Preview

Научно-практическая ревматология

Расширенный поиск

Перспективы применения моноклональных антител к интерлейкину 23 гуселькумаба при псориатическом артрите: новые данные

https://doi.org/10.47360/1995-4484-2022-80-90

Полный текст:

Аннотация

В спектре механизмов патогенеза иммуновоспалительных заболеваний (ИВЗ) человека особое внимание привлечено к патологической активации Th17-типа иммунного ответа, связанного с дисрегуляцией синтеза цитокинов, формирующих ось интерлейкин (ИЛ) 23 и ИЛ-17. Блокада ИЛ-23 является инновационным подходом к лечению псориаза и псориатического артрита (ПсА). Особый интерес привлекает гуселькумаб (ГУС) (Gusеlkumab, TREMFYA, Janssen, Johnson&Johnson, США), который представляет собой полностью человеческие моноклональные антитела (мАТ) IgG-λ, взаимодействующие с р19-субъединицей ИЛ-23, и является первым препаратом этого класса, разрешенным к применению у пациентов с псориазом и ПсА. ГУС не уступает по эффективности другим генно-инженерным биологическом препаратам, использующимся для лечения ПсА, и более эффективен у пациентов с псориазом, чем мАТ к ИЛ-12/ИЛ-23 устекинумаб и мАТ к ИЛ-17 секукинумаб. По сравнению с ингибиторами фактора некроза опухоли альфа (ФНО-α) ГУС реже вызывает развитие инфекционных осложнений и не увеличивает риск реактивации латентной туберкулезной инфекции. В новых рекомендациях GRAPPA (2021) применение ГУС (и других ингибиторов ИЛ-23) рекомендуется пациентам с ПсА, резистентным к терапии стандартными БПВП, имеющим периферический артрит, энтезиты, дактилит, псориатическое поражение кожи и ногтей. Обсуждаются новые данные, касающиеся эффективности ГУС у пациентов, резистентных к ингибиторам ФНО-α, положительного влияния терапии на аксиальные проявления ПсА и безопасности применения ГУС в период пандемии COVID-19.

Об авторах

Е. Л. Насонов
ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой»; ФГАОУ ВО «Первый Московский государственный медицинский университет имени И.М. Сеченова» Минздрава России (Сеченовский Университет)
Россия

д.м.н., профессор, академик РАН, научный руководитель 

115522, Москва, Каширское шоссе, 34а

119991, Москва, ул. Трубецкая, 8, стр. 2


Конфликт интересов:

бюро докладчиков AbbVie, Eli Lilly, Janssen Pharmaceuticals, Novartis, Pfi zer, R-Pharm, БИОКАД.



Т. В. Коротаева
ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой»
Россия

д.м.н., начальник отдела спондилоартритов, заведующая лаборатории псориатического артрита

115522, Москва, Каширское шоссе, 34а


Конфликт интересов:

бюро докладчиков AbbVie, BMS, Eli Lilli, MSD, Novartis, Pfi zer, Janssen Pharmaceuticals, БИОКАД.



С. Родолфи
Гуманитарный Клинический и Научный Центр (IRCCS); Гуманитарный Университет
Италия

Руководитель лаборатории ревматологии и клинической иммунологии; отделение биомедицинских наук

Роццано, Милан
Пьеве Эмануэле, Милан



К. Ф. Селми
Гуманитарный Клинический и Научный Центр (IRCCS); Гуманитарный Университет
Италия

Зав. отделением ревматологии и клинической иммунологии; отделение биомедицинских наук, доцент кафедры ревматологии

Роццано, Милан
Пьеве Эмануэле, Милан


Конфликт интересов:

консультант и спикер Eli Lilly и Janssen Pharmaceuticals.



