Preview

Научно-практическая ревматология

Расширенный поиск

Интерлейкин 18 при иммуновоспалительных ревматических заболеваниях и COVID-19

https://doi.org/10.47360/1995-4484-2022-195-204

Полный текст:

Аннотация

Иммуновоспалительные ревматические заболевания (ИВРЗ) на основе ведущих механизмов патогенеза условно классифицируются на аутоиммунные, аутовоспалительные и ИВРЗ «смешанного генеза» («mixed pattern»). В спектре цитокинов, принимающих участие в развитии иммунопатологического процесса при ИВРЗ, обсуждается роль «провоспалительного» цитокина интерлейкина (ИЛ) 18 – члена семейства ИЛ-1, играющего важную роль в регуляции T-хелпер (Th) 1-, Th2- и Th17-типов иммунного ответа, индуцирующего синтез интерферона (ИФН) γ, других провоспалительных цитокинов и хемокинов. Обсуждается значение определения концентрации ИЛ-18 при ИВРЗ для улучшения диагностики, выделения субтипов заболеваний, прогнозирования эффективности фармакотерапии. ИЛ-18 представляет собой перспективную «мишень» для антицитокиновой терапии, в первую очередь у пациентов с высокой активностью воспаления, связанного с гиперактивацией врожденного иммунитета.

Об авторах

Е. Л. Насонов
ФГБНУ Научно-исследовательский институт ревматологии им. В.А. Насоновой; ФГАОУ ВО Первый Московский государственный медицинский университет имени И.М. Сеченова Минздрава России (Сеченовский Университет)
Россия

Насонов Евгений Львович

115522, Москва, Каширское шоссе, 34а; 119991, Москва, ул. Трубецкая, 8, стр. 2


Конфликт интересов:

ЕЛН: бюро докладчиков AbbVie, Eli Lilly, Janssen, Novartis, Pfi zer, R-Pharm



А. С. Авдеева
ФГБНУ Научно-исследовательский институт ревматологии им. В.А. Насоновой
Россия

115522, Москва, Каширское шоссе, 34а


Конфликт интересов:

ЕЛН: бюро докладчиков AbbVie, Eli Lilly, Janssen, Novartis, Pfi zer, R-Pharm



Список литературы

1. McGonagle D, McDermott MF. A proposed classification of the immunological diseases. PLoS Med. 2006;3:e297. doi: 10.1371/journal.pmed.0030297

2. Szekanecz Z, McInnes IB, Schett G, Szamosi S, Benkő S, Szűcs G. Autoinflammation and autoimmunity across rheumatic and musculoskeletal diseases. Nat Rev Rheumatol. 2021;17(10):585-595. doi: 10.1038/s41584-021-00652-9

3. Dinarello CA. Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol Rev. 2018;281(1):8-27. doi: 10.1111/imr.12621

4. Dinarello CA. The IL-1 family of cytokines and receptors in rheumatic diseases. Nat Rev Rheumatol. 2019;15(10):612-632. doi: 10.1038/s41584-019-0277-8

5. Mantovani A, Dinarello CA, Molgora M, Garlanda C. Interleukin-1 and related cytokines in the regulation of inflammation and immunity. Immunity. 2019;50(4):778-795. doi: 10.1016/j.immuni.2019.03.012

6. Насонов ЕЛ. Роль интерлейкина 1 в развитии заболеваний человека. Научно-практическая ревматология. 2018;56:19-27. [Nasonov EL. The role of interleukin 1 in the development of human diseases. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2018;56:19-27 (In Russ.)]. doi: 10.14412/1995-4484-2018-19-27

7. Schett G, Dayer JM, Manger B. Interleukin-1 function and role in rheumatic disease. Nat Rev Rheumatol. 2016;12(1):14-24. doi: 10.1038/nrrheum.2016.166

8. Kaplanski G. Interleukin-18: Biological properties and role in disease pathogenesis. Immunol Rev. 2018;281(1):138-153. doi: 10.1111/imr.12616

9. Esmailbeig M, Ghaderi A. Interleukin-18: A regulator of cancer and autoimmune diseases. Eur Cytokine Netw. 2017;28(4):127-140. doi: 10.1684/ecn.2018.0401

10. Harel M, Fauteux-Daniel S, Girard-Guyonvarc’h C, Gabay C. Balance between interleukin-18 and interleukin-18 binding protein in auto-inflammatory diseases. Cytokine. 2022;150:155781. doi: 10.1016/j.cyto.2021.155781

