Preview

Научно-практическая ревматология

Расширенный поиск

Уратснижающие препараты в лечении подагры: неизвестное об известном

https://doi.org/10.47360/1995-4484-2021-727-737

Аннотация

Основным направлением лекарственной терапии подагры и других связанных с гиперурикемией заболеваний является длительное использование лекарственных средств, направленных на коррекцию уровня мочевой кислоты. Однако помимо уратснижающего действия, данные препараты могут обладать и другими благоприятными плейотропными эффектами. В статье будут обсуждены дополнительные эффекты ингибиторов ксантиноксидазы, а также используемых для лечения сопутствующих подагре заболеваний препаратов, обладающих уратснижающим действием.

Об авторах

Т. С. Паневин
Научно-исследовательский институт ревматологии им. В.А. Насоновой
Россия

Паневин Тарас Сергеевич.

115522, Москва, Каширское шоссе, 34а.


Конфликт интересов:

Нет



М. С. Елисеев
Научно-исследовательский институт ревматологии им. В.А. Насоновой
Россия

115522, Москва, Каширское шоссе, 34а.


Конфликт интересов:

Нет



Е. Л. Насонов
Научно-исследовательский институт ревматологии им. В.А. Насоновой; Первый Московский государственный медицинский университет имени И.М. Сеченова Минздрава России (Сеченовский Университет)
Россия

115522, Москва, Каширское шоссе, 34а; 119991, Москва, ул. Трубецкая, 8, стр. 2.


Конфликт интересов:

Нет



Список литературы

1. Желябина ОВ, Елисеев МС. Ингибиторы ксантиноксидазы при асимптоматической гиперурикемии. Современная ревматология. 2019;13(4):137-142. doi: 10.14412/1996-7012-2019-4-137-142

2. Shiozawa A, Szabo SM, Bolzani A, Cheung A, Choi HK. Serum uric acid and the risk of incident and recurrent gout: A systematic review. J Rheumatol. 2017;44(3):388-396. doi: 10.3899/jrheum.160452

3. Laws A, Reaven GM. Evidence for an independent relationship between insulin resistance and fasting plasma HDL-cholesterol, triglyceride and insulin concentrations. J Intern Med. 1992;231(1):25-30. doi: 10.1111/j.1365-2796.1992.tb00494.x

4. Abbasian M, Ebrahimi H, Delvarianzadeh M, Norouzi P, Fazli M. Association between serum uric acid (SUA) levels and metabolic syndrome (MetS) components in personnel of Shahroud University of Medical Sciences. Diabetes Metab Syndr. 2016;10(3):132-136. doi: 10.1016/j.dsx.2016.01.003

5. Verdecchia P, Schillaci G, Reboldi G, Santeusanio F, Porcellati C, Brunetti P. Relation between serum uric acid and risk of cardiovascular disease in essential hypertension. The PIUMA study. Hypertension. 2000;36(6):1072-1078. doi: 10.1161/01.hyp.36.6.1072

6. Кобалава ЖД, Троицкая ЕА. Бессимптомная гиперурикемия и риск развития сердечно-сосудистых и почечных заболеваний. Кардиология. 2020;60(10):113-121. doi: 10.18087/cardio.2020.10.n1153

7. Richette P, Doherty M, Pascual E, Barskova V, Becce F, Castaneda J, et al. 2018 updated European League Against Rheumatism evidence-based recommendations for the diagnosis of gout. Ann Rheum Dis. 2020;79(1):31-38. doi: 10.1136/annrheumdis-2019-215315

8. Khanna D, Fitzgerald JD, Khanna PP, Bae S, Singh MK, Neogi T, et al.; American College of Rheumatology. 2012 American College of Rheumatology guidelines for management of gout. Part 1: Systematic nonpharmacologic and pharmacologic therapeutic approaches to hyperuricemia. Arthritis Care Res (Hoboken). 2012;64(10):1431-1446. doi: 10.1002/acr.21772

9. Richette P, Doherty M, Pascual E, Barskova V, Becce F, Castaneda-Sanabria J, et al. 2016 updated EULAR evidence-based recommendations for the management of gout. Ann Rheum Dis. 2017;76(1):29-42. doi: 10.1136/annrheumdis-2016-209707

10. Seth R, Kydd AS, Buchbinder R, Bombardier C, Edwards CJ. Allopurinol for chronic gout. Cochrane Database Syst Rev. 2014;(10):CD006077. doi: 10.1002/14651858.CD006077.pub3

11. Karmouty-Quintana H, Xia Y, Blackburn MR. Adenosine signaling during acute and chronic disease states. J Mol Med (Berl). 2013;91(2):173-181. doi: 10.1007/s00109-013-0997-1

