Calcification of coronary arteries in patients with calcium pyrophosphate crystal deposition disease and knee osteoarthritis
https://doi.org/10.47360/1995-4484-2021-411-417
Abstract
The frequency of vascular calcification in patients with osteoarthritis (OA) and calcium pyrophosphate crystal deposition disease (CPPD) has not yet been studied, and the role of calcium crystals (basic and pyrophosphates) in the development of calcification is also unknown.
Objective. Determine the presence and degree of calcification of the coronary vessels in patients with calcium pyrophosphate crystal deposition disease and osteoarthritis of the knee joints with no clinical signs of cardiovascular diseases.
Materials and methods. One-stage, single-center study, performed by the “case – control” method. The main group – 20 patients with CPPD, the comparison group – 20 patients with OA of the knee joints. Inclusion criteria: age from 18 to 65 years; absence of clinical signs of cardiovascular disease at the time of examination and indications of a history of cardiovascular accidents. Exclusion criteria: unsigned informed consent; pregnancy; breastfeeding; other rheumatic disease; cancer; high and very high cardiovascular risk on the SCORE scale. The survey included an assessment of anthropometric data, blood pressure (BP), lipid profile, serum levels of glucose, creatinine, uric acid, C-reactive protein, vitamin D, osteoprotegerin, parathyroid hormone, and the levels of magnesium, phosphorus, and total calcium were studied. All patients underwent multispiral computed tomography with determination of calcium count and the number of affected arteries. To calculate the coronary score, the A.S. Agatston et al.
Results and discussion. Most of the parameters in the compared groups did not differ. When assessing the calcification of the coronary arteries according to the A.S. Agatston et al. 9 (45%) patients with CPPD and 8 (40%) patients with OA had a coronary calcium score >1. Quantitative indicators of calcium score can correspond to coronary artery stenosis ≥20% in 8 (40%) patients with CPPD and in 5 (25%) patients with OA according to J.A. Rumberger et al. The serum level of osteoprotegerin was significantly higher in patients with a calcium score ≥27 according to J.A. Rumberger et al. (p=0.04). Calcification was detected in 9 (56%) of 16 patients with serum vitamin D levels <30 ng/ml and in 8 (33%) of 24 patients with serum vitamin D levels >30 ng/ml.
Conclusions. In patients with an initially low cardiovascular risk, the probability of a combination of chondrocalcinosis and cardiovascular calcification is 45%, in OA it is 40%. The risk factors for coronary calcification in patients with CPPD and OA should be studied further.
About the Authors
M. S. EliseevRussian Federation
115522, Russian Federation, Moscow, Kashirskoye Highway, 34A
D. S. Novikova
Russian Federation
111123, Russian Federation, Moscow, Entuziastov Highway, 86
A. M. Novikova
Russian Federation
115522, Russian Federation, Moscow, Kashirskoye Highway, 34A
L. M. Blank
Russian Federation
115522, Russian Federation, Moscow, Kashirskoye Highway, 34A
O. V. Zhelyabina
Russian Federation
115522, Russian Federation, Moscow, Kashirskoye Highway, 34A
M. V. Cherkasova
Russian Federation
115522, Russian Federation, Moscow, Kashirskoye Highway, 34A
E. L. Nasonov
Russian Federation
115522, Russian Federation, Moscow, Kashirskoye Highway, 34A
119991, Russian Federation, Moscow, Trubetskaya str., 8, building 2
References
1. Rosenthal AK, Ryan LM. Calcium pyrophosphate deposition disease. N Engl J Med. 2016;374(26):2575-2584. doi: 10.1056/NEJMra1511117
2. Richette P, Bardin T, Doherty M. An update on the epidemiology of calcium pyrophosphate dihydrate crystal deposition disease. Rheumatology. 2009;48(7):711-715. doi: 10.1093/rheumatology/kep081
3. Abhishek A. Calcium pyrophosphate deposition disease: a review of epidemiologic findings. Curr Opin Rheum. 2016;28(2):133-139. doi: 10.1097/BOR.0000000000000246
4. Fuerst M, Bertrand J, Lammers L, Dreier R, Echtermeyer F, Nitschke Y, et al. Calcification of articular cartilage in human osteoarthritis. Arthritis Rheum. 2009;60:2694-2703. doi: 10.1002/art.24774
5. Hawellek T, Hubert J, Hischke S, Vettorazzi E, Wegscheider K, Bertrand J, et al. Articular cartilage calcification of the humeral head is highly prevalent and associated with osteoarthritis in the general population. J Orthop Res. 2016;34:1984-1990. doi: 10.1002/jor.23227
6. Ea HK, Uzan B, Rey C, Lioté F. Octacalcium phosphate crystals directly stimulate expression of inducible nitric oxide synthase through p38 and JNK mitogen-activated protein kinases in articular chondrocytes. Arthritis Res Ther. 2005;7(5):R915-R926. doi: 10.1186/ar1763
7. Thouverey C, Bechkoff G, Pikula S, Buchet R. Inorganic pyrophosphate as a regulator of hydroxyapatite or calcium pyrophosphate dihydrate mineral deposition by matrix vesicles. Osteoarthritis Cartilage. 2009;17:64-72. doi: 10.1016/j.joca.2008.05.020