11. Yasuda K, Nakanishi K, Tsutsui H. Interleukin-18 in health and disease. Int J Mol Sci. 2019;20(3):649. doi: 10.3390/ ijms20030649

12. Sun SC. The non-canonical NF-κB pathway in immunity and inflammation. Nat Rev Immunol. 2017;17(9):545-558. doi: 10.1038/nri.2017.52

13. Nakanishi K. Unique action of interleukin-18 on T cells and other immune cells. Front Immunol. 2018;9:763. doi: 10.3389/fimu.2018.00763

14. Plater-Zyberk C, Joosten LA, Helsen MM, Sattonnet-Roche P, Siegfried C, Alouani S, et al. Therapeutic effect of neutralizing endogenous IL-18 activity in the collagen-induced model of arthritis. J Clin Invest. 2001;108(12):1825-1832. doi: 10.1172/JCI12097

15. Naftali T, Novick D, Gabay G, Rubinstein M, Novis B. Interleukin-18 and its binding protein in patients with inflammatory bowel disease during remission and exacerbation. Isr Med Assoc J. 2007;9(7):504-508.

16. Formanowicz D, Wanic-Kossowska M, Pawliczak E, Radom M, Formanowicz P. Usefulness of serum interleukin-18 in predicting cardiovascular mortality in patients with chronic kidney disease – systems and clinical approach. Sci Rep. 2015;5:18332. doi: 10.1038/srep18332

17. Niu XL, Huang Y, Gao YL, Sun YZ, Han Y, Chen HD, et al. Interleukin-18 exacerbates skin inflammation and affects microabscesses and scale formation in a mouse model of imiquimod-induced psoriasis. Chin Med J (Engl). 2019;132(6):690-698. doi: 10.1097/CM9.0000000000000140

18. Millward JM, Løbner M, Wheeler RD, Owens T. Inflammation in the central nervous system and Th17 responses are inhibited by IFN-gamma-Induced IL-18 binding protein. J Immunol. 2010;185(4):2458-2466. doi: 10.4049/jimmunol.0902153

19. Kawayama T, Okamoto M, Imaoka H, Kato S, Young HA, Hoshino T. Interleukin-18 in pulmonary inflammatory diseases. J Interferon Cytokine Res. 2012;32(10):443-449. doi: 10.1089/jir.2012.0029

20. Mohan C, Assassi S. Biomarkers in rheumatic diseases: How can they facilitate diagnosis and assessment of disease activity? BMJ. 2015;351:h5079. doi: 10.1136/bmj.h5079

21. Yasin S, Fall N, Brown RA, Henderlight M, Canna SW, GirardGuyonvarc’h C, et al. IL-18 as a biomarker linking systemic juvenile idiopathic arthritis and macrophage activation syndrome. Rheumatology (Oxford). 2020;59(2):361-366. doi: 10.1093/ rheumatology/kez282

22. Koga T, Sumiyoshi R, Furukawa K, Sato S, Migita K, Shimizu T, et al. Interleukin-18 and fibroblast growth factor 2 in combination is a useful diagnostic biomarker to distinguish adult-onset Still’s disease from sepsis. Arthritis Res Ther. 2020;22(1):108. doi: 10.1186/s13075-020-02200-4

23. Inoue N, Shimizu M, Tsunoda S, Kawano M, Matsumura M, Yachie A. Cytokine profile in adult-onset Still’s disease: Comparison with systemic juvenile idiopathic arthritis. Clin Immunol. 2016;169:8-13. doi: 10.1016/j.clim.2016.05.010

24. Hinze T, Kessel C, Hinze CH, Seibert J, Gram H, Foell D. A dysregulated interleukin-18-interferon-γ-CXCL9 axis impacts treatment response to canakinumab in systemic juvenile idiopathic arthritis. Rheumatology (Oxford). 2021;60(11):5165-5174. doi: 10.1093/rheumatology/keab113

25. Satış H, Özger HS, Aysert Yıldız P, Hızel K, Gulbahar Ö, Erbaş G, et al. Prognostic value of interleukin-18 and its association with other inflammatory markers and disease severity in COVID-19. Cytokine. 2021;137:155302. doi: 10.1016/j.cyto.2020.155302

