Preview

Научно-практическая ревматология

Расширенный поиск

АЦЦП-негативный ревматоидный артрит — клинические и иммунологические особенности

https://doi.org/10.47360/1995-4484-2022-314-326

Полный текст:

Аннотация

В зависимости от наличия лабораторных биомаркеров: IgM ревматоидного фактора и антител к циклическому цитруллинированному пептиду (АЦЦП), – выделяют серопозитивный и серонегативный варианты ревматоидного артрита (РА). Иммунологические субтипы различаются по факторам риска, иммунопатогенезу и характеру течения заболевания.

Представлен обзор данных, касающихся иммунологических и клинических особенностей АЦЦП-негативного варианта РА. Присутствие АЦЦП в периферической крови отражает наличие прогрессирующего эрозивного процесса с преобладанием воспалительного компонента и вовлечением В-клеток. При АЦЦП-негативном субтипе преобладают пролиферативные изменения; важное значение в патогенезе играют нарушения, связанные с Т-клеточным звеном, в первую очередь с CD4+ Т-лимфоцитами. Для данного варианта заболевания характерен менее выраженный эрозивный процесс, однако воспалительная активность при обоих субтипах РА может быть сопоставима. Ранняя диагностика, регулярный контроль активности заболевания и стратегия «лечения до достижения цели» рекомендованы как для позитивного, так и для негативного по АЦЦП РА, однако эффективность отдельных препаратов при этих субтипах может значительно различаться. 

Об авторе

Д. А. Дибров
ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой»
Россия

аспирант,

115522, Москва, Каширское шоссе, 34а



Список литературы

1. Насонов ЕЛ (ред.). Российские клинические рекомендации. Ревматология. М.:ГЭОТАР-Медиа;2020.

2. van der Woude D, Houwing-Duistermaat JJ, Toes RE, Huizinga TW, Thomson W, Worthington J, et al. Quantitative heritability of anti-citrullinated protein antibody-positive and anti-citrullinated protein antibody-negative rheumatoid arthritis. Arthritis Rheum. 2009;60(4):916- 923. doi: 10.1002/art.24385

3. Frisell T, Holmqvist M, Källberg H, Klareskog L, Alfredsson L, Askling J. Familial risks and heritability of rheumatoid arthritis: Role of rheumatoid factor/anti-citrullinated protein antibody status, number and type of affected relatives, sex, and age. Arthritis Rheum. 2013;65(11):2773-2782. doi: 10.1002/art.38097

4. Frisell T, Hellgren K, Alfredsson L, Raychaudhuri S, Klareskog L, Askling J. Familial aggregation of arthritis-related diseases in seropositive and seronegative rheumatoid arthritis: A register-based case-control study in Sweden. Ann Rheum Dis. 2016;75(1):183-189. doi: 10.1136/annrheumdis-2014-206133

5. van der Helm-van Mil AH, Verpoort KN, Breedveld FC, Huizinga TW, Toes RE, de Vries RR. The HLA-DRB1 shared epitope alleles are primarily a risk factor for anti-cyclic citrullinated peptide antibodies and are not an independent risk factor for development of rheumatoid arthritis. Arthritis Rheum. 2006;54(4):1117-1121. doi: 10.1002/art.21739

6. Verpoort KN, van Gaalen FA, van der Helm-van Mil AH, Schreuder GM, Breedveld FC, Huizinga TW, et al. Association of HLA-DR3 with anti-cyclic citrullinated peptide antibodynegative rheumatoid arthritis. Arthritis Rheum. 2005;52(10):3058- 3062. doi: 10.1002/art.21302

7. De Stefano L, D’Onofrio B, Manzo A, Montecucco C, Bugatti S. The genetic, environmental, and immunopathological complexity of autoantibody-negative rheumatoid arthritis. Int J Mol Sci. 2021;22(22):12386. doi: 10.3390/ijms222212386

8. Eyre S, Bowes J, Diogo D, Lee A, Barton A, Martin P, et al. High-density genetic mapping identifies new susceptibility loci for rheumatoid arthritis. Nat Genet. 2012;44(12):1336-1340. doi: 10.1038/ng.2462

9. Terao C, Ohmura K, Kochi Y, Ikari K, Okada Y, Shimizu M, et al. Anti-citrullinated peptide/protein antibody (ACPA)-negative RA shares a large proportion of susceptibility loci with ACPA-positive RA: A meta-analysis of genome-wide association study in a Japanese population. Arthritis Res Ther. 2015;17(1):104. doi: 10.1186/s13075-015-0623-4

10. Okada Y, Wu D, Trynka G, Raj T, Terao C, Ikari K, Kochi Y, et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature. 2014;506(7488):376-381. doi: 10.1038/nature12873

11. Viatte S, Plant D, Bowes J, Lunt M, Eyre S, Barton A, et al. Genetic markers of rheumatoid arthritis susceptibility in anti-citrullinated peptide antibody negative patients. Ann Rheum Dis. 2012;71(12):1984-1990. doi: 10.1136/annrheumdis-2011-201225

12. Viatte S, Massey J, Bowes J, Duffus K; arcOGEN Consortium, Eyre S, Barton A, et al. Replication of associations of genetic loci outside the HLA region with susceptibility to anti-cyclic citrullinated peptide-negative rheumatoid arthritis. Arthritis Rheumatol. 2016;68(7):1603-1613. doi: 10.1002/art.39619

13. Ugidos N, Mena J, Baquero S, Alloza I, Azkargorta M, Elortza F, et al. Interactome of the autoimmune risk protein ANKRD55. Front Immunol. 2019;10:2067. doi: 10.3389/fimmu.2019.02067

14. Li L, Chen J, Jiang Y. Diagnostic accuracy of 14-3-3η protein in rheumatoid arthritis: A meta-analysis. Int J Rheum Dis. 2020;23(11):1602-1604. doi: 10.1111/1756-185X.14007

15. Wu Y, Dai Z, Wang H, Wang H, Wu L, Ling H, et al. Serum 14-3- 3η is a marker that complements current biomarkers for the diagnosis of RA: Evidence from a meta-analysis. Immunol Invest. 2022;51(1):182-198. doi: 10.1080/08820139.2020.1817069

16. Sigurdsson S, Padyukov L, Kurreeman FA, Liljedahl U, Wiman AC, Alfredsson L, et al. Association of a haplotype in the promoter region of the interferon regulatory factor 5 gene with rheumatoid arthritis. Arthritis Rheum. 2007;56(7):2202-2210. doi: 10.1002/art.22704

17. Wei WH, Viatte S, Merriman TR, Barton A, Worthington J. Genotypic variability based association identifies novel non-additive loci DHCR7 and IRF4 in sero-negative rheumatoid arthritis. Sci Rep. 2017;7(1):5261. doi: 10.1038/s41598-017-05447-1

18. Pedersen M, Jacobsen S, Klarlund M, Pedersen BV, Wiik A, Wohlfahrt J, et al. Environmental risk factors differ between rheumatoid arthritis with and without auto-antibodies against cyclic citrullinated peptides. Arthritis Res Ther. 2006;8(4):R133. doi: 10.1186/ar2022

19. Kronzer VL, Westerlind H, Alfredsson L, Crowson CS, Nyberg F, Tornling G, et al. Respiratory diseases as risk factors for seropositive and seronegative rheumatoid arthritis and in relation to smoking. Arthritis Rheumatol. 2021;73(1):61-68. doi: 10.1002/art.41491

20. Lahiri M, Luben RN, Morgan C, Bunn DK, Marshall T, Lunt M, et al. Using lifestyle factors to identify individuals at higher risk of inflammatory polyarthritis (results from the European Prospective Investigation of Cancer-Norfolk and the Norfolk Arthritis Register – the EPIC-2-NOAR Study). Ann Rheum Dis. 2014;73(1):219-226. doi: 10.1136/annrheumdis-2012-202481

21. Wesley A, Bengtsson C, Elkan AC, Klareskog L, Alfredsson L, Wedrén S; Epidemiological Investigation of Rheumatoid Arthritis Study Group. Association between body mass index and anti-citrullinated protein antibody-positive and anti-citrullinated protein antibody-negative rheumatoid arthritis: Results from a populationbased case-control study. Arthritis Care Res (Hoboken). 2013;65(1):107-112. doi: 10.1002/acr.21749