12. Elliott MR, Chekeni FB, Trampont PC, Lazarowski ER, Kadl A, Walk SF, et al. Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature. 2009;461(7261):282-286. doi: 10.1038/nature08296

13. Barletta KE, Ley K, Mehrad B. Regulation of neutrophil function by adenosine. Arterioscler Thromb Vasc Biol. 2012;32(4):856-864. doi: 10.1161/ATVBAHA.111.226845

14. Varani K, Padovan M, Vincenzi F, Targa M, Trotta F, Govoni M, et al. A2A and A3 adenosine receptor expression in rheumatoid arthritis: Upregulation, inverse correlation with disease activity score and suppression of inflammatory cytokine and metalloproteinase release. Arthritis Res Ther. 2011;13(6):R197. doi: 10.1186/ar3527

15. Ernst PB, Garrison JC, Thompson LF. Much ado about adenosine: Adenosine synthesis and function in regulatory T cell biology. J Immunol. 2010;185(4):1993-1998. doi: 10.4049/jimmunol.1000108

16. Herez Ruiz F, Richette P, Stack AG, Karra Gurunath R, Garda de Yebenes MJ, Carmona L. Failure to reach uric acid target of <0.36 mmol/L in hyperuricaemia of gout is associated with elevated total and cardiovascular mortality. RMD Open. 2019;5(2):e001015. doi: 10.1136/rmdopen-2019-001015

17. Sautin YY, Nakagawa T, Zharikov S, Johnson RJ. Adverse effects of the classic antioxidant uric acid in adipocytes: NADPH oxidase-mediated oxidative/nitrosative stress. Am J Physiol Cell Physiol. 2007;293(2):C584-C596. doi: 10.1152/ajpcell.00600.2006

18. Fabbrini E, Serafini M, Colic Baric I, Hazen SL, Klein S. Effect of plasma uric acid on antioxidant capacity, oxidative stress, and insulin sensitivity in obese subjects. Diabetes. 2014;63(3):976-981. doi: 10.2337/db13-1396

19. Ames BN, Cathcart R, Schwiers E, Hochstein P. Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: A hypothesis. Proc Natl Acad Sci. 1981;78(11):6858-6862. doi: 10.1073/pnas.78.11.6858

20. Schlesinger I, Schlesinger N. Uric acid in Parkinson's disease. Movement Disord. 2008;23(12):1653-1657. doi: 10.1002/mds.22139

21. Kang D-H, Puzzle HSU. Dual role as anti-oxidantand pro-oxidant. Electrol Blood Press. 2014;12(1):1. doi: 10.5049/ebp.2014.12.1.1

22. Miric DJ, Kisic BM, Filipovic-Danic S, Grbic R, Dragojevic I, Miric MB, et al. Xanthine oxidase activity in type 2 diabetes melli-tus patients with and without diabetic peripheral neuropathy. J Diabetes Res. 2016;2016:4370490. doi: 10.1155/2016/4370490

23. Inkster ME, Cotter MA, Cameron NE. Treatment with the xanthine oxidase inhibitor, allopurinol, improves nerve and vascular function in diabetic rats. Eur J Pharmacol. 2007;561(1_3):63-71. doi: 10.1016/j.ejphar.2006.12.029

24. Sawynok J, Liu XJ. Adenosine in the spinal cord and periphery: Release and regulation of pain. Prog Neurobiol. 2003;69(5):313-340. doi: 10.1016/s0301-0082(03)00050-9

25. Essawy SS, Elbaz AA. Role of adenosine receptors in the anti-nociceptive effects of allopurinol in mice. Eur Rev Med Pharmacol Sci. 2013;17(14):1857-1863.

26. Connor M. Allopurinol for pain relief: More than just crystal clearance? Br J Pharmacol. 2009;156(1):4-6. doi: 10.1111/j.1476-5381.2008.00065.x

27. Yossif AM, Ibrahim TM, Salem HA, Gamil NM, el-Sayed LM. Effect of high lipid diet and allopurinol on the development of experimentally induced arthritis in rats. Pharmacology. 1995;51(3):160-164. doi: 10.1159/000139330

28. Schlesinger N, Brunetti L. Beyond urate lowering: Analgesic and anti-inflammatory properties of allopurinol. Semin Arthritis Rheum. 2020;50(3):444-450. doi: 10.1016/j.semarthrit.2019.11.009

29. Berry C, Hamilton CA, Brosnan MJ, Magill FG, Berg GA, McMurray JJ, et al. Investigation into the sources of superoxide in human blood vessels: Angiotensin II increases superoxide production in human internal mammary arteries. Circulation. 2000;101(18):2206-2212. doi: 10.1161/01.cir.101.18.2206

30. Yamada I, Fukunari A, Osajima T, Kamezawa M, Mori H, Iwane J. Pharmacokinetics/pharmacodynamics of Y-700, a novel xanthine oxidase inhibitor, in rats and man. Nucleosides Nucleotides Nucleic Acids. 2004;23(8-9):1123-1125. doi: 10.1081/NCN-200027384