Список литературы

1. Szekanecz Z, McInnes IB, Schett G, Szamosi S, Benkő S, Szűcs G. Autoinflammation and autoimmunity across rheumatic and musculoskeletal diseases. Nat Rev Rheumatol. 2021;17(10):585-595. doi: 10.1038/s41584-021-00652-9

2. Schett G, McInnes IB, Neurath MF. Reframing immune-mediated inflammatory diseases through signature cytokine hubs. N Engl J Med. 2021;385(7):628-639. doi: 10.1056/NEJMra1909094

3. Gaffen SL, Jain R, Garg AV, Cua DJ. The IL-23-IL-17 immune axis: From mechanisms to therapeutic testing. Nat Rev Immunol. 2014;14(9):585-600. doi: 10.1038/nri3707

4. Li H, Tsokos GC. IL-23/IL-17 axis in inflammatory rheumatic diseases. Clin Rev Allergy Immunol. 2021;60(1):31-45. doi: 10.1007/s12016-020-08823-4

5. Schinocca C, Rizzo C, Fasano S, Grasso G, La Barbera L, Ciccia F, et al. Role of the IL-23/IL-17 pathway in rheumatic diseases: An overview. Front Immunol. 2021;12:637829. doi: 10.3389/fimmu.2021.637829

6. McGeachy MJ, Cua DJ, Gaffen SL. The IL-17 family of cytokines in health and disease. Immunity. 2019;50(4):892-906. doi: 10.1016/j.immuni.2019.03.021

7. Matsuzaki G, Umemura M. Interleukin-17 family cytokines in protective immunity against infections: Role of hematopoietic cell-derived and non-hematopoietic cell-derived interleukin-17. Microbiol Immunol. 2018;62(1):1-13. doi: 10.1111/1348-0421.12560

8. Tait Wojno ED, Hunter CA, Stumhofer JS. The immunobiology of the interleukin-12 family: Room for discovery. Immunity. 2019;50(4):851-870. doi: 10.1016/j.immuni.2019.03.011

9. Najm A, McInnes IB. IL-23 orchestrating immune cell activation in arthritis. Rheumatology (Oxford). 2021;60(Suppl 4):iv4-iv15. doi: 10.1093/rheumatology/keab266

10. Ruiz de Morales JMG, Puig L, Daudén E, Cañete JD, Pablos JL, Martín AO, et al. Critical role of interleukin (IL)-17 in inflammatory and immune disorders: An updated review of the evidence focusing in controversies. Autoimmun Rev. 2020;19(1):102429. doi: 10.1016/j.autrev.2019.102429

11. Насонов ЕЛ. Новые возможности фармакотерапии иммуновоспалительных ревматических заболеваний: фокус на ингибиторы интерлейкина 17. Научно-практическая ревматология. 2017;55(1):68-86. doi: 10.14412/1995-4484-2017-68-86

12. Noack M, Miossec P. Th17 and regulatory T cell balance in autoimmune and inflammatory diseases. Autoimmun Rev. 2014;13:668-677. doi: 10.1016/j.autrev.2013.12.004

13. Hasegawa H, Mizoguchi I, Orii N, Inoue S, Katahira Y, Yoneto T, et al. IL-23p19 and CD5 antigen-like form a possible novel heterodimeric cytokine and contribute to experimental autoimmune encephalomyelitis development. Sci Rep. 2021;11(1):5266. doi: 10.1038/s41598-021-84624-9

14. Heink S, Yogev N, Garbers C, Herwerth M, Aly L, Gasperi C, et al. Trans-presentation of IL-6 by dendritic cells is required for the priming of pathogenic TH17 cells. Nat Immunol. 2017;18(1):74-85. doi: 10.1038/ni.3632

15. Pastor-Fernández G, Mariblanca IR, Navarro MN. Decoding IL-23 signaling cascade for new therapeutic opportunities. Cells. 2020;9(9):2044. doi: 10.3390/cells9092044

16. Sherlock JP, Cua DJ. Interleukin-23 in perspective. Rheumatology (Oxford). 2021;60(Suppl 4):iv1-iv3. doi: 10.1093/rheumatology/keab461

17. Насонов ЕЛ, Коротаева ТВ, Дубинина ТВ, Лила АМ. Ингибиторы ИЛ23/ИЛ17 при иммуновоспалительных ревматических заболеваниях: новые горизонты. Научнопрактическая ревматология. 2019;57(4):400-406. doi: 10.14412/1995-4484-2019-400-406