22. Feng J, Chen Q, Yu F, Wang Z, Chen S, Jin Z, et al. Body mass index and risk of rheumatoid arthritis: A meta-analysis of observational studies. Medicine (Baltimore). 2016;95(8):e2859. doi: 10.1097/MD.0000000000002859

23. Lu B, Hiraki LT, Sparks JA, Malspeis S, Chen CY, Awosogba JA, et al. Being overweight or obese and risk of developing rheumatoid arthritis among women: A prospective cohort study. Ann Rheum Dis. 2014;73(11):1914-1922. doi: 10.1136/annrheumdis-2014-205459

24. Насонов ЕЛ. Проблемы иммунопатологии ревматоидного артрита: эволюция болезни. Научно-практическая ревматология. 2017;55(3):277-294. doi: 10.14412/1995-4484-2017-277-294

25. Pratt AG, Swan DC, Richardson S, Wilson G, Hilkens CM, Young DA, et al. A CD4 T cell gene signature for early rheumatoid arthritis implicates interleukin 6-mediated STAT3 signalling, particularly in anti-citrullinated peptide antibody-negative disease. Ann Rheum Dis. 2012;71(8):1374-1381. doi: 10.1136/annrheumdis-2011-200968

26. Anderson AE, Maney NJ, Nair N, Lendrem DW, Skelton AJ, Diboll J, et al. Expression of STAT3-regulated genes in circulating CD4+ T cells discriminates rheumatoid arthritis independently of clinical parameters in early arthritis. Rheumatology (Oxford). 2019;58(7):1250-1258. doi: 10.1093/rheumatology/kez003

27. Seddighzadeh M, Gonzalez A, Ding B, Ferreiro-Iglesias A, Gomez-Reino JJ; Rheumatoid Arthritis Network and Coordinated Project, et al. Variants within STAT genes reveal association with anticitrullinated protein antibody-negative rheumatoid arthritis in 2 European populations. J Rheumatol. 2012;39(8):1509-1516. doi: 10.3899/jrheum.111284

28. Ridgley LA, Anderson AE, Maney NJ, Naamane N, Skelton AJ, Lawson CA, et al. IL-6 mediated transcriptional programming of naïve CD4+ T cells in early rheumatoid arthritis drives dysregulated effector function. Front Immunol. 2019;10:1535. doi: 10.3389/fimmu.2019.01535

29. Basdeo SA, Moran B, Cluxton D, Canavan M, McCormick J, Connolly M, et al. Polyfunctional, pathogenic CD161+ Th17 lineage cells are resistant to regulatory T cell-mediated suppression in the context of autoimmunity. J Immunol. 2015;195(2):528-540. doi: 10.4049/jimmunol.1402990

30. Miao J, Zhang K, Lv M, Li Q, Zheng Z, Han Q, et al. Circulating Th17 and Th1 cells expressing CD161 are associated with disease activity in rheumatoid arthritis. Scand J Rheumatol. 2014;43(3):194-201. doi: 10.3109/03009742.2013.846407

31. Kotake S, Nanke Y, Yago T, Kawamoto M, Kobashigawa T, Yamanaka H. Elevated ratio of Th17 cell-derived Th1 cells (CD161(+)Th1 cells) to CD161(+)Th17 cells in peripheral blood of early-onset rheumatoid arthritis patients. Biomed Res Int. 2016;2016:4186027. doi: 10.1155/2016/4186027

32. Kotake S, Yago T, Kobashigawa T, Nanke Y. The plasticity of Th17 cells in the pathogenesis of rheumatoid arthritis. J Clin Med. 2017;6(7):67. doi: 10.3390/jcm6070067

33. Gómez-Puerta JA, Celis R, Hernández MV, Ruiz-Esquide V, Ramírez J, Haro I, et al. Differences in synovial fluid cytokine levels but not in synovial tissue cell infiltrate between anti-citrullinated peptide/protein antibody-positive and -negative rheumatoid arthritis patients. Arthritis Res Ther. 2013;15(6):R182. doi: 10.1186/ar4372

34. Cantaert T, Brouard S, Thurlings RM, Pallier A, Salinas GF, Braud C, et al. Alterations of the synovial T cell repertoire in anti-citrullinated protein antibody-positive rheumatoid arthritis. Arthritis Rheum. 2009;60(7):1944-1956. doi: 10.1002/art.24635

35. van Oosterhout M, Bajema I, Levarht EW, Toes RE, Huizinga TW, van Laar JM. Differences in synovial tissue infiltrates between anti-cyclic citrullinated peptide-positive rheumatoid arthritis and anti-cyclic citrullinated peptide-negative rheumatoid arthritis. Arthritis Rheum. 2008;58(1):53-60. doi: 10.1002/art.23148

36. Orr C, Najm A, Biniecka M, McGarry T, Ng CT, Young F, et al. Synovial immunophenotype and anti-citrullinated peptide antibodies in rheumatoid arthritis patients: Relationship to treatment response and radiologic prognosis. Arthritis Rheumatol. 2017;69(11):2114-2123. doi: 10.1002/art.40218

37. Lewis MJ, Barnes MR, Blighe K, Goldmann K, Rana S, Hackney JA, et al. Molecular portraits of early rheumatoid arthritis identify clinical and treatment response phenotypes. Cell Rep. 2019;28(9):2455-2470.e5. doi: 10.1016/j.celrep.2019.07.091

38. Humby F, Lewis M, Ramamoorthi N, Hackney JA, Barnes MR, Bombardieri M, et al. Synovial cellular and molecular signatures stratify clinical response to csDMARD therapy and predict radiographic progression in early rheumatoid arthritis patients. Ann Rheum Dis. 2019;78(6):761-772. doi: 10.1136/annrheumdis-2018-214539

39. Floudas A, Canavan M, McGarry T, Mullan R, Nagpal S, Veale DJ, et al. ACPA status correlates with differential immune profile in patients with rheumatoid arthritis. Cells. 2021;10(3):647. doi: 10.3390/cells10030647

40. Wu X, Liu Y, Jin S, Wang M, Jiao Y, Yang B, et al. Single-cell sequencing of immune cells from anticitrullinated peptide antibody positive and negative rheumatoid arthritis. Nat Commun. 2021;12(1):4977. doi: 10.1038/s41467-021-25246-7

41. Yamaguchi A, Nozawa K, Fujishiro M, Kawasaki M, Suzuki F, Takamori K, et al. CC motif chemokine ligand 13 is associated with rheumatoid arthritis pathogenesis. Mod Rheumatol. 2013;23(5):856-863. doi: 10.1007/s10165-012-0752-4

42. Chenivesse C, Tsicopoulos A. CCL18 – Beyond chemotaxis. Cytokine. 2018;109:52-56. doi: 10.1016/j.cyto.2018.01.023

43. Li WC, Bai L, Xu Y, Chen H, Ma R, Hou WB, et al. Identification of differentially expressed genes in synovial tissue of rheumatoid arthritis and osteoarthritis in patients. J Cell Biochem. 2019;120(3):4533-4544. doi: 10.1002/jcb.27741

44. Schraufstatter IU, Zhao M, Khaldoyanidi SK, Discipio RG. The chemokine CCL18 causes maturation of cultured monocytes to macrophages in the M2 spectrum. Immunology. 2012;135(4):287-298. doi: 10.1111/j.1365-2567.2011.03541.x

45. Takayasu A, Miyabe Y, Yokoyama W, Kaneko K, Fukuda S, Miyasaka N, et al. CCL18 activates fibroblast-like synoviocytes in patients with rheumatoid arthritis. J Rheumatol. 2013;40(6): 1026-1028. doi: 10.3899/jrheum.121412

46. Krohn SC, Bonvin P, Proudfoot AE. CCL18 exhibits a regulatory role through inhibition of receptor and glycosaminoglycan binding. PLoS One. 2013;8(8):e72321. doi: 10.1371/journal.pone.0072321

