Маркеры воспаления при ревматических заболеваниях
https://doi.org/10.47360/1995-4484-2022-561-569
Аннотация
Иммуновоспалительные ревматические заболевания (ИВРЗ) – это большая группа патологических состояний, в основе которых лежит нарушение иммунологической толерантности к собственным тканям, ведущее к воспалению и необратимым органным повреждениям. Лабораторная диагностика ИВРЗ включает определение широкого спектра биомаркеров на клеточном и гуморальном уровнях (аутоантител, белков острой фазы воспаления, цитокинов, маркеров повреждения эндотелия, компонентов системы комплемента, иммуноглобулинов, криоглобулинов, субпопуляций лимфоцитов, показателей костного метаболизма, маркеров апоптоза, генетических маркеров и др.). Одним из ведущих аспектов лабораторной диагностики ИВРЗ является исследование уровня маркеров воспаления в крови (скорости оседания эритроцитов, С-реактивного белка (СРБ), сывороточного амилоидного белка А (САА), ферритина, прокальцитонина, аполипопротеина АI, кальпротектина и др.). Анализ маркеров воспаления позволяет оценить активность болезни, характер прогрессирования и прогноз хронического воспалительного процесса, а также эффективность проводимой терапии. В обзоре представлены последние данные о роли таких наиболее часто изучаемых маркеров воспаления, как СРБ, САА и ферритин.
Ключевые слова
Об авторе
А. С. АвдееваРоссия
115522, Москва, Каширское шоссе, 34а
Список литературы
1. McGonagle D, McDermott MF. A proposed classification of the immunological diseases. PLoS Med. 2006;3:e297. doi: 10.1371/journal.pmed.0030297
2. Насонов ЕЛ. Роль интерлейкина 1 в развитии заболеваний человека. Научно-практическая ревматология. 2018;56(Прил 4): 19-27. doi: 10.14412/1995-4484-2018-19-27
3. Насонов ЕЛ, Александрова ЕН. Современные стандарты лабораторной диагностики ревматических заболеваний: клинические рекомендации. М.:ЗАО БиоХимМак;2006.
4. Wiik AS, Gordon TP, Kavanaugh AF, Lahita RG, Reeves W, van Venrooij WJ, et al.; IUIS/WHO/AF/CDC Committee for the Standardization of Autoantibodies in Rheumatic and Related Diseases. Cutting edge diagnostics in rheumatology: The role of patients, clinicians, and laboratory scientists in optimizing the use of autoimmune serology. Arthritis Rheum. 2004;51(2): 291-298. doi: 10.1002/art.20229
5. Illei GG, Tackey E, Lapteva L, Lipsky PE. Biomarkers in systemic lupus erythematosus. I. General overview of biomarkers and their applicability. Arthritis Rheum. 2004;50(6):1709-1720. doi: 10.1002/art.20344
6. Illei GG, Tackey E, Lapteva L, Lipsky PE. Biomarkers in systemic lupus erythematosus: II. Markers of disease activity. Arthritis Rheum. 2004;50(7):2048-2065. doi: 10.1002/art.20345
7. Dayer E, Dayer JM, Roux-Lombard P. Primer: The practical use of biological markers of rheumatic and systemic inflammatory diseases. Nat Clin Pract Rheumatol. 2007;3(9):512-520. doi: 10.1038/ncprheum0572
8. Насонов ЕЛ, Насонова ВА (ред.). Ревматология: Национальное руководство. М.:ГЭОТАР-Медиа;2008. [Nasonov EL, Nasonova VA (eds). Rheumatology: National guidelines. Moscow:GEOTAR-Media;2008 (In Russ.)].
