodriguez-Pla A, Vikram HR, Khalid V, Wesselius LJ. COVID-19 pneumonia in a patient with granulomatosis with polyangiitis on rituximab: Case-based review. Rheumatol Int. 2021;41(8):1509-1514. doi: 10.1007/s00296-021-04905-4

78. Kow CS, Hasan SS. Use of rituximab and the risk of adverse clinical outcomes in COVID-19 patients with systemic rheumatic disease. Rheumatol Int. 2020;40(12):2117-2118. doi: 10.1007/s00296-020-04715-0

79. Guilpain P, Le Bihan C, Foulongne V, Taourel P, Pansu N, Maria ATJ, et al. Rituximab for granulomatosis with polyangiitis in the pandemic of Covid-19: Lessons from a case with severe pneumonia. Ann Rheum Dis. 2021;80(1):e10. doi: 10.1136/annrheumdis-2020-217549

80. Fallet B, Kyburz D, Walker UA. Mild course of COVID-19 and spontaneous virus clearance in a patient with depleted peripheral blood B cells due to rituximab treatment. Arthritis Rheumatol. 2020;72(9):1581-1582. doi: 10.1002/art.4138080. Suárez-Díaz S, Morán-Castaño C, Coto-Hernández R, Mozo-

81. Avellaneda L, Suárez-Cuervo C, Caminal-Montero L. Mild COVID-19 in ANCA-associated vasculitis treated with rituximab. Ann Rheum Dis. 2020 Aug 7:annrheumdis-2020-218246. doi: 10.1136/annrheumdis-2020-218246

82. Avouac J, Airó P, Carlier N, Matucci-Cerinic M, Allanore Y. Severe COVID-19-associated pneumonia in 3 patients with systemic sclerosis treated with rituximab. Ann Rheum Dis. 2020 Jun 5:annrheumdis-2020-217864. doi: 10.1136/annrheumdis-2020-217864.

83. Aviv R, Weber A, Anzum T, Federbush M, Horowitz D, Singas E. Prolonged COVID-19 disease in a patient with rheumatoid arthritis on rituximab therapy. J Infect Dis. 2021 May 8:jiab248. doi: 10.1093/infdis/jiab248

84. Quartuccio L, Treppo E, Binutti M, Del Frate G, De Vita S. Timing of rituximab and immunoglobulin level influence the risk of death for COVID-19 in ANCA-associated vasculitis. Rheumatology (Oxford). 2021;60(7):3476-3477. doi: 10.1093/rheumatology/keab175

85. Bachiller-Corral J, Boteanu A, Garcia-Villanueva MJ, de la Puente C, Revenga M, Diaz-Miguel MC, et al. Risk of severe COVID-19 infection in patients with inflammatory rheumatic diseases. J Rheumatol. 2021;48(7):1098-1102. doi: 10.3899/jrheum.200755

86. Kenig A, Ishay Y, Kharouf F, Rubin L. Treatment of B-cell depleted COVID-19 patients with convalescent plasma and plasma- based products. Clin Immunol. 2021;227:108723. doi: 10.1016/j.clim.2021.108723

87. Batticciotto A, Marotto D, Giorgi V, Balzarini P, Favalli EG, Balduzzi S, et al. Use of rituximab in a multicentre cohort of patients with rheumatic diseases during the outbreak of novel SARS-COV-2 infection. Clin Exp Rheumatol. 2021;39(3):695.

88. Sharmeen S, Elghawy A, Zarlasht F, Yao Q. COVID-19 in rheumatic disease patients on immunosuppressive agents. Semin Arthritis Rheum. 2020;50(4):680-686. doi: 10.1016/j.semarthrit.2020.05.010

89. Montero-Escribano P, Matías-Guiu J, Gómez-Iglesias P, Porta- Etessam J, Pytel V, Matias-Guiu JA. Anti-CD20 and COVID-19 in multiple sclerosis and related disorders: A case series of 60 patients from Madrid, Spain. Mult Scler Relat Disord. 2020;42:102185. doi: 10.1016/j.msard.2020.102185