47. Mathes AL, Christmann RB, Stifano G, Affandi AJ, Radstake TR, Farina GA, et al. Global chemokine expression in systemic sclerosis (SSc): CCL19 expression correlates with vascular inflammation in SSc skin. Ann Rheum Dis. 2014;73(10):1864-1872. doi: 10.1136/annrheumdis-2012-202814

48. Prasse A, Pechkovsky DV, Toews GB, Schäfer M, Eggeling S, Ludwig C, et al. CCL18 as an indicator of pulmonary fibrotic activity in idiopathic interstitial pneumonias and systemic sclerosis. Arthritis Rheum. 2007;56(5):1685-1693. doi: 10.1002/art.22559

49. Schupp JC, Binder H, Jäger B, Cillis G, Zissel G, MüllerQuernheim J, et al. Macrophage activation in acute exacerbation of idiopathic pulmonary fibrosis. PLoS One. 2015;10(1):e0116775. doi: 10.1371/journal.pone.0116775

50. Cai M, Bonella F, He X, Sixt SU, Sarria R, Guzman J, et al. CCL18 in serum, BAL fluid and alveolar macrophage culture supernatant in interstitial lung diseases. Respir Med. 2013;107(9):1444-1452. doi: 10.1016/j.rmed.2013.06.004

51. Tetlow LC, Lees M, Ogata Y, Nagase H, Woolley DE. Differential expression of gelatinase B (MMP-9) and stromelysin-1 (MMP-3) by rheumatoid synovial cells in vitro and in vivo. Rheumatol Int. 1993;13(2):53-59. doi: 10.1007/BF00307734

52. Lerner A, Neidhöfer S, Reuter S, Matthias T. MMP3 is a reliable marker for disease activity, radiological monitoring, disease outcome predictability, and therapeutic response in rheumatoid arthritis. Best Pract Res Clin Rheumatol. 2018;32(4):550-562. doi: 10.1016/j.berh.2019.01.006

53. Ainola MM, Mandelin JA, Liljeström MP, Li TF, Hukkanen MV, Konttinen YT. Pannus invasion and cartilage degradation in rheumatoid arthritis: Involvement of MMP-3 and interleukin-1beta. Clin Exp Rheumatol. 2005;23(5):644-650.

54. Skacelova M, Hermanova Z, Horak P, Ahmed K, Langova K. Higher levels of matrix metalloproteinase-3 in patients with RA reflect disease activity and structural damage. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2017;161(3):296-302. doi: 10.5507/bp.2017.015

55. Krabben A, Huizinga TW, Mil AH. Biomarkers for radiographic progression in rheumatoid arthritis. Curr Pharm Des. 2015;21(2):147-169. doi: 10.2174/1381612820666140825122525

56. Hiura K, Iwaki-Egawa S, Kawashima T, Fujisawa S, Takeda T, Komori H, et al. The diagnostic utility of matrix metalloproteinase-3 and high-sensitivity C-reactive protein for predicting rheumatoid arthritis in anti-cyclic citrullinated peptide antibody-negative patients with recent-onset undifferentiated arthritis. Rheumatol Int. 2013;33(9):2309-2314. doi: 10.1007/s00296-013-2716-1

57. Ponikowska M, Świerkot J, Nowak B, Korman L, Wiland P. Autoantibody and metalloproteinase activity in early arthritis. Clin Rheumatol. 2019;38(3):827-834. doi: 10.1007/s10067-018- 4326-5

58. Новиков АА, Александрова ЕН, Лукина ГВ. Особенности цитокинового профиля при ревматоидном артрите. Альманах клинической медицины. 2019;47(5):393-399. doi: 10.18786/2072-0505-2019-47-058

59. Mitra S, Leonard WJ. Biology of IL-2 and its therapeutic modulation: Mechanisms and strategies. J Leukoc Biol. 2018;103(4):643- 655. doi: 10.1002/JLB.2RI0717-278R

60. Ikeuchi H, Kuroiwa T, Hiramatsu N, Kaneko Y, Hiromura K, Ueki K, et al. Expression of interleukin-22 in rheumatoid arthritis: Potential role as a proinflammatory cytokine. Arthritis Rheum. 2005;52(4):1037-1046. doi: 10.1002/art.20965

61. Kim KW, Kim HR, Park JY, Park JS, Oh HJ, Woo YJ, et al. Interleukin-22 promotes osteoclastogenesis in rheumatoid arthritis through induction of RANKL in human synovial fibroblasts. Arthritis Rheum. 2012;64(4):1015-1023. doi: 10.1002/art.33446

62. Dudakov JA, Hanash AM, van den Brink MR. Interleukin-22: Immunobiology and pathology. Annu Rev Immunol. 2015;33:747- 785. doi: 10.1146/annurev-immunol-032414-112123

63. Lee AYS, Körner H. The CCR6-CCL20 axis in humoral immunity and T-B cell immunobiology. Immunobiology. 2019;224(3):449- 454. doi: 10.1016/j.imbio.2019.01.005

64. Tamaki Y, Takakubo Y, Hirayama T, Konttinen YT, Goodman SB, Yamakawa M, et al. Expression of Toll-like receptors and their signaling pathways in rheumatoid synovitis. J Rheumatol. 2011;38(5):810-820. doi: 10.3899/jrheum.100732

65. Roelofs MF, Joosten LA, Abdollahi-Roodsaz S, van Lieshout AW, Sprong T, van den Hoogen FH, et al. The expression of toll-like receptors 3 and 7 in rheumatoid arthritis synovium is increased and costimulation of toll-like receptors 3, 4, and 7/8 results in synergistic cytokine production by dendritic cells. Arthritis Rheum. 2005;52(8):2313-2322. doi: 10.1002/art.21278

66. Ospelt C, Brentano F, Rengel Y, Stanczyk J, Kolling C, Tak PP, et al. Overexpression of toll-like receptors 3 and 4 in synovial tissue from patients with early rheumatoid arthritis: Toll-like receptor expression in early and longstanding arthritis. Arthritis Rheum. 2008;58(12):3684-3692. doi: 10.1002/art.24140

67. Abdelwahab A, Palosaari S, Abdelwahab SA, Rifaai RA, El-Tahawy NF, Saber EA, et al. Differential synovial tissue expression of TLRs in seropositive and seronegative rheumatoid arthritis: A preliminary report. Autoimmunity. 2021;54(1):23-34. doi: 10.1080/08916934.2020.1864729

68. McGarry T, Biniecka M, Gao W, Cluxton D, Canavan M, Wade S, et al. Resolution of TLR2-induced inflammation through manipulation of metabolic pathways in rheumatoid arthritis. Sci Rep. 2017;7:43165. doi: 10.1038/srep43165

69. Sokolove J, Zhao X, Chandra PE, Robinson WH. Immune complexes containing citrullinated fibrinogen costimulate macrophages via Toll-like receptor 4 and Fcγ receptor. Arthritis Rheum. 2011;63(1):53-62. doi: 10.1002/art.30081

70. Santos-Sierra S. Targeting toll-like receptor (TLR) pathways in inflammatory arthritis: Two better than one? Biomolecules. 2021;11(9):1291. doi: 10.3390/biom11091291

71. Agarwal S, Loder SJ, Cholok D, Li J, Bian G, Yalavarthi S, et al. Disruption of neutrophil extracellular traps (NETs) links mechanical strain to post-traumatic inflammation. Front Immunol. 2019;10:2148. doi: 10.3389/fimmu.2019.02148

72. Khandpur R, Carmona-Rivera C, Vivekanandan-Giri A, Gizinski A, Yalavarthi S, Knight JS, et al. NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci Transl Med. 2013;5(178):178ra40. doi: 10.1126/scitranslmed.3005580

73. Pratt AG, Isaacs JD. Seronegative rheumatoid arthritis: pathogenetic and therapeutic aspects. Best Pract Res Clin Rheumatol. 2014;28(4):651-659. doi: 10.1016/j.berh.2014.10.016

74. Sokolova MV, Schett G, Steffen U. Autoantibodies in rheumatoid arthritis: Historical background and novel findings. Clin Rev Allergy Immunol. 2021 Sep 8. doi: 10.1007/s12016-021-08890-1