9. Ansar W, Ghosh S. C-reactive protein and the biology of disease. Immunol Res. 2013;56:131-142. doi: 10.1007/s12026-013-8384-0
10. Du Clos TW, Mold C. C-reactive protein. Immunol Res. – 2004;30(3):261–77. doi: 10.1385/IR:30:3:261
11. Newling M, Sritharan L, van der Ham AJ, Hoepel W, Fiechter RH, de Boer L, et al. C-reactive protein promotes inflammation through FcγR-induced glycolytic reprogramming of human macrophages. J Immunol. 2019;203(1):225-235. doi: 10.4049/jimmunol.1900172
12. Lu J, Marnell LL, Marjon KD, Mold C, Du Clos TW, Sun PD. Structural recognition and functional activation of FcgammaR by innate pentraxins. Nature. 2008;456(7224):989-992. doi: 10.1038/nature07468
13. Castell JV, Gómez-Lechón MJ, David M, Andus T, Geiger T, Trullenque R, et al. Interleukin-6 is the major regulator of acute phase protein synthesis in adult human hepatocytes. FEBS Lett. 1989;242(2):237-239. doi: 10.1016/0014-5793(89)80476-4
14. Choy E, Rose-John S. Interleukin-6 as a multifunctional regulator: Inflammation, immune response, and fibrosis. J Scleroderma Relat Disord. 2017;2:1-5. doi: 10.5301/jsrd.5000265
15. Sproston NR, Ashworth JJ. Role of C-reactive protein at sites of inflammation and infection. Front Immunol. 2018;9:754. doi: 10.3389/fimmu.2018.00754
16. Thiele JR, Zeller J, Bannasch H, Stark GB, Peter K, Eisenhardt SU. Targeting C-reactive protein in inflammatory disease by preventing conformational changes. Mediators Inflamm. 2015;2015:372432. doi: 10.1155/2015/372432
17. McFadyen JD, Kiefer J, Braig D, Loseff-Silver J, Potempa LA, Eisenhardt SU, et al. Dissociation of C-reactive protein localizes and amplifies inflammation: Evidence for a direct biological role of C-reactive protein and its conformational changes. Front Immunol. 2018;9:1351. doi: 10.3389/fimmu.2018.01351
18. Cho IJ, Choi KH, Oh CH, Hwang YC, Jeong IK, Ahn KJ, et al. Effects of C-reactive protein on bone cells. Life Sci. 2016;145:1-8. doi: 10.1016/j.lfs.2015.12.021
19. Jia ZK, Li HY, Liang YL, Potempa LA, Ji SR, Wu Y. Monomeric C-reactive protein binds and neutralizes receptor activator of NF-κB ligand-induced osteoclast differentiation. Front Immunol. 2018;9:234. doi: 10.3389/fimmu.2018.00234
20. Насонов ЕЛ, Чичасова НВ, Имаметдинова ГР. Методы оценки поражения суставов, активности заболевания и функционального состояния больных ревматоидным артритом: методическое пособие для врачей. М.;2001.
21. Ally MM, Hodkinson B, Meyer PW, Musenge E, Tikly M, Anderson R. Serum matrix metalloproteinase-3 in comparison with acute phase proteins as a marker of disease activity and radiographic damage in early rheumatoid arthritis. Mediators Inflamm. 2013;2013:183653. doi: 10.1155/2013/183653
22. Vanier A, Smolen JS, Allaart CF, Van Vollenhoven R, Verschueren P, Vastesaeger N, et al. An updated matrix to predict rapid radio graphic progression of early rheumatoid arthritis patients: Pooled analyses from several databases. Rheumatology (Oxford). 2020;59(8):1842-1852. doi: 10.1093/rheumatology/kez542
23. Авдеева АС, Панасюк ЕЮ, Александрова ЕН, Насонов ЕЛ. Оценка клинической эффективности терапии тоцилизумабом с использованием индексов DAS 28, SDAI, CDAI и новых критериев ремиссии EULAR/ACR 2011 у больных ревматоидным артритом. Научно-практическая ревматология. 2012;50(2):20-24. doi: 10.14412/1995-4484-2012-1268