26. Kerget B, Kerget F, Aksakal A, Aşkın S, Sağlam L, Akgün M. Evaluation of alpha defensin, IL-1 receptor antagonist, and IL-18 levels in COVID-19 patients with macrophage activation syndrome and acute respiratory distress syndrome. J Med Virol. 2021;93(4):2090-2098. doi: 10.1002/jmv.26589

27. Chen PK, Lan JL, Huang PH, Hsu JL, Chang CK, Tien N, et al. Interleukin-18 is a potential biomarker to discriminate active adult-onset Still’s disease from COVID-19. Front Immunol. 2021;12:719544. doi: 10.3389/fimmu.2021.719544

28. Mende R, Vincent FB, Kandane-Rathnayake R, Koelmeyer R, Lin E, Chang J, et al. Analysis of serum interleukin (IL)-1β and IL-18 in systemic lupus erythematosus. Front Immunol. 2018;9:1250. doi: 10.3389/fimmu.2018.01250

29. Umare V, Pradhan V, Nath S, Rajadhyaksha A, Ghosh K, Nadkarni AH. Impact of functional IL-18 polymorphisms on genetic predisposition and diverse clinical manifestations of the disease in Indian SLE patients. Lupus. 2019;28(4):545-554. doi: 10.1177/0961203319834677

30. Jafari-Nakhjavani MR, Abedi-Azar S, Nejati B. Correlation of plasma interleukin-18 concentration and severity of renal involvement and disease activity in systemic lupus erythematosus. J Nephropathol. 2016;5(1):28-33. doi: 10.15171/jnp.2016.05

31. Hirooka Y, Nozaki Y. Interleukin-18 in inflammatory kidney disease. Front Med. 2021;8:639103. doi: 10.3389/fmed.2021.639103

32. Ruchakorn N, Ngamjanyaporn P, Suangtamai T, Kafaksom T, Polpanumas C, Petpisit V, et al. Performance of cytokine models in predicting SLE activity. Arthritis Res Ther. 2019;21(1):287. doi: 10.1186/s13075-019-2029-1

33. Xiang M, Feng Y, Wang Y, Wang J, Zhang Z, Liang J, et al. Correlation between circulating interleukin-18 level and systemic lupus erythematosus: A meta-analysis. Sci Rep. 2021;11(1):4707. doi: 10.1038/s41598-021-84170-4

34. Matsuo T, Hashimoto M, Ito I, Kubo T, Uozumi R, Furu M, et al. Interleukin-18 is associated with the presence of interstitial lung disease in rheumatoid arthritis: A cross-sectional study. Scand J Rheumatol. 2019;48(2):87-94. doi: 10.1080/03009742.2018.1477989

35. Nigrovic PA, Colbert RA, Holers VM, Ozen S, Ruperto N, Thompson SD, et al. Biological classification of childhood arthritis: Roadmap to a molecular nomenclature. Nat Rev Rheumatol. 2021;17(5):257-269. doi: 10.1038/s41584-021-00590-6

36. Насонов ЕЛ, Файст Е. Болезнь Стилла взрослых: новые горизонты. Научно-практическая ревматология. 2021;59(6):645665. [Nasonov EL, Feist E. Adult Still’s disease: New horizons. Nauchcno-Prakticheskaya Revmatologia =Rheumatology Science and Practice. 2021;59(6):645-665 (In Russ.)]. doi: 10.47360/19954484-2021-643-663

37. Feist E, Mitrovic S, Fautrel B. Mechanisms, biomarkers and targets for adult-onset Still’s disease. Nat Rev Rheumatol. 2018;14(10):603-618. doi: 10.1038/s41584-018-0081-x

38. Al-Samkari H, Berliner N. Hemophagocytic lymphohistiocytosis. Annu Rev Pathol. 2018;13:27-49. doi: 10.1146/annurevpathol-020117-043625

39. Crayne CB, Albeituni S, Nichols KE, Cron RQ. The immunology of macrophage activation syndrome. Front Immunol. 2019;10:119. doi: 10.3389/fimmu.2019.00119

40. Carter SJ, Tattersall RS, Ramanan AV. Macrophage activation syndrome in adults: Recent advances in pathophysiology, diagnosis and treatment. Rheumatology (Oxford). 2019;58(1):5-17. doi: 10.1093/rheumatology/key006