90. Guevara C, Villa E, Rosas CS, Diaz V, Naves R. Treating patients with multiple sclerosis during the COVID-19 pandemic: Assessing the expert recommendations. Mult Scler Relat Disord. 2020;43:102224. doi: 10.1016/j.msard.2020.102224

91. Safavi F, Nourbakhsh B, Azimi AR. B-cell depleting therapies may affect susceptibility to acute respiratory illness among patients with multiple sclerosis during the early COVID-19 epidemic in Iran. Mult Scler Relat Disord. 2020;43:102195. doi: 10.1016/j.msard.2020.102195

92. Sahraian MA, Azimi A, Navardi S, Ala S, Naser Moghadasi A. Evaluation of the rate of COVID-19 infection, hospitalization and death among Iranian patients with multiple sclerosis. Mult Scler Relat Disord. 2020;46:102472. doi: 10.1016/j.msard.2020.102472

93. Sormani MP, De Rossi N, Schiavetti I, Carmisciano L, Cordioli C, Moiola L, et al.; Musc-19 Study Group. Diseasemodifying therapies and coronavirus disease 2019 severity in multiple sclerosis. Ann Neurol. 2021;89(4):780-789. doi: 10.1002/ana.26028

94. Parrotta E, Kister I, Charvet L, Sammarco C, Saha V, Charlson RE, et al. COVID-19 outcomes in MS: Observational study of early experience from NYU Multiple Sclerosis Comprehensive Care Center. Neurol Neuroimmunol Neuroinflamm. 2020;7(5). doi: 10.1212/NXI.0000000000000835

95. Salter A, Fox RJ, Newsome SD, Halper J, Li DKB, Kanellis P, et al. Outcomes and risk factors associated with SARS-CoV-2 infection in a North American Registry of patients with multiple sclerosis. JAMA Neurol. 2021;78(6):699-708. doi: 10.1001/jamaneurol.2021.0688

96. Spelman T, Forsberg L, McKay K, Glaser A, Hillert J. Increased rate of hospitalisation for COVID-19 among rituximab-treated multiple sclerosis patients: A study of the Swedish multiple sclerosis registry. Mult Scler. 2021 Jul 2:13524585211026272. doi: 10.1177/13524585211026272

97. Sharifian-Dorche M, Sahraian MA, Fadda G, Osherov M, Sharifian-Dorche A, et al. COVID-19 and disease-modifying therapies in patients with demyelinating diseases of the central nervous system: A systematic review. Mult Scler Relat Disord. 2021;50:102800. doi: 10.1016/j.msard.2021.102800

98. Beyzaee AM, Rahmatpour Rokni G, Patil A, Goldust M. Rituximab as the treatment of pemphigus vulgaris in the COVID-19 pandemic era: A narrative review. Dermatol Ther. 2021;34(1):e14405. doi: 10.1111/dth.14405

99. Uzuncakmak TK, Özkoca D, Askin O, Kutlubay Z. Can rituximab be used in the treatment of pemphigus vulgaris during the COVID-19 pandemic? Dermatol Ther. 2021;34(1):e14647. doi: 10.1111/dth.14647

100. Kos I, Balensiefer B, Roth S, Ahlgrimm M, Sester M, Schmidt T, et al. Prolonged course of COVID-19-associated pneumonia in a B-cell depleted patient after rituximab. Front Oncol. 2020;10:1578. doi: 10.3389/fonc.2020.01578

101. Yasuda H, Tsukune Y, Watanabe N, Sugimoto K, Uchimura A, Tateyama M, et al. Persistent COVID-19 pneumonia and failure to develop anti-SARS-CoV-2 antibodies during rituximab maintenance therapy for follicular lymphoma. Clin Lymphoma Myeloma Leuk. 2020;20(11):774-776. doi: 10.1016/j.clml.2020.08.017

102. Daniel P, Raad M, Waked R, Choucair J, Riachy M, Haddad F. COVID-19 in a patient treated for granulomatosis with polyangiitis: Persistent viral shedding with no cytokine storm. Eur J Case Rep Intern Med. 2020;7(10):001922. doi: 10.12890/2020_001922