24. Agca R, Hopman LHGA, Laan KJC, van Halm VP, Peters MJL, Smulders YM, et al. Cardiovascular event risk in rheumatoid arthritis compared with type 2 diabetes: A 15-year longitudinal study. J Rheumatol. 2020;47(3):316-324. doi: 10.3899/jrheum.180726
25. Avina-Zubieta JA, Thomas J, Sadatsafavi M, Lehman AJ, Lacaille D. Risk of incident cardiovascular events in patients with rheumatoid arthritis: A meta-analysis of observational studies. Ann Rheum Dis. 2012;71(9):1524-1529. doi: 10.1136/annrheumdis2011-200726
26. Ogdie A, Yu Y, Haynes K, Love TJ, Maliha S, Jiang Y, et al. Risk of major cardiovascular events in patients with psoriatic arthritis, psoriasis and rheumatoid arthritis: A population-based cohort study. Ann Rheum Dis. 2015;74(2):326-332. doi: 10.1136/annrheumdis-2014-205675
27. Pujades-Rodriguez M, Duyx B, Thomas SL, Stogiannis D, Rahman A, Smeeth L, et al. Rheumatoid arthritis and incidence of twelve initial presentations of cardiovascular disease: A population record-linkage cohort study in England. PLoS One. 2016;11(3):e0151245. doi: 10.1371/journal.pone.0151245
28. Cooksey R, Brophy S, Kennedy J, Gutierrez FF, Pickles T, Davies R, et al. Cardiovascular risk factors predicting cardiac events are different in patients with rheumatoid arthritis, psoriatic arthritis, and psoriasis. Semin Arthritis Rheum. 2018;48(3):367-373. doi: 10.1016/j.semarthrit.2018.03.005
29. England BR, Thiele GM, Anderson DR, Mikuls TR. Increased cardiovascular risk in rheumatoid arthritis: Mechanisms and implications. BMJ. 2018;361:k1036. doi: 10.1136/bmj.k1036
30. Aday AW, Ridker PM. Targeting residual inflammatory risk: A shifting paradigm for atherosclerotic disease. Front Cardiovasc Med. 2019;6:16. doi: 10.3389/fcvm.2019.00016
31. Buckley DI, Fu R, Freeman M, Rogers K, Helfand M. C-reactive protein as a risk factor for coronary heart disease: A systematic review and meta-analyses for the U.S. Preventive Services Task Force. Ann Intern Med. 2009;151:483-495. doi: 10.7326/0003-4819-151-7-200910060-00009
32. Emerging Risk Factors Collaboration. C-reactive protein, fibrinogen, and cardiovascular disease prediction. N Engl J Med. 2012;367:1310-1320. doi: 10.1056/NEJMoa1107477
33. Devaraj S, Singh U, Jialal I. The evolving role of C-reactive protein in atherothrombosis. Clin Chem. – 2009;55(2):229-238. doi: 10.1373/clinchem.2008.108886
34. Krupinski J, Turu MM, Martinez-Gonzalez J, Carvajal A, JuanBabot JO, Iborra E, et al. Endogenous expression of C-reactive protein is increased in active (ulcerated noncomplicated) human carotid artery plaques. Stroke. 2006;37(5):1200-1204. doi: 10.1161/01.STR.0000217386.37107.be
35. Badimon L, Peña E, Arderiu G, Padró T, Slevin M, Vilahur G, et al. C-reactive protein in atherothrombosis and angiogenesis. Front Immunol. 2018;9:430. doi: 10.3389/fimmu.2018.00430
36. Molins B, Peña E, Vilahur G, Mendieta C, Slevin M, Badimon L. C-reactive protein isoforms differ in their effects on thrombus growth. Arterioscler Thromb Vasc Biol. 2008;28(12):2239-2246. doi: 10.1161/ATVBAHA.108.174359
37. Sun H, Koike T, Ichikawa T, Hatakeyama K, Shiomi M, Zhang B, et al. C-reactive protein in atherosclerotic lesions: Its origin and pathophysiological significance. Am J Pathol. 2005;167(4):1139-1148. doi: 10.1016/S0002-9440(10)61202-3
38. Habersberger J, Strang F, Scheichl A, Htun N, Bassler N, Merivirta RM, et al. Circulating microparticles generate and transport monomeric C-reactive protein in patients with myocardial infarction. Cardiovasc Res. 2012;96(1):64-72. doi: 10.1093/cvr/cvs237