31. Aldaba-Muruato LR, Moreno MG, Shibayama M, Tsutsumi V, Muriel P. Protective effects of allopurinol against acute liver damage and cirrhosis induced by carbon tetrachloride: Modulation of NF-kB, cytokine production and oxidative stress. Biochim Biophys Acta. 2012;1820(2):65-75. doi: 10.1016/j.bbagen.2011.09.018

32. Olah T, Regely K, Mandi Y. The inhibitory effects of allopurinol on the production and cytotoxicity of tumor necrosis factor. Naunyn Schmiedebergs Arch Pharmacol. 1994;350(1):96-99.

33. Martinon F. Signaling by ROS drives inflammasome activation. Eur J Immunol. 2010;40(3):616-619. doi: 10.1002/eji.200940168

34. Kim SJ, Lee SM. NLRP3 inflammasome activation in d-galactosamine and lipopolysaccharide-induced acute liver failure: Role of heme oxygenase-1. Free Rad Biol Med. 2013;65:997-1004. doi: 10.1016/j.freeradbiomed.2013.08.178

35. Wang W, Wang C, Ding XQ, Pan Y, Gu TT, Wang MX, et al. Quercetin and allopurinol reduce liver thioredoxin-interacting protein to alleviate inflammation and lipid accumulation in diabetic rats. Br J Pharmacol. 2013;169(6):1352-1371. doi: 10.1111/bph.12226

36. Wang W, Xu D, Wang B, Yan S, Wang X, Yin Y, et al. Increased risk of cancer in relation to gout: A review of three prospective cohort studies with 50,358 subjects. Mediators Inflamm. 2015;2015:680853. doi: 10.1155/2015/680853

37. Chen CJ, Yen JH, Chang SJ. Gout patients have an increased risk of developing most cancers, especially urological cancers. Scand J Rheumatol. 2014;43(5):385-390. doi: 10.3109/03009742.2013.878387

38. Kuo CF, Luo SF, See LC, Chou IJ, Fang YF, Yu KH. Increased risk of cancer among gout patients: A nationwide population study. Joint Bone Spine. 2012;79(4):375-378. doi: 10.1016/j.jbspin.2011.09.011

39. Boffetta P, Nordenvall C, Nyrtn O, Ye W. A prospective study of gout and cancer. Eur J Cancer Prev. 2009;18(2):127-132. doi: 10.1097/CEJ.0b013e328313631a

40. Shih HJ, Kao MC, Tsai PS, Fan YC, Huang CJ. Long-term allopurinol use decreases the risk of prostate cancer in patients with gout: A population-based study. Prostate Cancer Prostatic Dis. 2017;20(3):328-333. doi: 10.1038/pcan.2017.14

41. Liao KF, Lin CL, Lai SW. Association between allopurinol use and hepatocellular carcinoma in a case-control study in Taiwan. Eur J Hosp Pharm. 2019;26(5):258-261. doi: 10.1136/ejh-pharm-2017-001479

42. Bardin T, Richette P. The role of febuxostat in gout. Curr Opin Rheumatol. 2019;31(2):152-158. doi: 10.1097/BOR.0000000000000573

43. Inoue MK, Yamamotoya T, Nakatsu Y, Ueda K, Inoue Y, Matsunaga Y, et al. The xanthine oxidase inhibitor febuxostat suppresses the progression of IgA nephropathy, possibly via its anti-inflammatory and anti-fibrotic effects in the gddY mouse model. Int J Mol Sci. 2018;19(12):3967. doi: 10.3390/ijms19123967

44. Bir SC, Kolluru GK, McCarthy P, Shen X, Pardue S, Pattillo CB, et al. Hydrogen sulfide stimulates ischemic vascular remodeling through nitric oxide synthase and nitrite reduction activity regulating hypoxia-inducible factor-1a and vascular endothelial growth factor-dependent angiogenesis. J Am Heart Assoc. 2012;1(5):e004093. doi: 10.1161/JAHA.112.004093

45. Abdel-Aziz AM, Gamal El-Tahawy NF, Salah Abdel Haleem MA, Mohammed MM, Ali AI, Ibrahim YF. Amelioration of testosterone-induced benign prostatic hyperplasia using febuxostat in rats: The role of VEGF/TGFe and iNOS/COX-2. Eur J Pharmacol. 2020;889:173631. doi: 10.1016/j.ejphar.2020.173631

46. Hao J, Zhang W, Tong R, Huang Z. Febuxostat prevents the cytotoxicity of propofol in brain endothelial cells. ACS Omega. 2021;6(8):5471-5478. doi: 10.1021/acsomega.0c05708