103. Leipe J, Wilke EL, Ebert MP, Teufel A, Reindl W. Long, relapsing, and atypical symptomatic course of COVID-19 in a B-celldepleted patient after rituximab. Semin Arthritis Rheum. 2020;50(5):1087-1088. doi: 10.1016/j.semarthrit.2020.06.013

104. Marcacci G, Fiorentino G, Volzone F, Falcone U, Parrella R, Donnarumma D, et al. Atypical COVID-19 dynamics in a patient with mantle cell lymphoma exposed to rituximab. Infect Agent Cancer. 2021;16(1):38. doi: 10.1186/s13027-021-00376-1

105. Friedman MA, Winthrop KL. Second COVID-19 infection in a patient with granulomatosis with polyangiitis on rituximab. Ann Rheum Dis. 2021 Mar 4:annrheumdis-2021-220088. doi: 10.1136/annrheumdis-2021-220088

106. Tampe D, Korsten P, Hakroush S, Winkler MS, Tampe B. Correspondence on ‘Second COVID-19 infection in a patient with granulomatosis with polyangiitis on rituximab’. Ann Rheum Dis. 2021 May 12:annrheumdis-2021-220382. doi: 10.1136/annrheumdis-2021-220382

107. Sarkar S, Khanna P, Singh AK. Impact of COVID-19 in patients with concurrent co-infections: A systematic review and meta-analyses. J Med Virol. 2021;93(4):2385-2395. doi: 10.1002/jmv.26740

108. Conlon A, Ashur C, Washer L, Eagle KA, Hofmann Bowman MA. Impact of the influenza vaccine on COVID-19 infection rates and severity. Am J Infect Control. 2021;49(6):694-700. doi: 10.1016/j.ajic.2021.02.012

109. Rondaan C, Furer V, Heijstek MW, Agmon-Levin N, Bijl M, Breedveld FC, et al. Efficacy, immunogenicity and safety of vaccination in adult patients with autoimmune inflammatory rheumatic diseases: A systematic literature review for the 2019 update of EULAR recommendations. RMD Open. 2019;5(2):e001035. doi: 10.1136/rmdopen-2019-001035

110. Белов БС. Вакцинация при ревматических заболеваниях: союзник или противник? Научно-практическая ревматология. 2018;56(4):401-404.

111. van Assen S, Holvast A, Benne CA, Posthumus MD, van Leeuwen MA, Voskuyl AE, et al. Humoral responses after influenza vaccination are severely reduced in patients with rheumatoid arthritis treated with rituximab. Arthritis Rheum. 2010;62(1):75-81. doi: 10.1002/art.25033

112. Hua C, Barnetche T, Combe B, Morel J. Effect of methotrexate, anti-tumor necrosis factor α, and rituximab on the immune response to influenza and pneumococcal vaccines in patients with rheumatoid arthritis: A systematic review and meta-analysis. Arthritis Care Res (Hoboken). 2014;66(7):1016-1026. doi: 10.1002/acr.22246

113. Nived P, Jönsson G, Settergren B, Einarsson J, Olofsson T, Jørgensen CS, et al. Prime-boost vaccination strategy enhances immunogenicity compared to single pneumococcal conjugate vaccination in patients receiving conventional DMARDs, to some extent in abatacept but not in rituximab-treated patients. Arthritis Res Ther. 2020;22(1):36. doi: 10.1186/s13075-020-2124-3.

114. Crnkic Kapetanovic M, Saxne T, Jönsson G, Truedsson L, Geborek P. Rituximab and abatacept but not tocilizumab impair antibody response to pneumococcal conjugate vaccine in patients with rheumatoid arthritis. Arthritis Res Ther. 2013;15(5):R171. doi: 10.1186/ar4358

115. Logunov DY, Dolzhikova IV, Zubkova OV, Tukhvatulin AI, Shcheblyakov DV, Dzharullaeva AS, et al.; Gam-COVID-Vac Vaccine Trial Group. Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations: Two open, non-randomised phase 1/2 studies from Russia. Lancet. 2020;396(10255):887-897. doi: 10.1016/S0140-6736(20)31866-3