8. Abhishek A, Doherty S, Maciewicz R, Muir K, Zhang W, Doherty M. Association between low cortical bone mineral density, soft-tissue calcification, vascular calcification and chondrocalcinosis: A case-control study. Ann Rheum Dis. 2014;73(11):1997-2002. doi: 10.1136/annrheumdis-2013-203400
9. Zazzeroni L, Faggioli G, Pasquinelli G. Mechanisms of arterial calcification: The role of matrix vesicles. Eur J Vasc Endovasc Surg. 2018;55(3):425-432. doi: 10.1016/j.ejvs.2017.12.009
10. Shao JS, Cheng SL, Sadhu J, Towler DA. Inflammation and the osteogenic regulation of vascular calcification: a review and perspective. Hypertension. 2010;55(3):579-592. doi: 10.1161/HYPERTENSIONAHA.109.134205
11. Zhao G, Xu MJ, Zhao MM, Dai XY, Kong W, Wilson GM, et al. Activation of nuclear factor-kappa B accelerates vascular calcification by inhibiting ankylosis protein homolog expression. Kidney Int. 2012;82(1):34-44. doi: 10.1038/ki.2012.40
12. Mitton-Fitzgerald E, Gohr CM, Bettendorf B, Rosenthal AK. The role of ANK in calcium pyrophosphate deposition disease. Curr Rheumatol Rep. 2016;18(5):25. doi: 10.1007/s11926-016-0574-z
13. Karaali E, Çiloğlu O, Yücel C, Ekiz T. The relationship between primary knee osteoarthritis and aortic stiffness, distensibility, and valve calcifications: A case-control study. J Clin Rheumatol. 2020;10.1097/RHU.0000000000001568. doi: 10.1097/RHU.0000000000001568
14. Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M Jr, Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol. 1990;15:827-832. doi: 10.1016/0735-1097(90)90282-T
15. Rumberger JA, Brundage BH, Rader DJ, Kondos G. Electron beam computed tomographic coronary calcium scanning: A review and guidelines for use in asymptomatic persons. Mayo Clin Proc. 1999 Mar;74(3):243-252. doi: 10.4065/74.3.243
16. Tinggaard AB, de Thurah A, Andersen IT, Riis AH, Therkildsen J, Winther S, et al. Rheumatoid arthritis as a risk factor for coronary artery calcification and obstructive coronary artery disease in patients with chest pain: A registry based crosssectional study. Clin Epidemiol. 2020;12:679-689. doi: 10.2147/CLEP.S251168
17. Vladimirov S, Kudaeva F, Kudinsky D, Smirnov A, Eliseev M. Radiographic progression of knee osteoarthritis in patients with different clinical types of calcium pyrophosphate deposition disease vs patients with osteoarthritis (preliminary data). Ann Rheum Dis. 2017;74:536. doi: 10.1136/annrheumdis-2015-eular.3781
18. Yiu KH, Wang S, Mok MY, Ooi GC, Khong PL, Mak KF, et al. Pattern of arterial calcification in patients with systemic lupus erythematosus. J Rheumatol. 2009;36(10):2212-2217. doi: 10.3899/jrheum.090312
19. Hwang IC, Park HE, Kim HL, Kim HM, Park JB, Yoon YE, et al. Systemic inflammation is associated with coronary artery calcification and all-cause mortality in chronic kidney disease. Circ J. 2016;80(7):1644-1652. Doi: 10.1253/circj.CJ-15-1224
20. Tarcin O, Yavuz DG, Ozben B, Telli A, Ogunc AV, Yuksel M, et al. Effect of vitamin D deficiency and replacement on endothelial function in asymptomatic subjects. J Clin Endocrinol Metab. 2009;94(10):4023-4030. doi: 10.1210/jc.2008-1212
21. Yashiro T, Okamoto T, Tanaka R, Ito K, Hara H, Yamashita T, et al. Prevalence of chondrocalcinosis in patients with primary hyperparathyroidism in Japan. Endocrinol Jpn. 1991;38(5):457-464. doi: 10.1507/endocrj1954.38.457
22. Terai K, Nara H, Takakura K, Mizukami K, Sanagi M, Fukushima S, et al. Vascular calcification and secondary hyperparathyroidism of severe chronic kidney disease and its relation to serum phosphate and calcium levels. Br J Pharmacol. 2009;156(8):1267-1278. doi: 10.1111/j.1476-5381.2008.00108.x
23. Colak S, Aydogan BI, Gokcay Canpolat A, Tulunay Kaya C, Sahin M, Corapcioglu D, et al. Is primary hyperparathyroidism a cause of endothelial dysfunction? Clin Endocrinol (Oxf). 2017;87(5):459-465. doi: 10.1111/cen.13418
24. Tschiderer L, Willeit J, Schett G, Kiechl S, Willeit P. Osteoprotegerin concentration and risk of cardiovascular outcomes in nine general population studies: Literature-based meta-analysis involving 26,442 participants. PLoS One. 2017;12(8):e0183910. doi: 10.1371/journal.pone.0183910
25. Beyazal MS, Erdoğan T, Devrimsel G, Türkyılmaz AK, Cüre MC, Beyazal M, et al. Relationship of osteoprotegerin to pulse wave velocity and carotid intima-media thickness in rheumatoid arthritis patients. Z Rheumatol. 2016;75(7):723-728. doi: 10.1007/s00393-015-1675-1
Review
For citations:
Eliseev M.S., Novikova D.S., Novikova A.M., Blank L.M., Zhelyabina O.V., Cherkasova M.V., Nasonov E.L. Calcification of coronary arteries in patients with calcium pyrophosphate crystal deposition disease and knee osteoarthritis. Rheumatology Science and Practice. 2021;59(4):411–417. (In Russ.) https://doi.org/10.47360/1995-4484-2021-411-417