18. Bravo A, Kavanaugh A. Bedside to bench: defining the immunopathogenesis of psoriatic arthritis. Nat Rev Rheumatol. 2019;15(11):645-656. doi: 10.1038/s41584-019-0285-8

19. Silvagni E, Missiroli S, Perrone M, Patergnani S, Boncompagni C, Bortoluzzi A, et al. From bed to bench and back: TNF-α, IL-23/IL-17A, and JAK-dependent inflammation in the pathogenesis of psoriatic synovitis. Front Pharmacol. 2021;12:672515. doi: 10.3389/fphar.2021.672515

20. Bianchi E, Vecellio M, Rogge L Editorial: Role of the IL-23/IL-17 pathway in chronic immune-mediated inflammatory diseases: Mechanisms and targeted therapies. Front Immunol. 2021;12:770275. doi: 10.3389/fimmu.2021.770275

21. Sweet K, Song Q, Loza MJ, McInnes IB, Ma K, Leander K, et al. Guselkumab induces robust reduction in acute phase proteins and type 17 effector cytokines in active psoriatic arthritis: Results from phase 3 trials. RMD Open. 2021;7(2):e001679. doi: 10.1136/rmdopen-2021-001679

22. Gordon KB, Armstrong AW, Foley P, Song M, Shen YK, Li S, et al. Guselkumab efficacy after withdrawal is associated with suppression of serum IL-23-regulated IL-17 and IL-22 in psoriasis: VOYAGE 2 study. J Invest Dermatol. 2019;139(12):2437-2446.e1. doi: 10.1016/j.jid.2019.05.016

23. Zhuang Y, Calderon C, Marciniak SJ Jr, Bouman-Thio E, Szapary P, Yang TY, et al. First-in-human study to assess guselkumab (anti-IL-23 mAb) pharmacokinetics/safety in healthy subjects and patients with moderate-to-severe psoriasis. Eur J Clin Pharmacol. 2016;72(11):1303-1310. doi: 10.1007/s00228-016-2110-5

24. Yao Z, Hu C, Zhu Y, Xu Z, Randazzo B, Wasfi Y, et al. Population pharmacokinetic modeling of guselkumab, a human IgG1λ monoclonal antibody targeting IL-23, in patients with moderate to severe plaque psoriasis. J Clin Pharmacol. 2018;58(5):613-627. doi: 10.1002/jcph.1063

25. Gordon KB, Duffin KC, Bissonnette R, Prinz JC, Wasfi Y, Li S, et al. A phase 2 trial of guselkumab versus adalimumab for plaque psoriasis. N Engl J Med. 2015;373(2):136-144. doi: 10.1056/NEJMoa1501646

26. Blauvelt A, Papp KA, Griffiths CE, Randazzo B, Wasfi Y, Shen YK, et al. Efficacy and safety of guselkumab, an anti-interleukin-23 monoclonal antibody, compared with adalimumab for the continuous treatment of patients with moderate to severe psoriasis: Results from the phase III, double-blinded, placeboand active comparator-controlled VOYAGE 1 trial. J Am Acad Dermatol. 2017;76(3):405-417. doi: 10.1016/j.jaad.2016.11.041

27. Reich K, Armstrong AW, Foley P, Song M, Wasfi Y, Randazzo B, et al. Efficacy and safety of guselkumab, an anti-interleukin-23 monoclonal antibody, compared with adalimumab for the treatment of patients with moderate to severe psoriasis with randomized withdrawal and retreatment: Results from the phase III, double-blind, placebo- and active comparator-controlled VOYAGE 2 trial. J Am Acad Dermatol. 2017;76(3):418-431. doi: 10.1016/j.jaad.2016.11.042

28. Reich K, Armstrong AW, Langley RG, Flavin S, Randazzo B, Li S, et al. Guselkumab versus secukinumab for the treatment of moderate-to-severe psoriasis (ECLIPSE): Results from a phase 3, randomised controlled trial. Lancet. 2019;394(10201):831-839. doi: 10.1016/s0140-6736(19)31773-8