41. Fajgenbaum DC, June CH, Cytokine storm. N Engl J Med. 2020;383:2255-2273. doi: 10.1056/NEJMra2026131

42. Weatherhead JE, Clark E, Vogel TP, Atmar RL, Kulkarni PA. Inflammatory syndromes associated with SARS-CoV-2 infection: Dysregulation of the immune response across the age spectrum. J Clin Invest. 2020;130(12):6194-6197. doi: 10.1172/JCI145301

43. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ; HLH Across Speciality Collaboration, UK. COVID19: Consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033-1034. doi: 10.1016/S01406736(20)30628-0

44. Vora SM, Lieberman J, Wu H. Inflammasome activation at the crux of severe COVID-19. Nat Rev Immunol. 2021 Aug 9: 1-10. doi: 10.1038/s41577-021-00588-x

45. Rodrigues TS, de Sá KSG, Ishimoto AY, Becerra A, Oliveira S, Almeida L, et al. Inflammasomes are activated in response to SARSCoV-2 infection and are associated with COVID-19 severity in patients. J Exp Med. 2021;218(3):e20201707. doi: 10.1084/jem.20201707

46. Pan P, Shen M, Yu Z, Ge W, Chen K, Tian M, et al. SARSCoV-2 N protein promotes NLRP3 inflammasome activation to induce hyperinflammation. Nat Commun. 2021;12(1):4664. doi: 10.1038/s41467-021-25015-6

47. Leisman DE, Ronner L, Pinotti R, Taylor MD, Sinha P, Calfee CS, et al. Cytokine elevation in severe and critical COVID-19: A rapid systematic review, meta-analysis, and comparison with other inflammatory syndromes. Lancet Respir Med. 2020;8(12):1233-1244. doi: 10.1016/S2213-2600(20)30404-5

48. Shiga T, Nozaki Y, Tomita D, Kishimoto K, Hirooka Y, Kinoshita K, et al. Usefulness of interleukin-18 as a diagnostic biomarker to differentiate adult-onset Still’s disease with/without macrophage activation syndrome from other secondary hemophagocytic lymphohistiocytosis in adults. Front Immunol. 2021;12:750114. doi: 10.3389/fimmu.2021.750114

49. Chi H, Liu D, Sun Y, Hu Q, Liu H, Cheng X, et al. Interleukin-37 is increased in adult-onset Still’s disease and associated with disease activity. Arthritis Res Ther. 2018;20(1):54. doi: 10.1186/s13075-018-1555-6

50. Ho C, Yao X, Tian L, Li FY, Podoltsev N, Xu ML. Marrow assessment for hemophagocytic lymphohistiocytosis demonstrates poor correlation with disease probability. Am J Clin Pathol. 2014;141(1):62-71. doi: 10.1309/AJCPMD5TJEFOOVBW

51. Weiss ES, Girard-Guyonvarc’h C, Holzinger D, de Jesus AA, Tariq Z, Picarsic J, et al. Interleukin-18 diagnostically distinguishes and pathogenically promotes human and murine macrophage activation syndrome. Blood. 2018;131(13):1442-1455. doi: 10.1182/blood-2017-12-820852

52. Gao Z, Wang Y, Wang J, Zhang J, Wang Z. Soluble ST2 and CD163 as potential biomarkers to differentiate primary hemophagocytic lymphohistiocytosis from macrophage activation syndrome. Mediterr J Hematol Infect Dis. 2019;11(1):e2019008. doi: 10.4084/MJHID.2019.008

53. Mazodier K, Marin V, Novick D, Farnarier C, Robitail S, Schleinitz N, et al. Severe imbalance of IL-18/IL-18BP in patients with secondary hemophagocytic syndrome. Blood. 2005;106(10):3483-3489. doi: 10.1182/blood-2005-05-1980

54. Shimizu M, Yokoyama T, Yamada K, Kaneda H, Wada H, Wada T, et al. Distinct cytokine profiles of systemic-onset juvenile idiopathic arthritis-associated macrophage activation syndrome with particular emphasis on the role of interleukin-18 in its pathogenesis. Rheumatology (Oxford). 2010;49(9): 1645-1653. doi: 10.1093/rheumatology/keq133

55. Takada H, Ohga S, Mizuno Y, Nomura A, Hara T. Increased IL-16 levels in hemophagocytic lymphohistiocytosis. J Pediatr Hematol Oncol. 2004;26(9):567-573. doi: 10.1097/01.mph.0000134465.86671.2e

56. Honda K, Ohga S, Takada H, Nomura A, Ohshima K, Kinukawa N, et al. Neuron-specific enolase in hemophagocytic lymphohistiocytosis: A potential indicator for macrophage activation? Int J Hematol. 2000;72(1):55-60.