47. Zaki SM, Hussein GHA, Khalil HMA, Abd Algaleel WA. Febuxostat ameliorates methotrexate-induced lung damage. Folia Morphol (Warsz). 2021;80(2):392-402. doi: 10.5603/FM.a2020.0075

48. Heikal MM, Shaaban AA, Elkashef WF, Ibrahim TM. Effect of febuxostat on biochemical parameters of hyperlipidemia induced by a high-fat diet in rabbits. Can J Physiol Pharmacol. 2019;97(7):611-622. doi: 10.1139/cjpp-2018-0731

49. Mizuno Y, Yamamotoya T, Nakatsu Y, Ueda K, Matsunaga Y, Inoue MK, et al. Xanthine oxidase inhibitor febuxostat exerts an anti-inflammatory action and protects against diabetic nephropathy development in KK-Ay obese diabetic mice. Int J Mol Sci. 2019;20(19):4680. doi: 10.3390/ijms20194680

50. Nomura J, Kobayashi T, So A, Busso N. Febuxostat, a xanthine oxidoreductase inhibitor, decreases NLRP3-dependent inflammation in macrophages by activating the purine salvage pathway and restoring cellular bioenergetics. Sci Rep. 2019;9(1):17314. doi: 10.1038/s41598-019-53965-x

51. Ibrahim YF, Fadl RR, Ibrahim S, Gayyed MF, Bayoumi A, Refaie M. Protective effect of febuxostat in sepsis-induced liver and kidney injuries after cecal ligation and puncture with the impact of xanthine oxidase, interleukin 1 в, and c-Jun N-terminal kinases. Hum Exp Toxicol. 2020;39(7):906-919. doi: 10.1177/0960327120905957

52. Tausche AK, Christoph M, Forkmann M, Richter U, Kopprasch S, Bielitz C, et al. As compared to allopurinol, urate-lowering therapy with febuxostat has superior effects on oxidative stress and pulse wave velocity in patients with severe chronic tophaceous gout. Rheumatol Int. 2014;34(1):101-109. doi: 10.1007/s00296-013-2857-2

53. Alfaifi MY, Shati AA, Elbehairi SEI, Fahmy UA, Alhakamy NA, Md S. Anti-tumor effect of PEG-coated PLGA nanoparticles of febuxostat on A549 non-small cell lung cancer cells. 3 Biotech. 2020;10(3):133. doi: 10.1007/s13205-020-2077-x

54. Nishikawa T, Nagata N, Shimakami T, Shirakura T, Matsui C, Ni Y, et al. Xanthine oxidase inhibition attenuates insulin resistance and diet-induced steatohepatitis in mice. Sci Rep. 2020;10(1):815. doi: 10.1038/s41598-020-57784-3

55. Meriden T. Progress with thiazolidinediones in the management of type 2 diabetes mellitus. Clin Ther. 2004;26(2):177-190. doi: 10.1016/s0149-2918(04)90017-3

56. Furnsinn C, Waldhausl W. Thiazolidinediones: Metabolic actions in vitro. Diabetologia. 2002;45(9):1211-1223. doi: 10.1007/s00125-002-0899-1

57. Miyazaki Y, Matsuda M, DeFronzo RA. Dose-response effect of pioglitazone on insulin sensitivity and insulin secretion in type 2 diabetes. Diabetes Care. 2002;25(3):517-523. doi: 10.2337/diacare.25.3.517

58. Iwatani M, Wasada T, Katsumori K. Troglitazone decreases serum uric acid concentrations in type II diabetic patients and non-dia-betics. Diabetologia. 2000;43(6):814-815. doi: 10.1007/s001250051380

59. Graham DJ, Green L, Senior JR, Nourjah P. Troglitazone-induced liver failure: A case study. Am J Med. 2003;114(4):299-306. doi: 10.1016/s0002-9343(02)01529-2

60. Kutoh E, Hori T. Effect of pioglitazone on serum uric acid levels in newly diagnosed, drug-naive patients with type 2 diabetes. Endocr Res. 2012;38(3):151-159. doi: 10.3109/07435800.2012.745128

61. Gotfredsen A, McNair P, Christiansen C, Transbol I. Renal hypouricaemia in insulin treated diabetes mellitus. Clin Chim Acta. 1982;120(3):355-361. doi: 10.1016/0009-8981(82)90376-x

62. Cook DG, Shaper AG, Thelle DS, Whitehead TP. Serum uric acid, serum glucose and diabetes: Relationships in a population study. Postgrad Med J. 1986;62(733):1001-1006. doi: 10.1136/pgmj.62.733.1001

63. Gonzdlez-Ortiz M, Herndndez-Salazar E, Kam-Ramos AM, Martlnez-Abundis E. Effect of pioglitazone on insulin secretion in patients with both impaired fasting glucose and impaired glucose tolerance. Diabetes Res Clin Pract. 2007;75(1):115-118. doi: 10.1016/j.diabres.2006.05.003