29. Blauvelt A, Armstrong AW, Langley RG, Gebauer K, Thaçi D, Bagel J, et al. Efficacy of guselkumab versus secukinumab in subpopulations of patients with moderate-to-severe plaque psoriasis: Results from the ECLIPSE study. J Dermatolog Treat. 2021 Aug 4:1-8. doi: 10.1080/09546634.2021.1959504

30. Ferris LK, Ott E, Jiang J, Hong HC, Li S, Han C, et al. Efficacy and safety of guselkumab, administered with a novel patient-controlled injector (One-Press), for moderate-to-severe psoriasis: Results from the phase 3 ORION study. J Dermatol Treat. 2020;31(2):152-159. doi: 10.1080/09546634.2019.1587145

31. Ohtsuki M, Kubo H, Morishima H, Goto R, Zheng R, Nakagawa H. Guselkumab, an anti-interleukin-23 monoclonal antibody, for the treatment of moderate to severe plaque-type psoriasis in Japanese patients: Efficacy and safety results from a phase 3, randomized, double-blind, placebo-controlled study. J Dermatol. 2018;45(9):1053-1062. doi: 10.1111/1346-8138.14504

32. Langley RG, Tsai TF, Flavin S, Song M, Randazzo B, Wasfi Y, et al. Efficacy and safety of guselkumab in patients with psoriasis who have an inadequate response to ustekinumab: Results of the randomized, double-blind, phase III NAVIGATE trial. Br J Dermatol. 2018;178(1):114-123. doi: 10.1111/bjd.15750

33. Mease PJ, Gladman DD, Deodhar A, McGonagle DG, Nash P, Boehncke WH, et al. Impact of guselkumab, an interleukin-23 p19 subunit inhibitor, on enthesitis and dactylitis in patients with moderate to severe psoriatic arthritis: Results from a randomised, placebo-controlled, phase II study. RMD Open. 2020;6(2):e001217. doi: 10.1136/rmdopen-2020-001217

34. Deodhar A, Helliwell PS, Boehncke WH, Kollmeier AP, Hsia EC, et al.; DISCOVER-1 Study Group. Guselkumab in patients with active psoriatic arthritis who were biologic-naive or had previously received TNFα inhibitor treatment (DISCOVER-1): A double-blind, randomised, placebo-controlled phase 3 trial. Lancet. 2020;395(10230):1115-1125. doi: 10.1016/S0140-6736(20)30265-8

35. Mease PJ, Rahman P, Gottlieb AB, Kollmeier AP, Hsia EC, Xu XL, et al.; DISCOVER-2 Study Group. Guselkumab in biologic-naive patients with active psoriatic arthritis (DISCOVER-2): A double-blind, randomised, placebo-controlled phase 3 trial. Lancet. 2020;395(10230):1126-1136. doi: 10.1016/S0140-6736(20)30263-4

36. Deodhar A, Gottlieb AB, Boehncke WH, Dong B, Wang Y, Zhuang Y, et al.; CNTO1959PSA2001 Study Group. Efficacy and safety of guselkumab in patients with active psoriatic arthritis: A randomised, double-blind, placebo-controlled, phase 2 study. Lancet. 2018;391(10136):2213-2224. doi: 10.1016/S0140-6736(18)30952-8

37. Coates LC, Gossec L, Theander E, Bergmans P, Neuhold M, Karyekar CS, et al. Efficacy and safety of guselkumab in patients with active psoriatic arthritis who are inadequate responders to tumour necrosis factor inhibitors: Results through one year of a phase IIIb, randomised, controlled study (COSMOS). Ann Rheum Dis. 2021 Nov 24:annrheumdis-2021-220991. doi: 10.1136/annrheumdis-2021-220991

38. Ritchlin CT, Helliwell PS, Boehncke WH, Soriano ER, Hsia EC, Kollmeier AP, et al. Guselkumab, an inhibitor of the IL-23p19 subunit, provides sustained improvement in signs and symptoms of active psoriatic arthritis: 1 year results of a phase III randomised study of patients who were biologic-naïve or TNFα inhibitor-experienced. RMD Open. 2021;7(1):e001457. doi: 10.1136/rmdopen-2020-001457