116. Logunov DY, Dolzhikova IV, Shcheblyakov DV, Tukhvatulin AI, Zubkova OV, Dzharullaeva AS, et al.; Gam-COVID-Vac Vaccine Trial Group. Safety and efficacy of an rAd26 and rAd5 vector-

117. based heterologous prime-boost COVID-19 vaccine: An interim analysis of a randomised controlled phase 3 trial in Russia. Lancet. 2021;397(10275):671-681. doi: 10.1016/S0140-6736(21)00234-8

118. Pagotto V, Ferloni A, Soriano MM, Díaz M, Golde MB, González MI, et al. Active surveillance of the Sputnik V vaccine in health workers. medRxiv. 2021.02.03.21251071. doi: 10.1101/2021.02.03.21251071

119. Montalti M, Soldà G, Di Valerio Z, Salussolia A, Lenzi J, Forcellini M, et al., for the San Marino Republic COVID ROCCA Group. ROCCA study protocol and interim analysis on safety of Sputnik V vaccine (Gam-COVID-Vac) in the Republic of San Marino: An observational study using active surveillance. medRxiv. 2021.05.03.21256509. doi: 10.1101/2021.05.03.21256509

120. Benucci M, Infantino M, Marotto D, Ardizzone S, Manfredi M, Sarzi-Puttini P. Vaccination against SARS-CoV-2 in patients with rheumatic diseases: Doubts and perspectives. Clin Exp Rheumatol. 2021;39(1):196-202.

121. Baker D, Roberts CAK, Pryce G, Kang AS, Marta M, Reyes S, et al. COVID-19 vaccine-readiness for anti-CD20-depleting therapy in autoimmune diseases. Clin Exp Immunol. 2020;202(2):149-161. doi: 10.1111/cei.13495

122. Saxena A, Guttmann A, Masson M, Kim MY, Haberman RH, Castillo R, et al; NYU WARCOV Investigators. Evaluation of SARS-CoV-2 IgG antibody reactivity in patients with systemic lupus erythematosus: Analysis of a multi-racial and multi-ethnic cohort. Lancet Rheumatol. 2021 May 27. doi: 10.1016/S2665-9913(21)00114-4

123. Braun-Moscovici Y, Kaplan M, Braun M, Markovits D, Giryes S, Toledano K, et al. Disease activity and humoral response in patients with inflammatory rheumatic diseases after two doses of the Pfizer mRNA vaccine against SARS-CoV-2. Ann Rheum Dis. 2021 Jun 18:annrheumdis-2021-220503. doi: 10.1136/annrheumdis-2021-220503

124. Boyarsky BJ, Ruddy JA, Connolly CM, Ou MT, Werbel WA, Garonzik-Wang JM, et al. Antibody response to a single dose of SARS-CoV-2 mRNA vaccine in patients with rheumatic and musculoskeletal diseases. Ann Rheum Dis. 2021 Mar 23:annrheumdis-2021-220289. doi: 10.1136/annrheumdis-2021-220289

125. Geisen UM, Berner DK, Tran F, Sümbül M, Vullriede L, Ciripoi M, et al. Immunogenicity and safety of anti-SARS-CoV-2 mRNA vaccines in patients with chronic inflammatory conditions and immunosuppressive therapy in a monocentric cohort. Ann Rheum Dis. 2021 Mar 24:annrheumdis-2021-220272. doi: 10.1136/annrheumdis-2021-220272

126. Simon D, Tascilar K, Fagni F, Krönke G, Kleyer A, Meder C, et al. SARS-CoV-2 vaccination responses in untreated, conventionally treated and anticytokine-treated patients with immune-mediated inflammatory diseases. Ann Rheum Dis. 2021 May 6:annrheumdis-2021-220461. doi: 10.1136/annrheumdis-2021-220461