75. Reed E, Hedström AK, Hansson M, Mathsson-Alm L, Brynedal B, Saevarsdottir S, et al. Presence of autoantibodies in “seronegative” rheumatoid arthritis associates with classical risk factors and high disease activity. Arthritis Res Ther. 2020;22(1):170. doi: 10.1186/s13075-020-02191-2

76. Curran AM, Naik P, Giles JT, Darrah E. PAD enzymes in rheumatoid arthritis: Pathogenic effectors and autoimmune targets. Nat Rev Rheumatol. 2020;16(6):301-315. doi: 10.1038/s41584-020-0409-1

77. Дибров ДА. Новые лабораторные биомаркеры ревматоидного артрита Научно-практическая ревматология. 2021;59(2):201- 207. [Dibrov DA. New laboratory biomarkers of rheumatoid arthritis. Nauchno-Practicheskaya Revmatologia = Rheumatology Science and Practice. 2021;59(2):201-207 (In Russ.)]. doi: 10.47360/1995-4484-2021-201-207

78. Chang MH, Nigrovic PA. Antibody-dependent and -independent mechanisms of inflammatory arthritis. JCI Insight. 2019;4(5):e125278. doi: 10.1172/jci.insight.125278

79. Zhu H, Zhao LJ, Zhou Y, Chen Y. Significance of anti-carbamylated protein antibodies in patients with rheumatoid arthritis-associated intersitial lung disease. Beijing Da Xue Xue Bao Yi Xue Ban. 2019;51(6):1003-1007 (In Chinese). doi: 10.19723/j.issn.1671-167X.2019.06.004

80. Castellanos-Moreira R, Rodríguez-García SC, Gomara MJ, RuizEsquide V, Cuervo A, Casafont-Solé I, et al. Anti-carbamylated proteins antibody repertoire in rheumatoid arthritis: Evidence of a new autoantibody linked to interstitial lung disease. Ann Rheum Dis. 2020;79(5):587-594. doi: 10.1136/annrheumdis-2019-216709

81. Giles JT, Darrah E, Danoff S, Johnson C, Andrade F, Rosen A, et al. Association of cross-reactive antibodies targeting peptidylarginine deiminase 3 and 4 with rheumatoid arthritis-associated interstitial lung disease. PLoS One. 2014;9(6):e98794. doi: 10.1371/journal.pone.0098794

82. Turesson C, Mathsson L, Jacobsson LT, Sturfelt G, Rönnelid J. Antibodies to modified citrullinated vimentin are associated with severe extra-articular manifestations in rheumatoid arthritis. Ann Rheum Dis. 2013;72(12):2047-2048. doi: 10.1136/annrheumdis-2013-203510

83. Darrah E, Giles JT, Davis RL, Naik P, Wang H, Konig MF, et al. Autoantibodies to peptidylarginine deiminase 2 are associated with less severe disease in rheumatoid arthritis. Front Immunol. 2018;9:2696. doi: 10.3389/fimmu.2018.02696

84. Harrold LR, Litman HJ, Connolly SE, Kelly S, Hua W, Alemao E, et al. Effect of anticitrullinated protein antibody status on response to abatacept or antitumor necrosis factor-α therapy in patients with rheumatoid arthritis: A US national observational study. J Rheumatol. 2018;45(1):32-39. doi: 10.3899/jrheum.170007

85. Tavakolpour S, Alesaeidi S, Darvishi M, GhasemiAdl M, DarabiMonadi S, Akhlaghdoust M, et al. A comprehensive review of rituximab therapy in rheumatoid arthritis patients. Clin Rheumatol. 2019;38(11):2977-2994. doi: 10.1007/s10067-019-04699-8

86. Chatzidionysiou K, Lie E, Nasonov E, Lukina G, Hetland ML, Tarp U, et al. Highest clinical effectiveness of rituximab in autoantibody-positive patients with rheumatoid arthritis and in those for whom no more than one previous TNF antagonist has failed: pooled data from 10 European registries. Ann Rheum Dis. 2011;70(9):1575-1580. doi: 10.1136/ard.2010.148759

87. Fabris M, De Vita S, Blasone N, Visentini D, Pezzarini E, Pontarini E, et al. Serum levels of anti-CCP antibodies, anti-MCV antibodies and RF IgA in the follow-up of patients with rheumatoid arthritis treated with rituximab. Auto Immun Highlights. 2010;1(2):87-94. doi: 10.1007/s13317-010-0013-5

88. Lindenberg L, Spengler L, Bang H, Dorner T, Maslyanskiy AL, Lapin SV, et al. Restrictive IgG antibody response against mutated citrullinated vimentin predicts response to rituximab in patients with rheumatoid arthritis. Arthritis Res Ther. 2015;17(1):206. doi: 10.1186/s13075-015-0717-z

89. Kumar R, Piantoni S, Boldini M, Garrafa E, Bazzani C, Fredi M, et al. Anti-carbamylated protein antibodies as a clinical response predictor in rheumatoid arthritis patients treated with abatacept. Clin Exp Rheumatol. 2021;39(1):91-97.

90. Kelkka T, Savola P, Bhattacharya D, Huuhtanen J, Lönnberg T, Kankainen M, et al. Adult-onset anti-citrullinated peptide antibody-negative destructive rheumatoid arthritis is characterized by a disease-specific CD8+ T lymphocyte signature. Front Immunol. 2020;11:578848. doi: 10.3389/fimmu.2020.578848

91. Yang J, Xu H, Shao F. Immunological function of familial Mediterranean fever disease protein Pyrin. Sci China Life Sci. 2014;57(12):1156-1161. doi: 10.1007/s11427-014-4758-3

92. Steinberg MW, Cheung TC, Ware CF. The signaling networks of the herpesvirus entry mediator (TNFRSF14) in immune regulation. Immunol Rev. 2011;244(1):169-187. doi: 10.1111/j.1600-065X.2011.01064.x

93. Giles DA, Zahner S, Krause P, Van Der Gracht E, Riffelmacher T, Morris V, et al. The tumor necrosis factor superfamily members TNFSF14 (LIGHT), lymphotoxin β and lymphotoxin β receptor interact to regulate intestinal inflammation. Front Immunol. 2018;9:2585. doi: 10.3389/fimmu.2018.02585

94. Lu TT, Browning JL. Role of the lymphotoxin/LIGHT system in the development and maintenance of reticular networks and vasculature in lymphoid tissues. Front Immunol. 2014;5:47. doi: 10.3389/fimmu.2014.00047

95. Brunetti G, Faienza MF, Colaianni G, Gigante I, Oranger A, Pignataro P, et al. Impairment of bone remodeling in LIGHT/ TNFSF14-deficient mice. J Bone Miner Res. 2018;33(4):704-719. doi: 10.1002/jbmr.3345

96. Brunetti G, Storlino G, Oranger A, Colaianni G, Faienza MF, Ingravallo G, Di Comite M, et al. LIGHT/TNFSF14 regulates estrogen deficiency-induced bone loss. J Pathol. 2020;250(4):440- 451. doi: 10.1002/path.5385

97. Edwards JR, Sun SG, Locklin R, Shipman CM, Adamopoulos IE, Athanasou NA, et al. LIGHT (TNFSF14), a novel mediator of bone resorption, is elevated in rheumatoid arthritis. Arthritis Rheum. 2006;54(5):1451-1462. doi: 10.1002/art.21821

98. Rabinovich E, Livneh A, Langevitz P, Brezniak N, Shinar E, Pras M, et al. Severe disease in patients with rheumatoid arthritis carrying a mutation in the Mediterranean fever gene. Ann Rheum Dis. 2005;64(7):1009-1014. doi: 10.1136/ard.2004.029447

99. Koca SS, Etem EO, Isik B, Yuce H, Ozgen M, Dag MS, et al. Prevalence and significance of MEFV gene mutations in a cohort of patients with rheumatoid arthritis. Joint Bone Spine. 2010;77(1):32-35. doi: 10.1016/j.jbspin.2009.08.006

100. Inanir A, Yigit S, Karakus N, Tekin S, Rustemoglu A. Association of MEFV gene mutations with rheumatoid factor levels in patients with rheumatoid arthritis. J Investig Med. 2013;61(3):593-596. doi: 10.2310/JIM.0b013e318280a96e

101. Pertsinidou E, Manivel VA, Westerlind H, Klareskog L, Alfredsson L, Mathsson-Alm L, et al. Rheumatoid arthritis autoantibodies and their association with age and sex. Clin Exp Rheumatol. 2021;39(4):879-882.