39. McInnes IB, Rahman P, Gottlieb AB, Hsia EC, Kollmeier AP, Chakravarty SD, et al. Efficacy and safety of guselkumab, an interleukin-23p19-specific monoclonal antibody, through one year in biologic-naive patients with psoriatic arthritis. Arthritis Rheumatol. 2021;73(4):604-616. doi: 10.1002/art.41553

40. Gottlieb AB, Mease PJ, Merola JF, Kollmeier AP, Hsia EC, Xu XL, et al. 15281 Effects of guselkumab on articular components of American College of Rheumatology score and skin responses in patients with active psoriatic arthritis: Results from the phase 3 DISCOVER-2 study. JAAD. 2020;83(Suppl 6):AB145.

41. Mease P, Helliwel PS, Efficacy of guselkumab on axial involvement in patients with active psoriatic arthritis and sacroiliitis: A post-hoc analysis of the phase 3 DISCOVER-1 and DISCOVER-2 studies. Lancet Rheumatol. 2021;3(10):e715-723. doi: 10.1016/S2665-9913(21)00105-3

42. Deodhar A, Gensler LS, Sieper J, Clark M, Calderon C, Wang Y, et al. Three multicenter, randomized, double-blind, placebo-controlled studies evaluating the efficacy and safety of ustekinumab in axial spondyloarthritis. Arthritis Rheumatol. 2019;71(2):258-270. doi: 10.1002/art.40728

43. Baeten D, Østergaard M, Wei JC, Sieper J, Järvinen P, Tam LS, et al. Risankizumab, an IL-23 inhibitor, for ankylosing spondylitis: Results of a randomised, double-blind, placebo-controlled, proof-of-concept, dose-finding phase 2 study. Ann Rheum Dis. 2018;77(9):1295-1302. doi: 10.1136/annrheumdis-2018-213328

44. Dubash S, Bridgewood C, McGonagle D, Marzo-Ortega H. The advent of IL-17A blockade in ankylosing spondylitis: Secukinumab, ixekizumab and beyond. Expert Rev Clin Immunol. 2019;15(2):123-134. doi: 10.1080/1744666X.2019.1561281

45. McGonagle DG, McInnes IB, Kirkham BW, Sherlock J, Moots R. The role of IL-17A in axial spondyloarthritis and psoriatic arthritis: Recent advances and controversies. Ann Rheum Dis. 2019;78(9):1167-1178. doi: 10.1136/annrheumdis-2019-215356

46. Baeten D, Adamopoulos IE. IL-23 Inhibition in ankylosing spondylitis: Where did it go wrong? Front Immunol. 2021;11:623874. doi: 10.3389/fimmu.2020.623874

47. McGonagle D, Watad A, Sharif K, Bridgewood C. Why inhibition of IL-23 lacked efficacy in ankylosing spondylitis. Front Immunol. 2021;12:614255. doi: 10.3389/fimmu.2021.614255

48. Mease P, van den Bosch F. IL-23 and axial disease: Do they come together? Rheumatology (Oxford). 2021;60(Suppl 4):iv28-iv33. doi: 10.1093/rheumatology/keab617

49. McInnes IB, Rahman P, Gottlieb AB, Hsia EC, Kollmeier AP, Xu XL, et al. Long-term efficacy and safety of guselkumab, a monoclonal antibody specific to the p19 subunit of interleukin-23, through 2 years: Results from a phase 3, randomized, double-blind, placebo-controlled study conducted in biologic-naïve patients with active psoriatic arthritis. Arthritis Rheumatol. 2021 Nov 1. doi: 10.1002/art.42010

50. Rahman P, Mease PJ, Helliwell PS, Deodhar A, Gossec L, Kavanaugh A, et al. Guselkumab demonstrated an independent treatment effect in reducing fatigue after adjustment for clinical response – Results from two phase 3 clinical trials of 1120 patients with active psoriatic arthritis. Arthritis Res Ther. 2021;23(1):190. doi: 10.1186/s13075-021-02554-3