57. de Jesus AA, Hou Y, Brooks S, Malle L, Biancotto A, Huang Y, et al. Distinct interferon signatures and cytokine patterns define additional systemic autoinflammatory diseases. J Clin Invest. 2020;130(4):1669-1682. doi: 10.1172/JCI129301

58. Mizuta M, Shimizu M, Inoue N, Nakagishi Y, Yachie A. Clinical significance of serum CXCL9 levels as a biomarker for systemic juvenile idiopathic arthritis associated macrophage activation syndrome. Cytokine. 2019;119:182-187. doi: 10.1016/j.cyto.2019.03.018

59. Shimizu M, Nakagishi Y, Inoue N, Mizuta M, Ko G, Saikawa Y, et al. Interleukin-18 for predicting the development of macrophage activation syndrome in systemic juvenile idiopathic arthritis. Clin Immunol. 2015;160(2):277-281. doi: 10.1016/j.clim.2015.06.005

60. Takakura M, Shimizu M, Irabu H, Sakumura N, Inoue N, Mizuta M, et al. Comparison of serum biomarkers for the diagnosis of macrophage activation syndrome complicating systemic juvenile idiopathic arthritis. Clin Immunol. 2019;208:108252. doi: 10.1016/j.clim.2019.108252

61. Jinkawa A, Shimizu M, Nishida K, Kaneko S, Usami M, Sakumura N, et al. Cytokine profile of macrophage activation syndrome associated with Kawasaki disease. Cytokine. 2019;119:52-56. doi: 10.1016/j.cyto.2019.03.001

62. Takada H, Ohga S, Mizuno Y, Suminoe A, Matsuzaki A, Ihara K, et al. Oversecretion of IL-18 in haemophagocytic lymphohistiocytosis: A novel marker of disease activity. Br J Haematol. 1999;106(1):182189. doi: 10.1046/j.1365-2141.1999.01504.x

63. Wada T, Muraoka M, Yokoyama T, Toma T, Kanegane H, Yachie A. Cytokine profiles in children with primary Epstein–Barr virus infection. Pediatr Blood Cancer. 2013;60(7):E46-E48. doi: 10.1002/pbc.24480

64. Shimizu M, Inoue N, Mizuta M, Nakagishi Y, Yachie A. Characteristic elevation of soluble TNF receptor II : I ratio in macrophage activation syndrome with systemic juvenile idiopathic arthritis. Clin Exp Immunol. 2018;191(3):349-355. doi: 10.1111/cei.13026

65. Chen Y, Wang J, Liu C, Su L, Zhang D, Fan J, et al. IP-10 and MCP-1 as biomarkers associated with disease severity of COVID-19. Mol Med. 2020;26(1):97. doi: 10.1186/s10020-02000230-x

66. Kessel C, Vollenberg R, Masjosthusmann K, Hinze C, Wittkowski H, Debaugnies F, et al. Discrimination of COVID19 from inflammation-induced cytokine storm syndromes using disease-related blood biomarkers. Arthritis Rheumatol. 2021;73(10):1791-1799. doi: 10.1002/art.41763

67. Kaul A, Gordon C, Crow MK, Touma Z, Urowitz MB, van Vollenhoven R, et al. Systemic lupus erythematosus. Nat Rev Dis Primers. 2016;2:16039. doi: 10.1038/nrdp.2016.39

68. Tsokos GC, Lo MS, Costa Reis P, Sullivan KE. New insights into the immunopathogenesis of systemic lupus erythematosus. Nat Rev Rheumatol. 2016;12(12):716-730. doi: 10.1038/nrrheum

69. Bossù P, Neumann D, Del Giudice E, Ciaramella A, Gloaguen I, Fantuzzi G, et al. IL-18 cDNA vaccination protects mice from spontaneous lupus-like autoimmune disease. Proc Natl Acad Sci U S A. 2003;100(24):14181-14186. doi: 10.1073/pnas.2336094100