64. Seber S, Ucak S, Basat O, Altuntas Y. The effect of dual PPAR а/Y stimulation with combination of rosiglitazone and fenofibrate on metabolic parameters in type 2 diabetic patients. Diabetes Res Clinical Pract. 2006;71(1):52-58. doi: 10.1016/j.diabres.2005.05.009

65. Maalouf NM, Poindexter JR, Adams-Huet B, Moe OW, Sakhaee K. Increased production and reduced urinary buffering of acid in uric acid stone formers is ameliorated by pioglitazone. Kidney Int. 2019;95(5):1262-1268. doi: 10.1016/j.kint.2018.11.024

66. Maalouf NM, Sakhaee K, Parks JH, Coe FL, Adams-Huet B, Pak CY. Association of urinary pH with body weight in nephrolithiasis. Kidney Int. 2004;65(4):1422-1425. doi: 10.1111/j.1523-1755.2004.00522.x

67. Takahashi S, Inokuchi T, Kobayashi T, Ka T, Tsutsumi Z, Moriwaki Y, et al. Relationship between insulin resistance and low urinary pH in patients with gout, and effects of PPARalpha agonists on urine pH. Horm Metab Res. 2007;39(7):511-514. doi: 10.1055/s-2007-982517

68. Gerber P, Lubben G, Heusler S, Dodo A. Effects of pioglitazone on metabolic control and blood pressure: A randomised study in patients with type 2 diabetes mellitus. Curr Med Res Opin. 2003;19(6):532-539. doi: 10.1185/030079903125002180

69. Dormandy JA, Charbonnel B, Eckland DJ, Erdmann E, Massi-Benedetti M, Moules IK, et al.; PROactive Investigators. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitazone Clinical Trial In macroVascular Events): A randomised controlled trial. Lancet. 2005;366(9493):1279-1289. doi: 10.1016/S0140-6736(05)67528-9

70. DREAM (Diabetes REduction Assessment with ramipril and rosiglitazone Medication) Trial Investigators, Gerstein HC, Yusuf S, Bosch J, Pogue J, Sheridan P, et al. Effect of rosiglitazone on the frequency of diabetes in patients with impaired glucose tolerance or impaired fasting glucose: A randomised controlled trial. Lancet. 2006;368(9541):1096-1105. doi: 10.1016/S0140-6736(06)69420-8

71. St John Sutton M, Rendell M, Dandona P, Dole JF, Murphy K, Patwardhan R, et al. A comparison of the effects of rosiglitazone and glyburide on cardiovascular function and glycemic control in patients with type 2 diabetes. Diabetes Care. 2002;25(11):2058-2064. doi: 10.2337/diacare.25.11.2058

72. Bakris GL, Ruilope LM, McMorn SO, Weston WM, Heise MA, Freed MI, et al. Rosiglitazone reduces microalbuminuria and blood pressure independently of glycemia in type 2 diabetes patients with microalbuminuria. J Hypertens. 2006;24(10):2047-2055. doi: 10.1097/01.hjh.0000244955.39491.88

73. Nilsson PM, Hedblad B, Donaldson J, Berglund G. Rosiglitazone reduces office and diastolic ambulatory blood pressure following 1-year treatment in non-diabetic subjects with insulin resistance. Blood Press. 2007;16(2):95-100. doi: 10.1080/08037050701396652

74. Calnek DS, Mazzella L, Roser S, Roman J, Hart CM. Peroxisome proliferator-activated receptor gamma ligands increase release of nitric oxide from endothelial cells. Arterioscler Thromb Vasc Biol. 2003;23(1):52-57. doi: 10.1161/01.atv.0000044461.01844.c9

75. Zhang F, Sowers JR, Ram JL, Standley PR, Peuler JD. Effects of pioglitazone on calcium channels in vascular smooth muscle. Hypertension. 1994;24(2):170-175. doi: 10.1161/01.hyp.24.2.170

76. Haffner SM, Greenberg AS, Weston WM, Chen H, Williams K, Freed MI. Effect of rosiglitazone treatment on nontraditional markers of cardiovascular disease in patients with type 2 diabetes mellitus. Circulation. 2002;106(6):679-684. doi: 10.1161/01.cir.0000025403.20953.23

77. Kalela A, Koivu TA, Sisto T, Kanervisto J, Hoyhtya M, Sillanaukee P, et al. Serum matrix metalloproteinase-9 concentration in angiographically assessed coronary artery disease. Scand J Clin Lab Invest. 2002;62(5):337-342. doi: 10.1080/00365510260296483