51. McGonagle D, McInnes IB, Deodhar A, Schett G, Shawi M, Kafka S, et al. Resolution of enthesitis by guselkumab and relationships to disease burden: 1-year results of two phase 3 psoriatic arthritis studies. Rheumatology (Oxford). 2021;60(11):5337-5350. doi: 10.1093/rheumatology/keab285

52. Mantravadi S, Ogdie A, Kraft WK. Tumor necrosis factor inhibitors in psoriatic arthritis. Expert Rev Clin Pharmacol. 2017;10(8):899-910. doi: 10.1080/17512433.2017.1329009

53. Merola JF, Lockshin B, Mody EA. Switching biologics in the treatment of psoriatic arthritis. Semin Arthritis Rheum. 2017;47(1):29-37. doi: 10.1016/j.semarthrit.2017.02.001

54. Li SJ, Perez-Chada LM, Merola JF. TNF inhibitor-induced psoriasis: Proposed algorithm for treatment and management. J Psoriasis Psoriatic Arthritis. 2019;4(2):70-80. doi: 10.1177/2475530318810851

55. Li X, Andersen KM, Chang HY, Curtis JR, Alexander GC. Comparative risk of serious infections among real-world users of biologics for psoriasis or psoriatic arthritis. Ann Rheum Dis. 2020;79(2):285-291. doi: 10.1136/annrheumdis-2019-216102

56. Mease PJ, McInnes IB, Tam LS, Eaton K, Peterson S, Schubert A, et al. Comparative effectiveness of guselkumab in psoriatic arthritis: results from systematic literature review and network meta-analysis. Rheumatology (Oxford). 2021;60(5):2109-2121. doi: 10.1093/rheumatology/keab119

57. McInnes IB, Kavanaugh A, Gottlieb AB, Puig L, Rahman P, Ritchlin C, et al.; PSUMMIT 1 Study Group. Efficacy and safety of ustekinumab in patients with active psoriatic arthritis: 1 year results of the phase 3, multicentre, double-blind, placebo-controlled PSUMMIT 1 trial. Lancet. 2013;382(9894):780-789. doi: 10.1016/S0140-6736(13)60594-2

58. Ritchlin C, Rahman P, Kavanaugh A, McInnes IB, Puig L, Li S, et al.; PSUMMIT 2 Study Group. Efficacy and safety of the antiIL-12/23 p40 monoclonal antibody, ustekinumab, in patients with active psoriatic arthritis despite conventional non-biological and biological anti-tumour necrosis factor therapy: 6-month and 1-year results of the phase 3, multicentre, double-blind, placebo-controlled, randomised PSUMMIT 2 trial. Ann Rheum Dis. 2014;73(6):990-999. doi: 10.1136/annrheumdis-2013-204655

59. McInnes IB, Chakravarty SD, Apaolaza I, Kafka S, Hsia EC, You Y, et al. Efficacy of ustekinumab in biologic-naïve patients with psoriatic arthritis by prior treatment exposure and disease duration: Data from PSUMMIT 1 and PSUMMIT 2. RMD Open. 2019;5(2):e000990. doi: 10.1136/rmdopen-2019-000990

60. Diels J, Thilakarathne P, Schubert A, Hassan F, Peterson S, Noël W, et al. AB0556 Comparing efficacy of guselkumab versus ustekinumab in patients with psoriasis arthritis: An adjusted comparison using individual patient data from DISCOVER 1&2 and PSUMMIT trials. Ann Rheum Diss. 2021;80:1313.