70. Lee YH, Song GG. Circulating interleukin-18 level in systemic lupus erythematosus. J Rheum Did. 2020;27(2):110-115.

71. Kawashima M, Yamamura M, Taniai M, Yamauchi H, Tanimoto T, Kurimoto M, et al. Levels of interleukin-18 and its binding inhibitors in the blood circulation of patients with adultonset Still’s disease. Arthritis Rheum. 2001;44(3):550-560. doi: 10.1002/1529-0131(200103)44:3<550::AIDANR103>3.0.CO;2-5

72. Amerio P, Frezzolini A, Abeni D, Teofoli P, Girardelli CR, De Pità O, et al. Increased IL-18 in patients with systemic lupus erythematosus: Relations with Th-1, Th-2, pro-inflammatory cytokines and disease activity. IL-18 is a marker of disease activity but does not correlate with pro-inflammatory cytokines. Clin Exp Rheumatol. 2002;20(4):535-538.

73. Robak E, Woźniacka A, Sysa-Jedrzejowska A, Stepień H, Robak T. Circulating angiogenesis inhibitor endostatin and positive endothelial growth regulators in patients with systemic lupus erythematosus. Lupus. 2002;11(6):348-355. doi: 10.1191/0961203302lu199oa

74. Calvani N, Richards HB, Tucci M, Pannarale G, Silvestris F. Up-regulation of IL-18 and predominance of a Th1 immune response is a hallmark of lupus nephritis. Clin Exp Immunol. 2004;138(1):171-178. doi: 10.1111/j.1365-2249.2004.02588.x

75. Park MC, Park YB, Lee SK. Elevated interleukin-18 levels correlated with disease activity in systemic lupus erythematosus. Clin Rheumatol. 2004;23(3):225-229. doi: 10.1007/s10067-004-0867-x

76. Tso TK, Huang WN, Huang HY, Chang CK. Relationship of plasma interleukin-18 concentrations to traditional and nontraditional cardiovascular risk factors in patients with systemic lupus erythematosus. Rheumatology (Oxford). 2006;45(9):11481153. doi: 10.1093/rheumatology/kel082

77. Tso TK, Huang WN, Huang HY, Chang CK. Elevation of plasma interleukin-18 concentration is associated with insulin levels in patients with systemic lupus erythematosus. Lupus. 2006;15(4):207-212. doi: 10.1191/0961203306lu2284oa

78. Lit LC, Wong CK, Li EK, Tam LS, Lam CW, Lo YM. Elevated gene expression of Th1/Th2 associated transcription factors is correlated with disease activity in patients with systemic lupus erythematosus. J Rheumatol. 2007;34(1):89-96.

79. Xu Q, Tin SK, Sivalingam SP, Thumboo J, Koh DR, Fong KY. Interleukin-18 promoter gene polymorphisms in Chinese patients with systemic lupus erythematosus: Association with CC genotype at position -607. Ann Acad Med Singap. 2007;36(2):91-95.

80. Chen DY, Hsieh CW, Chen KS, Chen YM, Lin FJ, Lan JL. Association of interleukin-18 promoter polymorphisms with WHO pathological classes and serum IL-18 levels in Chinese patients with lupus nephritis. Lupus. 2009;18(1):29-37. doi: 10.1177/0961203308094559

81. Панафидина ТА, Попкова ГВ, Алекберова ЗС, Мач ЭС, Александрова ЕН, Насонов ЕЛ. Интерлейкин-18 при системной красной волчанке: связь с клиническими проявлениями заболевания и атеросклеротическим поражением сосудов. Терапевтический архив. 2008;80(5):41-46.

82. Lee HT, Chen WS, Sun KH, Chou CT, Tsai CY. Increased spontaneous but decreased mitogen-stimulated expression and excretion of interleukin 18 by mononuclear cells in patients with active systemic lupus erythematosus. J Rheumatol. 2009;36(9):1910-1916. doi: 10.3899/jrheum.081197

83. Favilli F, Anzilotti C, Martinelli L, Quattroni P, De Martino S, Pratesi F, et al. IL-18 activity in systemic lupus erythematosus. Ann N Y Acad Sci. 2009;1173:301-309. doi: 10.1111/j.1749-6632.2009.04742.x

84. Hu D, Liu X, Chen S, Bao C. Expressions of IL-18 and its binding protein in peripheral blood leukocytes and kidney tissues of lupus nephritis patients. Clin Rheumatol. 2010;29(7):717-721. doi: 10.1007/s10067-010-1386-6