127. Haberman RH, Herati R, Simon D, Samanovic M, Blank RB, Tuen M, et al. Methotrexate hampers immunogenicity to BNT162b2 mRNA COVID-19 vaccine in immune-mediated inflammatory disease. Ann Rheum Dis. 2021 May 25: annrheumdis-2021-220597. doi: 10.1136/annrheumdis-2021-220597

128. Nived P, Pettersson Å, Jönsson G, Bengtsson AA, Settergren B, Skattum L, et al. Methotrexate reduces circulating Th17 cells and impairs plasmablast and memory B cell expansions following pneumococcal conjugate immunization in RA patients. Sci Rep. 2021;11(1):9199. doi: 10.1038/s41598-021-88491-2

129. Bonelli MM, Mrak D, Perkmann T, Haslacher H, Aletaha D. SARS-CoV-2 vaccination in rituximab-treated patients: Evidence for impaired humoral but inducible cellular immune response. Ann Rheum Dis. 2021 May 6:annrheumdis-2021-220408. doi: 10.1136/annrheumdis-2021-220408

130. Deepak P, Kim W, Paley MA, Yang M, Carvidi AB, El-Qunni AA, et al. Glucocorticoids and B cell depleting agents substantially impair immunogenicity of mRNA vaccines to SARS-CoV-2. medRxiv. 2021 Apr 9;2021.04.05.21254656. doi: 10.1101/2021.04.05.21254656

131. Spiera R, Jinich S, Jannat-Khah D. Rituximab, but not other antirheumatic therapies, is associated with impaired serological response to SARS-CoV-2 vaccination in patients with rheumatic diseases. Ann Rheum Dis. 2021 May 2021:annrheumdis-2021-220604. doi: 10.1136/annrheumdis-2021-220604

132. Guo L, Kapur R, Aslam R, Speck ER, Zufferey A, Zhao Y, et al. CD20+ B-cell depletion therapy suppresses murine CD8+ T-cellmediated immune thrombocytopenia. Blood. 2016;127(6):735-738. doi: 10.1182/blood-2015-06-655126

133. Graalmann T, Borst K, Manchanda H, Vaas L, Bruhn M, Graalmann L, et al. B cell depletion impairs vaccination-induced CD8+ T cell responses in a type I interferon-dependent manner. Ann Rheum Dis. 2021 Jul 5:annrheumdis-2021-220435. doi: 10.1136/annrheumdis-2021-220435

134. Wilk E, Witte T, Marquardt N, Horvath T, Kalippke K, Scholz K, et al. Depletion of functionally active CD20+ T cells by rituximab treatment. Arthritis Rheum. 2009;60(12):3563-3571. doi: 10.1002/art.24998

135. Md Yusof MY, Vital EM, McElvenny DM, Hensor EMA, Das S, Dass S, et al. Predicting severe infection and effects of hypogammaglobulinemia during therapy with rituximab in rheumatic and musculoskeletal diseases. Arthritis Rheumatol. 2019;71(11):1812-1823. doi: 10.1002/art.40937

136. Barmettler S, Ong MS, Farmer JR, Choi H, Walter J. Association of immunoglobulin levels, infectious risk, and mortality with rituximab and hypogammaglobulinemia. JAMA Netw Open. 2018;1(7):e184169. doi: 10.1001/jamanetworkopen.2018.4169

137. Tieu J, Smith RM, Gopaluni S, Kumararatne DS, McClure M, Manson A, et al. Rituximab associated hypogammaglobulinemia in autoimmune disease. Front Immunol. 2021;12:671503. doi: 10.3389/fimmu.2021.671503

138. McClure ME, Zhu Y, Smith RM, Gopaluni S, Tieu J, Pope T, et al. Long-term maintenance rituximab for ANCA-associated vasculitis: relapse and infection prediction models. Rheumatology (Oxford). 2021;60(3):1491-1501. doi: 10.1093/rheumatology/keaa541

139. Ahmed AR, Kaveri S. Reversing autoimmunity combination of rituximab and intravenous immunoglobulin. Front Immunol. 2018;9:1189. doi: 10.3389/fimmu.2018.01189