61. Ru Y, Ding X, Luo Y, Li H, Sun X, Zhou M, et al. Adverse events associated with anti-IL-23 agents: Clinical evidence and possible mechanisms. Front Immunol. 2021;12:670398. doi: 10.3389/fimmu.2021.670398

62. Rahman P, Ritchlin CT, Helliwell PS, Boehncke WH, Mease PJ, Gottlieb AB, et al. Pooled safety results through 1 year of 2 phase III trials of guselkumab in patients with psoriatic arthritis. J Rheumatol. 2021;48(12):1815-1823. doi: 10.3899/jrheum.201532

63. Benhadou F, Del Marmol V. Improvement of SARS-CoV-2 symptoms following Guselkumab injection in a psoriatic patient. J Eur Acad Dermatol Venereol. 2020;34(8):e363-e364. doi: 10.1111/jdv.16590

64. Wang CJ, Truong AK. COVID-19 infection on IL-23 inhibition. Dermatol Ther. 2020;33(6):e13893. doi: 10.1111/dth.13893

65. Messina F, Piaserico S. SARS-CoV-2 infection in a psoriatic patient treated with IL-23 inhibitor. J Eur Acad Dermatol Venereol. 2020;34(6):e254-e255. doi: 10.1111/jdv.16468

66. Gisondi P, Facheris P, Dapavo P, Piaserico S, Conti A, Naldi L, et al. The impact of the COVID-19 pandemic on patients with chronic plaque psoriasis being treated with biological therapy: The Northern Italy experience. Br J Dermatol. 2020;183(2):373-374. doi: 10.1111/bjd.19158

67. Damiani G, Pacifico A, Bragazzi NL, Malagoli P. Biologics increase the risk of SARS-CoV-2 infection and hospitalization, but not ICU admission and death: Real-life data from a large cohort during red-zone declaration. Dermatol Ther. 2020;33(5):e13475. doi: 10.1111/dth.13475

68. Mintoff D, Benhadou F. Guselkumab does not appear to influence the IgG antibody response to SARS-CoV-2. Dermatol Ther. 2021 Dec 4:e15246. doi: 10.1111/dth.15246

69. Salvarani C, Bajocchi G, Mancuso P, Galli E, Muratore F, Boiardi L, et al. Susceptibility and severity of COVID-19 in patients treated with bDMARDS and tsDMARDs: A population-based study. Ann Rheum Dis. 2020;79(7):986-988. doi: 10.1136/annrheumdis-2020-217903

70. Syed MN, Shin DB, Wan MT, Winthrop KL, Gelfand JM. The risk of respiratory tract infections in patients with psoriasis treated with interleukin 23 pathway-inhibiting biologics: A meta-estimate of pivotal trials relevant to decision making during the COVID-19 pandemic. J Am Acad Dermatol. 2020;83(5):1523-1526. doi: 10.1016/j.jaad.2020.06.1014

71. Gelfand JM, Armstrong AW, Bell S, Anesi GL, Blauvelt A, Calabrese C, et al. National Psoriasis Foundation COVID-19 Task Force guidance for management of psoriatic disease during the pandemic: Version 2 – Advances in psoriatic disease management, COVID-19 vaccines, and COVID-19 treatments. J Am Acad Dermatol. 2021;84(5):1254-1268. doi: 10.1016/j.jaad.2020.12.058

72. Mikuls TR, Johnson SR, Fraenkel L, Arasaratnam RJ, Baden LR, Bermas BL, et al. American College of Rheumatology guidance for the management of rheumatic disease in adult patients during the COVID-19 pandemic: Version 3. Arthritis Rheumatol. 2021;73(2):e1-e12. doi: 10.1002/art.41596

73. Gresham LM, Marzario B, Dutz J, Kirchhof MG. An evidence-based guide to SARS-CoV-2 vaccination of patients on immunotherapies in dermatology. J Am Acad Dermatol. 2021;84(6):1652-1666. doi: 10.1016/j.jaad.2021.01.047

74. Насонов ЕЛ, Лила АМ, Мазуров ВИ, Белов БС, Каратеев АЕ, Дубинина ТВ, и др. Коронавирусная болезнь 2019 (COVID-19) и иммуновоспалительные ревматические заболевания. Рекомендации Общероссийской общественной организации «Ассоциация ревматологов России». Научнопрактическая ревматология. 2021;59(3):239-254. doi: 10.47360/1995-4484-2021-239-254

75. Yang K, Oak ASW, Elewski BE. Use of IL-23 inhibitors for the treatment of plaque psoriasis and psoriatic arthritis: A comprehensive review. Am J Clin Dermatol. 2021;22(2):173-192. doi: 10.1007/s40257-020-00578-0