102. Boeters DM, Mangnus L, Ajeganova S, Lindqvist E, Svensson B, Toes REM, et al. The prevalence of ACPA is lower in rheumatoid arthritis patients with an older age of onset but the composition of the ACPA response appears identical. Arthritis Res Ther. 2017;19(1):115. doi: 10.1186/s13075-017-1324-y

103. Arnold MB, Bykerk VP, Boire G, Haraoui BP, Hitchon C, Thorne C, et al.; CATCH Investigators. Are there differences between young- and older-onset early inflammatory arthritis and do these impact outcomes? An analysis from the CATCH cohort. Rheumatology (Oxford). 2014;53(6):1075-1086. doi: 10.1093/rheumatology/ket449

104. Nilsson J, Andersson MLE, Hafström I, Svensson B, Forslind K, Ajeganova S, et al. Influence of age and sex on disease course and treatment in rheumatoid arthritis. Open Access Rheumatol. 2021;13:123-138. doi: 10.2147/OARRR.S306378

105. Serhal L, Lwin MN, Holroyd C, Edwards CJ. Rheumatoid arthritis in the elderly: Characteristics and treatment considerations. Autoimmun Rev. 2020;19(6):102528. doi: 10.1016/j.autrev.2020.102528

106. Chen DY, Hsieh TY, Chen YM, Hsieh CW, Lan JL, Lin FJ. Proinflammatory cytokine profiles of patients with elderly-onset rheumatoid arthritis: A comparison with younger-onset disease. Gerontology. 2009;55(3):250-258. doi: 10.1159/000164393

107. Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO 3rd, et al. 2010 rheumatoid arthritis classification criteria: An American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 2010;62(9):2569-2581. doi: 10.1002/art.27584

108. Boeters DM, Gaujoux-Viala C, Constantin A, van der Helmvan Mil AHM. The 2010 ACR/EULAR criteria are not sufficiently accurate in the early identification of autoantibody-negative rheumatoid arthritis: Results from the Leiden-EAC and ESPOIR cohorts. Semin Arthritis Rheum. 2017;47(2):170-174. doi: 10.1016/j.semarthrit.2017.04.009

109. Burgers LE, van Steenbergen HW, Ten Brinck RM, Huizinga TW, van der Helm-van Mil AH. Differences in the symptomatic phase preceding ACPA-positive and ACPA-negative RA: A longitudinal study in arthralgia during progression to clinical arthritis. Ann Rheum Dis. 2017;76(10):1751-1754. doi: 10.1136/annrheumdis-2017-211325

110. Farragher TM, Lunt M, Plant D, Bunn DK, Barton A, Symmons DP. Benefit of early treatment in inflammatory polyarthritis patients with anti-cyclic citrullinated peptide antibodies versus those without antibodies. Arthritis Care Res (Hoboken). 2010;62(5):664-675. doi: 10.1002/acr.20207

111. Mouterde G, Rincheval N, Lukas C, Daien C, Saraux A, Dieudé P, et al. Outcome of patients with early arthritis without rheumatoid factor and ACPA and predictors of rheumatoid arthritis in the ESPOIR cohort. Arthritis Res Ther. 2019;21(1):140. doi: 10.1186/s13075-019-1909-8

112. Katchamart W, Koolvisoot A, Aromdee E, Chiowchanwesawakit P, Muengchan C. Associations of rheumatoid factor and anti-citrullinated peptide antibody with disease progression and treatment outcomes in patients with rheumatoid arthritis. Rheumatol Int. 2015;35(10):1693-1699. doi: 10.1007/s00296-015-3271-8

113. del Val del Amo N, Ibanez Bosch R, Fito Manteca C, Gutierrez Polo R, Loza Cortina E. Anti-cyclic citrullinated peptide antibody in rheumatoid arthritis: relation with disease aggressiveness. Clin Exp Rheumatol. 2006;24(3):281-286.

114. van der Helm-van Mil AH, Verpoort KN, Breedveld FC, Toes RE, Huizinga TW. Antibodies to citrullinated proteins and differences in clinical progression of rheumatoid arthritis. Arthritis Res Ther. 2005;7(5):R949-R958. doi: 10.1186/ar1767

115. Ursum J, Bos WH, van Dillen N, Dijkmans BA, van Schaardenburg D. Levels of anti-citrullinated protein antibodies and IgM rheumatoid factor are not associated with outcome in early arthritis patients: A cohort study. Arthritis Res Ther. 2010;12(1):R8. doi: 10.1186/ar2907

116. Bergstra SA, Couto MC, Govind N, Chopra A, Salomon Escoto K, Murphy E, et al. Impact of the combined presence of erosions and ACPA on rheumatoid arthritis disease activity over time: Results from the METEOR registry. RMD Open. 2019;5(2): e000969. doi: 10.1136/rmdopen-2019-000969

117. van den Broek M, Dirven L, Klarenbeek NB, Molenaar TH, Han KH, Kerstens PJ, et al. The association of treatment response and joint damage with ACPA-status in recent-onset RA: A subanalysis of the 8-year follow-up of the BeSt study. Ann Rheum Dis. 2012;71(2):245-248. doi: 10.1136/annrheumdis-2011-200379

118. Seegobin SD, Ma MH, Dahanayake C, Cope AP, Scott DL, Lewis CM, et al. ACPA-positive and ACPA-negative rheumatoid arthritis differ in their requirements for combination DMARDs and corticosteroids: Secondary analysis of a randomized controlled trial. Arthritis Res Ther. 2014;16(1):R13. doi: 10.1186/ar4439

119. Shpatz R, Braun-Moscovici Y, Balbir-Gurman A. ACPA antibodies titer at the time of rheumatoid arthritis diagnosis is not associated with disease severity. Isr Med Assoc J. 2021;23(10):646-650.

120. Boer AC, Boonen A, van der Helm-van Mil AHM. Is anti-citrullinated protein antibody-positive rheumatoid arthritis still a more severe disease than anti-citrullinated protein antibody-negative rheumatoid arthritis? A longitudinal cohort study in rheumatoid arthritis patients diagnosed from 2000 onward. Arthritis Care Res (Hoboken). 2018;70(7):987-996. doi: 10.1002/acr.23497

121. Aletaha D, Alasti F, Smolen JS. Rheumatoid factor, not antibodies against citrullinated proteins, is associated with baseline disease activity in rheumatoid arthritis clinical trials. Arthritis Res Ther. 2015;17(1):229. doi: 10.1186/s13075-015-0736-9

122. Barra L, Pope JE, Orav JE, Boire G, Haraoui B, Hitchon C, et al.; CATCH Investigators. Prognosis of seronegative patients in a large prospective cohort of patients with early inflammatory arthritis. J Rheumatol. 2014;41(12):2361-2369. doi: 10.3899/jrheum.140082

123. Nordberg LB, Lillegraven S, Lie E, Aga AB, Olsen IC, Hammer HB, et al.; ARCTIC working group. Patients with seronegative RA have more inflammatory activity compared with patients with seropositive RA in an inception cohort of DMARD-naïve patients classified according to the 2010 ACR/ EULAR criteria. Ann Rheum Dis. 2017;76(2):341-345. doi: 10.1136/annrheumdis-2015-208873

124. Choi S, Lee KH. Clinical management of seronegative and seropositive rheumatoid arthritis: A comparative study. PLoS One. 2018;13(4):e0195550. doi: 10.1371/journal.pone.0195550

125. Jonsson MK, Hensvold AH, Hansson M, Aga AB, Sexton J, Mathsson-Alm L, et al. The role of anti-citrullinated protein antibody reactivities in an inception cohort of patients with rheumatoid arthritis receiving treat-to-target therapy. Arthritis Res Ther. 2018;20(1):146. doi: 10.1186/s13075-018-1635-7