85. Novick D, Elbirt D, Miller G, Dinarello CA, Rubinstein M, Sthoeger ZM. High circulating levels of free interleukin-18 in patients with active SLE in the presence of elevated levels of interleukin-18 binding protein. J Autoimmun. 2010;34(2): 121-126. doi: 10.1016/j.jaut.2009.08.002

86. Hermansen ML, Hummelshøj L, Lundsgaard D, Hornum L, Keller P, Fleckner J, et al. Increased serum β2-microglobulin is associated with clinical and immunological markers of disease activity in systemic lupus erythematosus patients. Lupus. 2012;21(10):1098-1104. doi: 10.1177/0961203312447668

87. Migliorini P, Anzilotti C, Pratesi F, Quattroni P, Bargagna M, Dinarello CA, et al. Serum and urinary levels of IL-18 and its inhibitor IL-18BP in systemic lupus erythematosus. Eur Cytokine Netw. 2010;21(4):264-271. doi: 10.1684/ecn.2010.0210

88. Koenig KF, Groeschl I, Pesickova SS, Tesar V, Eisenberger U, Trendelenburg M. Serum cytokine profile in patients with active lupus nephritis. Cytokine. 2012;60(2):410-416. doi: 10.1016/j.cyto.2012.07.004

89. Liu X, Bao C, Hu D. Elevated interleukin-18 and skewed Th1:Th2 immune response in lupus nephritis. Rheumatol Int. 2012;32(1):223-229. doi: 10.1007/s00296-010-1609-9

90. Sahebari M, Rezaieyazdi Z, Nakhjavani MJ, Hatef M, Mahmoudi M, Akhlaghi S. Correlation between serum concentrations of soluble Fas (CD95/Apo-1) and IL-18 in patients with systemic lupus erythematosus. Rheumatol Int. 2012;32(3):601-606. doi: 10.1007/s00296-010-1633-9

91. Shimizu C, Fujita T, Fuke Y, Ito K, Satomura A, Matsumoto K, et al. High circulating levels of interleukin-18 binding protein indicate the severity of glomerular involvement in systemic lupus erythematosus. Mod Rheumatol. 2012;22(1):73-79. doi: 10.1007/s10165-011-0471-2

92. Aghdashi M, Aribi S, Salami S. Serum levels of IL-18 in Iranian females with systemic lupus erythematosus. Med Arch. 2013;67(4):237-240. doi: 10.5455/medarh.2013.67.237-240

93. Hatef MR, Sahebari M, Rezaieyazdi Z, Nakhjavani MR, Mahmoudi M. Stronger correlation between interleukin 18 and soluble Fas in lupus nephritis compared with mild lupus. ISRN Rheumatol. 2013;2013:850851. doi: 10.1155/2013/850851

94. Song L, Qiu F, Fan Y, Ding F, Liu H, Shu Q, et al. Glucocorticoid regulates interleukin-37 in systemic lupus erythematosus. J Clin Immunol. 2013;33(1):111-117. doi: 10.1007/s10875-012-9791-z

95. Sigdel KR, Duan L, Wang Y, Hu W, Wang N, Sun Q, et al. Serum cytokines Th1, Th2, and Th17 expression profiling in active lupus nephritis-IV: From a Southern Chinese Han population. Mediators Inflamm. 2016;2016:4927530. doi: 10.1155/2016/4927530

96. Wu CY, Yang HY, Yao TC, Liu SH, Huang JL. Serum IL-18 as biomarker in predicting long-term renal outcome among pediatric-onset systemic lupus erythematosus patients. Medicine (Baltimore). 2016;95(40):e5037. doi: 10.1097/MD.0000000000005037

97. Petrackova A, Smrzova A, Gajdos P, Schubertova M, Schneide rova P, Kromer P, et al. Serum protein pattern associated with organ damage and lupus nephritis in systemic lupus erythematosus revealed by PEA immunoassay. Clin Proteomics. 2017;14:32. doi: 10.1186/s12014-017-9167-8

98. Italiani P, Manca ML, Angelotti F, Melillo D, Pratesi F, Puxeddu I, et al. IL-1 family cytokines and soluble receptors in systemic lupus erythematosus. Arthritis Res Ther. 2018;20(1):27. doi: 10.1186/s13075-018-1525-z

99. Liang R, Zheng L, Ji T, Zheng J, Liu J, Yuan C, et al. Elevated serum free IL-18 in neuropsychiatric systemic lupus erythematosus patients with seizure disorders. Lupus. 2022;31(2):187-193. doi: 10.1177/09612033211069853