76. Lamb YN. Guselkumab in psoriatic arthritis: A profile of its use. Drugs Ther Perspect 2021;37:285-293. doi: 10.1007/s40267-021-00840-3

77. Almradi A, Hanzel J, Sedano R, Parker CE, Feagan BG, Ma C, et al. Clinical trials of IL-12/IL-23 inhibitors in inflammatory bowel disease. BioDrugs. 2020;34(6):713-721. doi: 10.1007/s40259-020-00451-w

78. Song GG, Lee YH. Relative efficacy and safety of secukinumab and guselkumab for the treatment of active psoriatic arthritis: A network meta-analysis. Int J Clin Pharmacol Ther. 2021;59(6):433-441. doi: 10.5414/CP203906

79. Nogueira M, Warren RB, Torres T. Risk of tuberculosis reactivation with interleukin (IL)-17 and IL-23 inhibitors in psoriasis – Time for a paradigm change. J Eur Acad Dermatol Venereol. 2021;35(4):824-834. doi: 10.1111/jdv.16866

80. Xu C, Teeple A, Wu B, Fitzgerald T, Feldman SR. Treatment adherence and persistence of seven commonly prescribed biologics for moderate to severe psoriasis and psoriatic arthritis in a U.S. commercially insured population. J Dermatolog Treat. 2021 Jul 15:1-21. doi: 10.1080/09546634.2021.1950600

81. Pantano I, Mauro D, Romano F, Gambardella A, Valenti M, Simone D, et al. Real-life efficacy of guselkumab in patients with early psoriatic arthritis. Rheumatology (Oxford). 2021 Jun 21:keab509. doi: 10.1093/rheumatology/keab509

82. Zabotti A, Giovannini I, McGonagle D, De Vita S, Stinco G, Errichetti E. Arthritis interception in patients with psoriasis treated with guselkumab. Dermatol Ther (Heidelb). 2021 Nov 27. doi: 10.1007/s13555-021-00650-5

83. Насонов ЕЛ, Коротаева ТВ, Лила АМ, Кубанов АА. Можно ли предотвратить развитие псориатического артрита у пациентов с псориазом? Научно-практическая ревматология. 2019;57(3):250-254. doi: 10.14412/1995-4484-2019-250-254

84. Scher JU, Ogdie A, Merola JF, Ritchlin C. Preventing psoriatic arthritis: focusing on patients with psoriasis at increased risk of transition. Nat Rev Rheumatol. 2019;15(3):153-166. doi: 10.1038/s41584-019-0175-0

85. Coates LC, Corp N, van der Windt DA, Soriano ER, Kavanaugh A. GRAPPA Treatment Recommendations: An Update From the 2020 GRAPPA Annual Meeting. J Rheumatol. 2021 Feb 15:jrheum.201681. doi: 10.3899/jrheum.201681.

86. Gossec L, Baraliakos X, Kerschbaumer A, de Wit M, McInnes I, et al. EULAR recommendations for the management of psoriatic arthritis with pharmacological therapies: 2019 update. Ann Rheum Dis. 2020;79(6):700-712. doi: 10.1136/annrheumdis-2020-217159.


Рецензия

Для цитирования:


Насонов Е.Л., Коротаева Т.В., Родолфи С., Селми К.Ф. Перспективы применения моноклональных антител к интерлейкину 23 гуселькумаба при псориатическом артрите: новые данные. Научно-практическая ревматология. 2022;60(1):80–90. https://doi.org/10.47360/1995-4484-2022-80-90

For citation:


Nasonov E.L., Korotaeva T.V., Rodolfi S., Selmi C.F. Prospects for the use of monoclonal antibodies to interleukin 23 Gusеlkumab in psoriatic arthritis: New data. Rheumatology Science and Practice. 2022;60(1):80–90. (In Russ.) https://doi.org/10.47360/1995-4484-2022-80-90

Просмотров: 207


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1995-4484 (Print)
ISSN 1995-4492 (Online)