126. Reid AB, Wiese M, McWilliams L, Metcalf R, Hall C, Lee A, et al. Repeat serological testing for anti-citrullinated peptide antibody after commencement of therapy is not helpful in patients with seronegative rheumatoid arthritis. Intern Med J. 2020;50(7): 818-822. doi: 10.1111/imj.14463

127. Barra L, Pope J, Bessette L, Haraoui B, Bykerk V. Lack of seroconversion of rheumatoid factor and anti-cyclic citrullinated peptide in patients with early inflammatory arthritis: A systematic literature review. Rheumatology (Oxford). 2011;50(2):311-316. doi: 10.1093/rheumatology/keq190

128. Shu J, Bykerk VP, Boire G, Haraoui B, Hitchon C, Thorne JC, et al.; CATCH Investigators. Missing anticitrullinated protein antibody does not affect short-term outcomes in early inflammatory arthritis: From the Canadian early arthritis cohort. J Rheumatol. 2015;42(11):2023-2028. doi: 10.3899/jrheum.150260

129. Gadeholt O, Hausotter K, Eberle H, Klink T, Pfeil A. Differing X-ray patterns in seronegative and seropositive rheumatoid arthritis. Clin Rheumatol. 2019;38(9):2403-2410. doi: 10.1007/s10067-019-04602-5

130. Grosse J, Allado E, Roux C, Pierreisnard A, Couderc M, ClercUrmes I, et al. ACPA-positive versus ACPA-negative rheumatoid arthritis: Two distinct erosive disease entities on radiography and ultrasonography. Rheumatol Int. 2020;40(4):615-624. doi: 10.1007/s00296-019-04492-5

131. Joo YB, Park YJ, Park KS, Kim KJ. Association of cumulative anti-cyclic citrullinated protein antibodies with radiographic progression in patients with rheumatoid arthritis. Clin Rheumatol. 2019;38(9):2423-2432. doi: 10.1007/s10067-019-04554-w

132. Forslind K, Ahlmén M, Eberhardt K, Hafström I, Svensson B; BARFOT Study Group. Prediction of radiological outcome in early rheumatoid arthritis in clinical practice: Role of antibodies to citrullinated peptides (anti-CCP). Ann Rheum Dis. 2004;63(9):1090-1095. doi: 10.1136/ard.2003.014233

133. Mustila A, Korpela M, Haapala AM, Kautiainen H, Laasonen L, Möttönen T, et al. Anti-citrullinated peptide antibodies and the progression of radiographic joint erosions in patients with early rheumatoid arthritis treated with FIN-RACo combination and single disease-modifying antirheumatic drug strategies. Clin Exp Rheumatol. 2011;29(3):500-505.

134. de Punder YM, Hendrikx J, den Broeder AA, Valls Pascual E, van Riel PL, Fransen J. Should we redefine treatment targets in rheumatoid arthritis? Low disease activity is sufficiently strict for patients who are anticitrullinated protein antibody-negative. J Rheumatol. 2013;40(8):1268-1274. doi: 10.3899/jrheum.121438

135. Kurowska W, Slowinska I, Krogulec Z, Syrowka P, Maslinski W. Antibodies to citrullinated proteins (ACPA) associate with markers of osteoclast activation and bone destruction in the bone marrow of patients with rheumatoid arthritis. J Clin Med. 2021;10(8): 1778. doi: 10.3390/jcm10081778

136. Park EJ, Jeong W, Kim J. Prognostic factors for radiographic progression in patients with seronegative rheumatoid arthritis. J Pers Med. 2021;11(3):184. doi: 10.3390/jpm11030184

137. Lukas C, Mary J, Debandt M, Daïen C, Morel J, Cantagrel A, et al. Predictors of good response to conventional synthetic DMARDs in early seronegative rheumatoid arthritis: Data from the ESPOIR cohort. Arthritis Res Ther. 2019;21(1):243. doi: 10.1186/s13075-019-2020-x

138. Nordberg LB, Lillegraven S, Aga AB, Sexton J, Olsen IC, Lie E, et al. Comparing the disease course of patients with seronegative and seropositive rheumatoid arthritis fulfilling the 2010 ACR/ EULAR classification criteria in a treat-to-target setting: 2-year data from the ARCTIC trial. RMD Open. 2018;4(2):e000752. doi: 10.1136/rmdopen-2018-000752

139. Joshua F, Lassere M, Bruyn GA, Szkudlarek M, Naredo E, Schmidt WA, et al. Summary findings of a systematic review of the ultrasound assessment of synovitis. J Rheumatol. 2007;34(4):839-847.

140. Szkudlarek M, Terslev L, Wakefield RJ, Backhaus M, Balint PV, Bruyn GA, et al. Summary findings of a systematic literature review of the ultrasound assessment of bone erosions in rheumatoid arthritis. J Rheumatol. 2016;43(1):12-21. doi: 10.3899/jrheum.141416

141. Filippucci E, Cipolletta E, Mashadi Mirza R, Carotti M, Giovagnoni A, Salaffi F, et al. Ultrasound imaging in rheumatoid arthritis. Radiol Med. 2019;124(11):1087-1100. doi: 10.1007/s11547-019-01002-2

142. Woodworth TG, Morgacheva O, Pimienta OL, Troum OM, Ranganath VK, Furst DE. Examining the validity of the rheumatoid arthritis magnetic resonance imaging score according to the OMERACT filter – A systematic literature review. Rheumatology (Oxford). 2017;56(7):1177-1188. doi: 10.1093/rheumatology/kew445

143. Sudoł-Szopińska I, Jans L, Teh J. Rheumatoid arthritis: What do MRI and ultrasound show. J Ultrason. 2017;17(68):5-16. doi: 10.15557/JoU.2017.0001

144. Narváez JA, Narváez J, De Lama E, De Albert M. MR imaging of early rheumatoid arthritis. Radiographics. 2010;30(1):143-163. doi: 10.1148/rg.301095089

145. Ji L, Deng X, Geng Y, Song Z, Zhang Z. The additional benefit of ultrasonography to 2010 ACR/EULAR classification criteria when diagnosing rheumatoid arthritis in the absence of anti-cyclic citrullinated peptide antibodies. Clin Rheumatol. 2017;36(2):261- 267. doi: 10.1007/s10067-016-3465-9

146. Minowa K, Ogasawara M, Murayama G, Gorai M, Yamada Y, Nemoto T, et al. Predictive grade of ultrasound synovitis for diagnosing rheumatoid arthritis in clinical practice and the possible difference between patients with and without seropositivity. Mod Rheumatol. 2016;26(2):188-193. doi: 10.3109/14397595.2015.1069457

147. Gadeholt O, Feuchtenberger M, Wech T, Schwaneck EC. PowerDoppler perfusion phenotype in RA patients is dependent on anti-citrullinated peptide antibody status, not on rheumatoid factor. Rheumatol Int. 2019;39(6):1019-1025. doi: 10.1007/s00296-019-04256-1

148. Tang H, Qu X, Yue B. Diagnostic test accuracy of magnetic resonance imaging and ultrasound for detecting bone erosion in patients with rheumatoid arthritis. Clin Rheumatol. 2020;39(4):1283-1293. doi: 10.1007/s10067-019-04825-6

149. van Steenbergen HW, van Nies JA, Huizinga TW, Reijnierse M, van der Helm-van Mil AH. Subclinical inflammation on MRI of hand and foot of anticitrullinated peptide antibody-negative arthralgia patients at risk for rheumatoid arthritis. Arthritis Res Ther. 2014;16(2):R92. doi: 10.1186/ar4536

150. Ji L, Li G, Xu Y, Zhou W, Zhang Z. Early prediction of rheumatoid arthritis by magnetic resonance imaging in the absence of anti-cyclic citrullinated peptide antibodies and radiographic erosions in undifferentiated inflammatory arthritis patients: A prospective study. Int J Rheum Dis. 2015;18(8):859-865. doi: 10.1111/1756-185X.12420