100. Volin MV, Koch AE. Interleukin-18: A mediator of inflammation and angiogenesis in rheumatoid arthritis. J Interferon Cytokine Res. 2011;31(10):745-751. doi: 10.1089/jir.2011.0050

101. Vasilev G, Manolova I, Ivanova M, Stanilov I, Miteva L, Stanilova S. The role of IL-18 in addition to Th17 cytokines in rheumatoid arthritis development and treatment in women. Sci Rep. 2021;11(1):15391. doi: 10.1038/s41598-021-94841-x

102. N ozaki Y, Ri J, Sakai K, Niki K, Kinoshita K, Funauchi M, et al. Inhibition of the IL-18 receptor signaling pathway ameliorates disease in a murine model of rheumatoid arthritis. Cells. 2019;9(1):11. doi: 10.3390/cells9010011

103. Akiyama M, Kaneko Y. Pathogenesis, clinical features, and treatment strategy for rheumatoid arthritis-associated interstitial lung disease. Autoimmun Rev. 2022;21(5):103056. doi: 10.1016/j.autrev.2022.103056

104. Baker KF, Isaacs JD. Novel therapies for immune-mediated inflammatory diseases: What can we learn from their use in rheumatoid arthritis, spondyloarthritis, systemic lupus erythematosus, psoriasis, Crohn’s disease and ulcerative colitis? Ann Rheum Dis. 2018;77(2):175-187. doi: 10.1136/annrheumdis-2017-211555

105. Насонов ЕЛ. Фармакотерапия ревматоидного артрита: новая стратегия, новые мишени. Научно-практическая ревматология. 2017;55(4):409-419. [Nasonov EL. Pharmacotherapy for rheumatoid arthritis: New strategy, new targets. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2017;55(4):409419 (In Russ.)]. doi: 10.14412/1995-4484-2017-409-419

106. Chiossone L, Audonnet S, Chetaille B, Chasson L, Farnarier C, Berda-Haddad Y, et al. Protection from inflammatory organ damage in a murine model of hemophagocytic lymphohistiocytosis using treatment with IL-18 binding protein. Front Immunol. 2012;3:239. doi: 10.3389/fimmu.2012.00239

107. Girard-Guyonvarc’h C, Palomo J, Martin P, Rodriguez E, Troccaz S, Palmer G, et al. Unopposed IL-18 signaling leads to severe TLR9-induced macrophage activation syndrome in mice. Blood. 2018;131(13):1430-1441. doi: 10.1182/blood2017-06-789552

108. Gabay C, Fautrel B, Rech J, Spertini F, Feist E, Kötter I, et al. Open-label, multicentre, dose-escalating phase II clinical trial on the safety and efficacy of tadekinig alfa (IL-18BP) in adultonset Still’s disease. Ann Rheum Dis. 2018;77(6):840-847. doi: 10.1136/annrheumdis-2017-212608

109. Kiltz U, Kiefer D, Braun J, Schiffrin EJ, Girard-Guyonvarc’h C, Gabay C. Prolonged treatment with Tadekinig alfa in adult-onset Still’s disease. Ann Rheum Dis. 2020;79(1):e10. doi: 10.1136/annrheumdis-2018-214496

110. Yasin S, Solomon K, Canna SW, Girard-Guyonvarc’h C, Gabay C, Schiffrin E, et al. IL-18 as therapeutic target in a patient with resistant systemic juvenile idiopathic arthritis and recurrent macrophage activation syndrome. Rheumatology (Oxford). 2020;59(2):442-445. doi: 10.1093/rheumatology/kez284


Рецензия

Для цитирования:


Насонов Е.Л., Авдеева А.С. Интерлейкин 18 при иммуновоспалительных ревматических заболеваниях и COVID-19. Научно-практическая ревматология. 2022;60(2):195-204. https://doi.org/10.47360/1995-4484-2022-195-204

For citation:


Nasonov E.L., Avdeeva A.S. Interleukin 18 in Immune-mediated rheumatic diseases and COVID-19. Rheumatology Science and Practice. 2022;60(2):195-204. (In Russ.) https://doi.org/10.47360/1995-4484-2022-195-204

Просмотров: 316


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1995-4484 (Print)
ISSN 1995-4492 (Online)