78. Kim HJ, Kang ES, Kim DJ, Kim SH, Ahn CW, Cha BS, et al. Effects of rosiglitazone and metformin on inflammatory markers and adipokines: Decrease in interleukin-18 is an independent factor for the improvement of homeostasis model assessment-beta in type 2 diabetes mellitus. Clin Endocrinol (Oxf). 2007;66(2):282-289. doi: 10.1111/j.1365-2265.2006.02723.x

79. Reilly MP, Lehrke M, Wolfe ML, Rohatgi A, Lazar MA, Rader DJ. Resistin is an inflammatory marker of atherosclerosis in humans. Circulation. 2005;111(7):932-939. doi: 10.1161/01.CIR.0000155620.10387.43

80. Wang RC, Jiang DM. PPAR-Y agonist pioglitazone affects rat gouty arthritis by regulating cytokines. Genet Mol Res. 2014;13(3):6577-6581. doi: 10.4238/2014.august.28.2

81. Niu SW, Chang KT, Lin HY, Kuo IC, Chang YH, Chen YH, et al. Decreased incidence of gout in diabetic patients using pioglitazone. Rheumatology (Oxford). 2018;57(1):92-99. doi: 10.1093/rheumatology/kex363

82. Davidson MA, Mattison DR, Azoulay L, Krewski D. Thiazolidinedione drugs in the treatment of type 2 diabetes mellitus: Past, present and future. Crit Rev Toxicol. 2017;48(1):52-108. doi: 10.1080/10408444.2017.1351420

83. Viscoli CM, Inzucchi SE, Young LH, Insogna KL, Conwit R, Furie KL, et al.; IRIS Trial Investigators. Pioglitazone and risk for bone fracture: Safety data from a randomized clinical trial. J Clin Endocrinol Metab. 2017;102(3):914-922. doi: 10.1210/jc.2016-3237

84. Shahataa MG, Mostafa-Hedeab G, Ali EF, Mahdi EA, Mahmoud FA. Effects of telmisartan and pioglitazone on high fructose induced metabolic syndrome in rats. Can J Physiol Pharmacol. 2016;94(8):907-917. doi: 10.1139/cjpp-2016-0090

85. Leahy JL. Angiotensin-converting enzyme inhibitors or angiotensin receptor blockers for prevention of type 2 diabetes: A meta-analysis of randomized clinical trials. Yearbook of Endocrinology. 2006;2006:73-74. doi: 10.1016/s0084-3741(08)70292-0

86. Kjeldsen SE, Julius S. Hypertension mega-trials with cardiovascular end points: Effect of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers. Am Heart J. 2004;148(5):747-754. doi: 10.1016/j.ahj.2004.04.037

87. Sato M, Iwanaga T, Mamada H, Ogihara T, Yabuuchi H, Maeda T, et al. Involvement of uric acid transporters in alteration of serum uric acid level by angiotensin II receptor blockers. Pharm Res. 2008;25(3):639-646. doi: 10.1007/s11095-007-9401-6

88. Iwanaga T, Sato M, Maeda T, Ogihara T, Tamai I. Concentration dependent mode of interaction of angiotensin II receptor blockers with uric acid transporter. J Pharmacol Exp Ther. 2007;320(1):211-217. doi: 10.1124/jpet.106.112755

89. Hamada T, Mizuta E, Kondo T, Hirai M, Yamada K, Kato M, et al. Effects of a low-dose antihypertensive diuretic in combination with losartan, telmisartan, or candesartan on serum urate levels in hypertensive patients. Arzneimittelforschung. 2010;60(2):71-75. doi: 10.1055/s-0031-1296251

90. Hamada T, Kuwabara M, Watanabe A, Mizuta E, Ohtahara A, Omodani H, et al. A comparative study on the effectiveness of losartan/hydrochlorothiazide and telmisartan/hydrochlorothia/-ide in patients with hypertension. Clin Exp Hypertens. 2014;36(4):251-257. doi: 10.3109/10641963.2013.810228

91. Nishida Y, Takahashi Y, Susa N, Kanou N, Nakayama T, Asai S. Comparative effect of angiotensin II type I receptor blockers on serum uric acid in hypertensive patients with type 2 diabetes mellitus: A retrospective observational study. Cardiovasc Diabetol. 2013;12:159. doi: 10.1186/1475-2840-12-159

92. Woodward OM, Kottgen A, Coresh J, Boerwinkle E, Guggino WB, Kottgen M. Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout. Proc Natl Acad Sci U S A. 2009;106(25):10338-10342. doi: 10.1073/pnas.0901249106

93. Weiss J, Sauer A, Divac N, Herzog M, Schwedhelm E, Boger RH, et al. Interaction of angiotensin receptor type 1 blockers with ATP-binding cassette transporters. Biopharm Drug Dispos. 2010;31(2-3):150-161. doi: 10.1002/bdd.699