140. Perez EE, Orange JS, Bonilla F, Chinen J, Chinn IK, Dorsey M, et al. Update on the use of immunoglobulin in human disease: A review of evidence. J Allergy Clin Immun. 2017;139:S1-46. doi: 10.1016/j.jaci.2016.09.023

141. Prete M, Favoino E, Catacchio G, Racanelli V, Perosa F. SARSCoV-2 infection complicated by inflammatory syndrome. Could high-dose human immunoglobulin for intravenous use (IVIG) be beneficial? Autoimmun Rev. 2020;19(7):102559. doi: 10.1016/j.autrev.2020.102559

142. Xie Y, Cao S, Dong H, Li Q, Chen E, Zhang W, et al. Effect of regular intravenous immunoglobulin therapy on prognosis of severe pneumonia in patients with COVID-19. J Infect. 2020;81(2):318-356. doi: 10.1016/j.jinf.2020.03.044

143. Cao W, Liu X, Bai T, Fan H, Hong K, Song H, et al. High-dose intravenous immunoglobulin as a therapeutic option for deteriorating patients with coronavirus disease 2019. Open Forum Infect Dis. 2020;7(3):ofaa102. doi: 10.1093/ofid/ofaa102

144. Diez J-M, Romero C, Gajardo R. Currently available intravenous immunoglobulin (Gamunex®-C and Flebogamma® DIF) contains antibodies reacting against SARS-CoV-2 antigens. bioRxiv. 2020 Apr 07:029017. doi: 10.1101/2020.04.07.029017

145. Rojas M, Rodriguez Y, Monsalve DM, Acosta-Ampudia Y, Camacho B, Gallo JE, et al. Convalescent plasma in Covid-19: Possible mechanisms of action. Autoimmun Rev. 2020;19(7):102554. doi: 10.1016/j.autrev.2020.102554

146. Bredemeier M, Campos GG, de Oliveira FK. Updated systematic review and meta-analysis of randomized controlled trials comparing low- versus high-dose rituximab for rheumatoid arthritis. Clin Rheumatol. 2015;34(10):1801-1805. doi: 10.1007/s10067-015-2977-z

147. Henry J, Gottenberg JE, Rouanet S, Pavy S, Sellam J, Tubach F, et al.; Auto-Immunity and Rituximab investigators. Doses of rituximab for retreatment in rheumatoid arthritis: influence on maintenance and risk of serious infection. Rheumatology (Oxford). 2018;57(3):538-547. doi: 10.1093/rheumatology/kex446

148. Насонов ЕЛ, Лила АМ, Мазуров ВИ, Белов БС, Каратеев АЕ, Дубинина ТВ, и др. Коронавирусная болезнь 2019 (COVID- 19) и иммуновоспалительные ревматические заболевания. Рекомендации Общероссийской общественной организации «Ассоциация ревматологов России». Научно-практическая ревматология. 2021;59(3):239-254.

149. Woodruff MC, Ramonell RP, Nguyen DC, Cashman KS, Saini AS, Haddad NS, et al. Extrafollicular B cell responses correlate with neutralizing antibodies and morbidity in COVID-19. Nat Immunol. 2020;21(12):1506-1516. doi: 10.1038/s41590-020-00814-z

150. Jenks SA, Cashman KS, Woodruff MC, Lee FE, Sanz I. Extrafollicular responses in humans and SLE. Immunol Rev. 2019;288(1):136-148. doi: 10.1111/imr.12741


Для цитирования:


Насонов Е.Л., Авдеева А.С. Деплеция В-клеток при иммуновоспалительных ревматических заболеваниях и коронавирусная болезнь 2019 (COVID-19). Научно-практическая ревматология. 2021;59(4):384–393. https://doi.org/10.47360/1995-4484-2021-384-393

For citation:


Nasonov E.L., Avdeeva A.S. B cell depletion in immune-mediated rheumatic diseases and coronavirus disease 2019 (COVID-19). Rheumatology Science and Practice. 2021;59(4):384–393. (In Russ.) https://doi.org/10.47360/1995-4484-2021-384-393

Просмотров: 120


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1995-4484 (Print)
ISSN 1995-4492 (Online)