151. Matthijssen XME, Wouters F, Sidhu N, Niemantsverdriet E, van der Helm-van Mil A. Tenosynovitis has a high sensitivity for early ACPA-positive and ACPA-negative RA: A large crosssectional MRI study. Ann Rheum Dis. 2021;80(8):974-980. doi: 10.1136/annrheumdis-2020-219302

152. Nieuwenhuis WP, van Steenbergen HW, Stomp W, Stijnen T, Huizinga TW, Bloem JL, et al. The course of bone marrow edema in early undifferentiated arthritis and rheumatoid arthritis: A longitudinal magnetic resonance imaging study at bone level. Arthritis Rheumatol. 2016;68(5):1080-1088. doi: 10.1002/art.39550

153. Boeters DM, Nieuwenhuis WP, Verheul MK, Newsum EC, Reijnierse M, Toes RE, et al. MRI-detected osteitis is not associated with the presence or level of ACPA alone, but with the combined presence of ACPA and RF. Arthritis Res Ther. 2016;18:179. doi: 10.1186/s13075-016-1076-0

154. Matthijssen XME, Niemantsverdriet E, Le Cessie S, van der Helmvan Mil AHM. Differing time-orders of inflammation decrease between ACPA subsets in RA patients suggest differences in underlying inflammatory pathways. Rheumatology (Oxford). 2021;60(6): 2969-2975. doi: 10.1093/rheumatology/keaa658

155. Santos-Moreno P, Alvis-Zakzuk NJ, Castillo E, Villarreal L, Pineda C, Sandoval H, et al. Quantifying potential cost-savings through an alternative imaging-based diagnostic process in presumptive seronegative rheumatoid arthritis. Clinicoecon Outcomes Res. 2021;13:519-529. doi: 10.2147/CEOR.S302404

156. Ferraccioli G, Tolusso B, Fedele AL, Gremese E. Do we need to apply a T2T strategy even in ACPA-negative early rheumatoid arthritis? Yes. RMD Open. 2016;2(1):e000263. doi: 10.1136/rmdopen-2016-000263

157. Smolen JS, Landewé R, Bijlsma J, Burmester G, Chatzidionysiou K, Dougados M, et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2016 update. Ann Rheum Dis. 2017;76(6):960-977. doi: 10.1136/annrheumdis-2016-210715

158. Singh JA, Saag KG, Bridges SL Jr, Akl EA, Bannuru RR, Sullivan MC, et al. 2015 American College of Rheumatology guideline for the treatment of rheumatoid arthritis. Arthritis Rheumatol. 2016;68(1):1-26. doi: 10.1002/art.39480

159. Luurssen-Masurel N, van Mulligen E, Weel-Koenders AEAM, Hazes JMW, de Jong PHP; tREACH group investigators. The susceptibility of attaining and maintaining DMARD-free remission in different (rheumatoid) arthritis phenotypes. Rheumatology (Oxford). 2021 Aug 5:keab631. doi: 10.1093/rheumatology/keab631

160. Balsa A, Del Amo J, Blanco F, Caliz R, Silva L, Sanmarti R, et al. Prediction of functional impairment and remission in rheumatoid arthritis patients by biochemical variables and genetic polymorphisms. Rheumatology (Oxford). 2010;49(3):458-466. doi: 10.1093/rheumatology/kep380

161. van der Woude D, Young A, Jayakumar K, Mertens BJ, Toes RE, van der Heijde D, et al. Prevalence of and predictive factors for sustained disease-modifying antirheumatic drug-free remission in rheumatoid arthritis: Results from two large early arthritis cohorts. Arthritis Rheum. 2009;60(8):2262-2271. doi: 10.1002/art.24661

162. Verstappen M, van Steenbergen HW, de Jong PHP, van der Helmvan Mil AHM. Unraveling heterogeneity within ACPA-negative rheumatoid arthritis: The subgroup of patients with a strong clinical and serological response to initiation of DMARD treatment favor disease resolution. Arthritis Res Ther. 2022;24(1):4. doi: 10.1186/s13075-021-02671-z

163. Matthijssen XME, Niemantsverdriet E, Huizinga TWJ, van der Helm-van Mil AHM. Enhanced treatment strategies and distinct disease outcomes among autoantibody-positive and -negative rheumatoid arthritis patients over 25 years: A longitudinal cohort study in the Netherlands. PLoS Med. 2020;17(9):e1003296. doi: 10.1371/journal.pmed.1003296

164. Luurssen-Masurel N, Weel A, Hazes J, de Jong H. Towards stratified treatment of rheumatoid arthritis. Int J Clin Rheumatol. 2020;15(3):73-82.

165. Akdemir G, Markusse IM, Dirven L, Riyazi N, Steup-Beekman GM, Kerstens P, et al. Effectiveness of four dynamic treatment strategies in patients with anticitrullinated protein antibodynegative rheumatoid arthritis: A randomised trial. RMD Open. 2016;2(1):e000143. doi: 10.1136/rmdopen-2015-000143

166. Wevers-de Boer K, Visser K, Heimans L, Ronday HK, Molenaar E, Groenendael JH, et al. Remission induction therapy with methotrexate and prednisone in patients with early rheumatoid and undifferentiated arthritis (the IMPROVED study). Ann Rheum Dis. 2012;71(9):1472-1477. doi: 10.1136/annrheumdis-2011-200736

167. Park DJ, Choi SJ, Shin K, Kim HA, Park YB, Kang SW, et al. Switching profiles in a population-based cohort of rheumatoid arthritis receiving biologic therapy: Results from the KOBIO registry. Clin Rheumatol. 2017;36(5):1013-1022. doi: 10.1007/s10067-017-3584-y

168. Law-Wan J, Sparfel MA, Derolez S, Azzopardi N, Goupille P, Detert J, et al. Predictors of response to TNF inhibitors in rheumatoid arthritis: An individual patient data pooled analysis of randomised controlled trials. RMD Open. 2021;7(3):e001882. doi: 10.1136/rmdopen-2021-001882

169. Lv Q, Yin Y, Li X, Shan G, Wu X, Liang D, et al. The status of rheumatoid factor and anti-cyclic citrullinated peptide antibody are not associated with the effect of anti-TNFα agent treatment in patients with rheumatoid arthritis: A meta-analysis. PLoS One. 2014;9(2):e89442. doi: 10.1371/journal.pone.0089442

170. Lin CT, Huang WN, Tsai WC, Chen JP, Hung WT, Hsieh TY, et al. Predictors of drug survival for biologic and targeted synthetic DMARDs in rheumatoid arthritis: Analysis from the TRA Clinical Electronic Registry. PLoS One. 2021;16(4):e0250877. doi: 10.1371/journal.pone.0250877

171. Courvoisier DS, Chatzidionysiou K, Mongin D, Lauper K, Mariette X, Morel J, et al. The impact of seropositivity on the effectiveness of biologic anti-rheumatic agents: Results from a collaboration of 16 registries. Rheumatology (Oxford). 2021;60(2):820- 828. doi: 10.1093/rheumatology/keaa393

172. Collins JE, Johansson FD, Gale S, Kim S, Shrestha S, Sontag D, et al. Predicting remission among patients with rheumatoid arthritis starting tocilizumab monotherapy: Model derivation and remission score development. ACR Open Rheumatol. 2020;2(2):65-73. doi: 10.1002/acr2.11101

173. Pers YM, Fortunet C, Constant E, Lambert J, Godfrin-Valnet M, De Jong A, et al. Predictors of response and remission in a large cohort of rheumatoid arthritis patients treated with tocilizumab in clinical practice. Rheumatology (Oxford). 2014;53(1):76-84. doi: 10.1093/rheumatology/ket301

174. Forsblad-d’Elia H, Bengtsson K, Kristensen LE, Jacobsson LT. Drug adherence, response and predictors thereof for tocilizumab in patients with rheumatoid arthritis: Results from the Swedish biologics register. Rheumatology (Oxford). 2015;54(7):1186-1193. doi: 10.1093/rheumatology/keu455

175. Maneiro RJ, Salgado E, Carmona L, Gomez-Reino JJ. Rheumatoid factor as predictor of response to abatacept, rituximab and tocilizumab in rheumatoid arthritis: Systematic review and meta-analysis. Semin Arthritis Rheum. 2013;43(1):9-17. doi: 10.1016/j.semarthrit.2012.11.007