94. Deppe S, Ripperger A, Weiss J, Ergun S, Benndorf RA. Impact of genetic variability in the ABCG2 gene on ABCG2 expression, function, and interaction with AT1 receptor antagonist telmisartan. Biochem Biophys Res Commun. 2014;443(4):1211-1217. doi: 10.1016/j.bbrc.2013.12.119

95. Desager JP, Hulhoven R, Harvengt C. Uricosuric effect of fenofibrate in healthy volunteers. J Clin Pharmacol. 1980;20(10):560-564. doi: 10.1002/j.1552-4604.1980.tb01670.x

96. Bastow MD, Durrington PN, Ishola M. Hypertriglyceridemia and hyperuricemia: Effects of two fibric acid derivatives (bezafibrate and fenofibrate) in a double-blind, placebo-controlled trial. Metabolism. 1988;37(3):217-220. doi: 10.1016/0026-0495(88)90098-4

97. Uetake D, Ohno I, Ichida K, Yamaguchi Y, Saikawa H, Endou H, et al. Effect of fenofibrate on uric acid metabolism and urate transporter 1. Intern Med. 2010;49(2):89-94. doi: 10.2169/internalmedicine.49.2597

98. Emmerson B. Hyperlipidaemia in hyperuricaemia and gout. Ann Rheum Dis. 1998;57:509-510. doi: 10.1136/ard.57.9.509

99. Fox IH, John D, DeBruyne S, Dwosh I, Marliss EB. Hyperuricemia and hypertriglyceridemia: Metabolic basis for the association. Metabolism. 1985;34(8):741-746. doi: 10.1016/0026-0495(85)90025-3

100. Takahashi S, Moriwaki Y, Yamamoto T, Tsutsumi Z, Ka T, Fukuchi M. Effects of combination treatment using anti-hyperuri-caemic agents with fenofibrate andzor losartan on uric acid metabolism. Ann Rheum Dis. 2003;62(6):572-575. doi: 10.1136/ard.62.6.572

101. Hepburn AL, Kaye SA, Feher MD. Long-term remission from gout associated with fenofibrate therapy. Clin Rheumatol. 2003;22(1):73-76. doi: 10.1007/s10067-002-0658-1

102. Feher MD, Hepburn AL, Hogarth MB, Ball SG, Kaye SA. Fenofibrate enhances urate reduction in men treated with allopurinol for hyperuricaemia and gout. Rheumatology (Oxford). 2003;42(2):321-325. doi: 10.1093/rheumatology/keg103

103. Hepburn AL, Kaye SA, Feher MD. Fenofibrate: A new treatment for hyperuricaemia and gout? Ann Rheum Dis. 2001;60(10):984-986. doi: 10.1136/ard.60.10.984a

104. de la Serna G, Cadarso C. Fenofibrate decreases plasma fibrinogen, improves lipid profile, and reduces uricemia. Clin Pharmacol Ther. 1999;66(2):166-172. doi: 10.1053/cp.1999.v66.99709

105. Waldman B, Ansquer JC, Sullivan DR, Jenkins AJ, McGill N, Buizen L, et al.; FIELD investigators. Effect of fenofibrate on uric acid and gout in type 2 diabetes: A post-hoc analysis of the randomised, controlled FIELD study. Lancet Diabetes Endocrinol. 2018;6(4):310-318. doi: 10.1016/S2213-8587(18)30029-9

106. Yamamoto T, Moriwaki Y, Takahashi S, Tsutsumi Z, Hada T. Effect of fenofibrate on plasma concentration and urinary excretion of purine bases and oxypurinol. J Rheumatol. 2001;28(10):2294-2297

107. Yoon M. The role of PPARalpha in lipid metabolism and obesity: Focusing on the effects of estrogen on PPARalpha actions. Pharmacol Res. 2009;60(3):151-159. doi: 10.1016/j.phrs.2009.02.004

108. Murakami H, Murakami R, Kambe F, Cao X, Takahashi R, Asai T, et al. Fenofibrate activates AMPK and increases eNOS phosphorylation in HUVEC. Biochem Biophys Res Commun. 2006;341(4):973-978. doi: 10.1016/j.bbrc.2006.01.052

109. Pyper SR, Viswakarma N, Yu S, Reddy JK. PPARalpha: Energy combustion, hypolipidemia, inflammation and cancer. Nucl Recept Signal. 2010;8:e002. doi: 10.1621/nrs.08002

110. Villarroel M, Garcia-Ramirez M, Corraliza L, Herndndez C, Sim6 R. Fenofibric acid prevents retinal pigment epithelium disruption induced by interleukin-1e by suppressing AMP-activated protein kinase (AMPK) activation. Diabetologia. 2011;54(6):1543-1553. doi: 10.1007/s00125-011-2089-5

111. Deng Y, Han X, Yao Z, Sun Y, Yu J, Cai J, et al. PPARa agonist stimulated angiogenesis by improving endothelial precursor cell function via a NLRP3 inflammasome pathway. Cell Physiol Biochem. 2017;42(6):2255-2266. doi: 10.1159/000479999

112. Enomoto A, Kimura H, Chairoungdua A, Shigeta Y, Jutabha P, Cha SH, et al. Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature. 2002;417(6887):447-452. doi: 10.1038/nature742

113. Butler EG, Ichida T, Maruyama H, Schulte-Hermann R, Williams GM. Toxicological studies on a benzofurane derivative. II. Demonstration of peroxisome proliferation in rat liver. Toxicol Appl Pharmacol. 1990;106(3):500-508. doi: 10.1016/0041-008x(90)90344-t

114. Kunishima C, Inoue I, Oikawa T, Nakajima H, Komoda T, Katayama S. Activating effect of benzbromarone, a uricosuric drug, on peroxisome proliferator-activated receptors. PPAR Res. 2007;2007:36092. doi: 10.1155/2007/36092

115. Abdel-Razek EA, Abo-Youssef AM, Azouz AA. Benzbromarone mitigates cisplatin nephrotoxicity involving enhanced peroxisome proliferator-activated receptor-alpha (PPAR-a) expression. Life Sci. 2020;243:117272. doi: 10.1016/j.lfs.2020.117272

116. Niu SW, Chang KT, Ta A, Chang YH, Kuo IC, Hung CC, et al. Decreased incidence of diabetes in patients with gout using benzbromarone. Rheumatology (Oxford). 2018;57(9):1574-1582. doi: 10.1093/rheumatology/key138

117. Neogi T, Choi HK. Editorial: Pursuit of a dual-benefit antigout drug: A first look at arhalofenate. Arthritis Rheumatol. 2016;68(8):1793-1796. doi: 10.1002/art.39687

118. Gregoire FM, Zhang F, Clarke HJ, Gustafson TA, Sears DD, Favelyukis S, et al. MBX-102/JNJ39659100, a novel peroxisome proliferator-activated receptor-ligand with weak transactivation activity retains antidiabetic properties in the absence of weight gain and edema. Mol Endocrinol. 2009;23(7):975-988. doi: 10.1210/me.2008-0473

119. Lavan BE, McWherter C, Choi YJ. FRI0403 Arhalofenate, a novel uricosuric agent, is an inhibitor of human uric acid transporters. Ann Rheum Dis. 2013;71:450-451. doi: 10.1136/annrheumdis-2012-eular.2860

120. Bardin T, Richette P. Novel uricosurics. Rheumatology (Oxford). 2018;57(Suppl 1):i42-i46. doi: 10.1093/rheumatology/kex433

121. Choi YJ, Larroca V, Lucman A, Vicena V, Abarca N, Rantz T, et al. Arhalofenate is a novel dual-acting agent with uricosuric and anti-inflammatory properties [abstract]. Arthritis Rheum. 2012;64(Suppl):S697.

122. Poiley J, Steinberg AS, Choi YJ, Davis CS, Martin RL, McWherter CA, et al.; Arhalofenate Flare Study Investigators. A randomized, double-blind, active- and placebo-controlled efficacy and safety study of arhalofenate for reducing flare in patients with gout. Arthritis Rheumatol. 2016;68(8):2027-2034. doi: 10.1002/art.39684

123. Steinberg AS, Vince BD, Choi YJ, Martin RL, McWherter CA, Boudes PF. The pharmacodynamics, pharmacokinetics, and safety of arhalofenate in combination with febuxostat when treating hyperuricemia associated with gout. J Rheumatol. 2017;44(3):374-379. doi: 10.3899/jrheum

124. McWherter C, Choi YJ, Serrano RL, Mahata SK, Terkeltaub R, Liu-Bryan R. Arhalofenate acid inhibits monosodium urate crystal-induced inflammatory responses through activation of AMP-activated protein kinase (AMPK) signaling. Arthritis Res Ther. 2018;20(1):204. doi: 10.1186/s13075-018-1699-4


Рецензия

Для цитирования:


Паневин Т.С., Елисеев М.С., Насонов Е.Л. Уратснижающие препараты в лечении подагры: неизвестное об известном. Научно-практическая ревматология. 2021;59(6):727-737. https://doi.org/10.47360/1995-4484-2021-727-737

For citation:


Panevin T.S., Eliseev M.S., Nasonov E.L. Urate-lowering drugs in the treatment of gout: The unknown about the known. Rheumatology Science and Practice. 2021;59(6):727-737. (In Russ.) https://doi.org/10.47360/1995-4484-2021-727-737

Просмотров: 1414


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1995-4484 (Print)
ISSN 1995-4492 (Online)