176. Morel J, Constantin A, Baron G, Dernis E, Flipo RM, Rist S, et al. Risk factors of serious infections in patients with rheumatoid arthritis treated with tocilizumab in the French Registry REGATE. Rheumatology (Oxford). 2017;56(10):1746-1754. doi: 10.1093/rheumatology/kex238

177. Migliore A, Pompilio G, Integlia D, Zhuo J, Alemao E. Cycling of tumor necrosis factor inhibitors versus switching to different mechanism of action therapy in rheumatoid arthritis patients with inadequate response to tumor necrosis factor inhibitors: A Bayesian network meta-analysis. Ther Adv Musculoskelet Dis. 2021;13:1759720X211002682. doi: 10.1177/1759720X211002682

178. Lee YH, Bae SC. Comparative efficacy and safety of tocilizumab, rituximab, abatacept and tofacitinib in patients with active rheumatoid arthritis that inadequately responds to tumor necrosis factor inhibitors: A Bayesian network meta-analysis of randomized controlled trials. Int J Rheum Dis. 2016;19(11):1103-1111. doi: 10.1111/1756-185X.12822

179. Bogas P, Plasencia-Rodriguez C, Navarro-Compán V, Tornero C, Novella-Navarro M, Nuño L, et al. Comparison of long-term efficacy between biological agents following tumor necrosis factor inhibitor failure in patients with rheumatoid arthritis: A prospective cohort study. Ther Adv Musculoskelet Dis. 2021;13:1759720X211060910. doi: 10.1177/1759720X211060910

180. Gottenberg JE, Brocq O, Perdriger A, Lassoued S, Berthelot JM, Wendling D, et al. Non-TNF-targeted biologic vs a second antiTNF drug to treat rheumatoid arthritis in patients with insufficient response to a first anti-TNF drug: A randomized clinical trial. JAMA. 2016;316(11):1172-1180. doi: 10.1001/jama.2016.13512

181. Karpes Matusevich AR, Lai LS, Chan W, Swint JM, Cantor SB, Suarez-Almazor ME, et al. Cost-utility analysis of treatment options after initial tumor necrosis factor inhibitor therapy discontinuation in patients with rheumatoid arthritis. J Manag Care Spec Pharm. 2021;27(1):73-83. doi: 10.18553/jmcp.2021.27.1.073

182. Sullivan SD, Alfonso-Cristancho R, Carlson J, Mallya U, Ringold S. Economic consequences of sequencing biologics in rheumatoid arthritis: A systematic review. J Med Econ. 2013;16(3):391-396. doi: 10.3111/13696998.2013.763812

183. Santos-Faria D, Tavares-Costa J, Eusébio M, Leite Silva J, Ramos Rodrigues J, Sousa-Neves J, et al. Tocilizumab and rituximab have similar effectiveness and are both superior to a second tumour necrosis factor inhibitor in rheumatoid arthritis patients who discontinued a first TNF inhibitor. Acta Reumatol Port. 2019;44(2):103-113.

184. Godeau D, Petit A, Richard I, Roquelaure Y, Descatha A. Return-to-work, disabilities and occupational health in the age of COVID-19. Scand J Work Environ Health. 2021;47(5):408-409. doi: 10.5271/sjweh.3960

185. Насонов ЕЛ, Лила АМ. Ингибиторы Янус-киназ при иммуновоспалительных ревматических заболеваниях: новые возможности и перспективы. Научно-практическая ревматология. 2019;57(1):8-16. doi: 10.14412/1995-4484-2019-8-16

186. Weng C, Xue L, Wang Q, Lu W, Xu J, Liu Z. Comparative efficacy and safety of Janus kinase inhibitors and biological diseasemodifying antirheumatic drugs in rheumatoid arthritis: A systematic review and network meta-analysis. Ther Adv Musculoskelet Dis. 2021;13:1759720X21999564. doi: 10.1177/1759720X21999564

187. Lee YH, Song GG. Relative efficacy and safety of tofacitinib, baricitinib, upadacitinib, and filgotinib in comparison to adalimumab in patients with active rheumatoid arthritis. Z Rheumatol. 2020;79(8):785-796. doi: 10.1007/s00393-020-00750-1

188. Vieira MC, Zwillich SH, Jansen JP, Smiechowski B, Spurden D, Wallenstein GV. Tofacitinib versus biologic treatments in patients with active rheumatoid arthritis who have had an inadequate response to tumor necrosis factor inhibitors: Results from a network meta-analysis. Clin Ther. 2016;38(12):2628-2641.e5. doi: 10.1016/j.clinthera.2016.11.004

189. Singh JA, Hossain A, Tanjong Ghogomu E, Mudano AS, Maxwell LJ, Buchbinder R, et al. Biologics or tofacitinib for people with rheumatoid arthritis unsuccessfully treated with biologics: A systematic review and network meta-analysis. Cochrane Database Syst Rev. 2017;3(3):CD012591. doi: 10.1002/14651858.CD012591

190. Насонов ЕЛ. Новые подходы к фармакотерапии ревматоидного артрита: тофацитиниб. Научно-практическая ревматология. 2014;52(2):209-221. doi: 10.14412/1995-4484-2014-209-221

191. Dhillon S. Tofacitinib: A review in rheumatoid arthritis. Drugs. 2017;77(18):1987-2001. doi: 10.1007/s40265-017-0835-9

192. Hodge JA, Kawabata TT, Krishnaswami S, Clark JD, Telliez JB, Dowty ME, et al. The mechanism of action of tofacitinib – An oral Janus kinase inhibitor for the treatment of rheumatoid arthritis. Clin Exp Rheumatol. 2016;34(2):318-328.

193. Harrold LR, Connolly SE, Wittstock K, Zhuo J, Kelly S, Lehman T, et al. Baseline anti-citrullinated protein antibody status and response to abatacept or non-TNFi biologic/targeted-synthetic DMARDs: US observational study of patients with RA. Rheumatol Ther. 2022;9(2):465-480. doi: 10.1007/s40744-021-00401-0

194. Cook AD, Louis C, Robinson MJ, Saleh R, Sleeman MA, Hamilton JA. Granulocyte macrophage colony-stimulating factor receptor α expression and its targeting in antigen-induced arthritis and inflammation. Arthritis Res Ther. 2016;18(1):287. doi: 10.1186/s13075-016-1185-9

195. Crotti C, Biggioggero M, Becciolini A, Agape E, Favalli EG. Mavrilimumab: A unique insight and update on the current status in the treatment of rheumatoid arthritis. Expert Opin Investig Drugs. 2019;28(7):573-581. doi: 10.1080/13543784.2019.1631795

196. Guo X, Higgs BW, Bay-Jensen AC, Wu Y, Karsdal MA, Kuziora M, et al. Blockade of GM-CSF pathway induced sustained suppression of myeloid and T cell activities in rheumatoid arthritis. Rheumatology (Oxford). 2018;57(1):175-184. doi: 10.1093/rheumatology/kex383

197. Grant E, Schwickart M, Godwood A, Moate R, Song E, Chavez C, et al. Lack of autoantibodies to peptidyl arginine deiminase 4 predict increased efficacy of mavrilimumab in rheumatoid arthritis. Arthritis Rheumatol. 2016;68(Suppl 10). URL: https://acrabstracts.org/abstract/lack-of-autoantibodies-to-peptidyl-arginine-deiminase-4-predict-increased-efficacy-of-mavrilimumab-in-rheumatoid-arthritis (Accessed: 14th June 2022).


Рецензия

Для цитирования:


Дибров Д.А. АЦЦП-негативный ревматоидный артрит — клинические и иммунологические особенности. Научно-практическая ревматология. 2022;60(3):314-326. https://doi.org/10.47360/1995-4484-2022-314-326

For citation:


Dibrov D.A. ACCP-negative rheumatoid arthritis – clinical and immunological features. Rheumatology Science and Practice. 2022;60(3):314-326. (In Russ.) https://doi.org/10.47360/1995-4484-2022-314-326

Просмотров: 85


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1995-4484 (Print)
ISSN 1995-4492 (Online)