39. Melnikov I, Kozlov S, Saburova O, Zubkova E, Guseva O, Domogatsky S, et al. CRP is transported by monocytes and monocytederived exosomes in the blood of patients with coronary artery disease. Biomedicines. 2020;8(10):435. doi: 10.3390/biomedicines8100435
40. Zha Z, Cheng Y, Cao L, Qian Y, Liu X, Guo Y, et al. Monomeric CRP aggravates myocardial injury after myocardial infarction by polarizing the macrophage to pro-inflammatory phenotype through JNK signaling pathway. J Inflamm Res. 2021;14:7053-7064. doi: 10.2147/JIR.S316816
41. Jakuszko K, Krajewska M, Kościelska-Kasprzak K, Myszka M, Sebastian A, Gniewek K, et al. Antibodies against monomeric C-reactive protein – A promising biomarker of lupus nephritis? Clin Biochem. 2017;50(13-14):756-762. doi: 10.1016/j.clinbiochem.2017.03.010
42. Crowson CS, Myasoedova E, Davis JM 3rd, Matteson EL, Roger VL, Therneau TM, et al. Increased prevalence of metabolic syndrome associated with rheumatoid arthritis in patients without clinical cardiovascular disease. J Rheumatol. 2011;38(1):29-35. doi: 10.3899/jrheum.100346
43. Pandey PK, Swami A, Biswas TK, Thakuria R. Prevalence of metabolic syndrome in treatment naïve rheumatoid arthritis and correlation with disease parameters. Arch Rheumatol. 2016;32:46-52. doi: 10.5606/ArchRheumatol.2017.5949
44. Giles JT, Allison M, Blumenthal RS, Post W, Gelber AC, Petri M, et al. Abdominal adiposity in rheumatoid arthritis: Association with cardiometabolic risk factors and disease characteristics. Arthritis Rheum. 2010;62(11):3173-3182. doi: 10.1002/art.27629
45. Chung CP, Oeser A, Solus JF, Gebretsadik T, Shintani A, Avalos I, et al. Inflammation-associated insulin resistance: Differential effects in rheumatoid arthritis and systemic lupus erythematosus define potential mechanisms. Arthritis Rheum. 2008;58(7):2105-2112. doi: 10.1002/art.23600
46. Attar SM. Hyperlipidemia in rheumatoid arthritis patients in Saudi Arabia. Correlation with C-reactive protein levels and disease activity. Saudi Med J. 2015;36:685-691. doi: 10.15537/smj.2015.6.10557
47. Liao KP, Playford MP, Frits M, Coblyn JS, Iannaccone C, Weinblatt ME, et al. The association between reduction in inflammation and changes in lipoprotein levels and HDL cholesterol efflux capacity in rheumatoid arthritis. J Am Heart Assoc. 2015;4(2):e001588. doi: 10.1161/JAHA.114.001588
48. Gan L, He Y, Liu L, Ou Q, Lin J. Association of serum lipids with autoantibodies and inflammatory markers in rheumatoid arthritis patients. Clin Chim Acta. 2018;486:282-290. doi: 10.1016/j.cca.2018.08.028
49. Ursini F, Russo E, D’Angelo S, Arturi F, Hribal ML, D’Antona L, et al. Prevalence of undiagnosed diabetes in rheumatoid arthritis: An OGTT study. Medicine (Baltimore). 2016;95(7):e2552. doi: 10.1097/MD.0000000000002552
50. Ruscitti P, Ursini F, Cipriani P, Ciccia F, Liakouli V, Carubbi F, et al. Prevalence of type 2 diabetes and impaired fasting glucose in patients affected by rheumatoid arthritis: Results from a crosssectional study. Medicine (Baltimore). 2017;96(34):e7896. doi: 10.1097/MD.0000000000007896
51. Ozen G, Pedro S, Holmqvist ME, Avery M, Wolfe F, Michaud K. Risk of diabetes mellitus associated with disease-modifying antirheumatic drugs and statins in rheumatoid arthritis. Ann Rheum Dis. 2017;76(5):848-854. doi: 10.1136/annrheumdis-2016-209954
52. Solomon DH, Massarotti E, Garg R, Liu J, Canning C, Schneeweiss S. Association between disease-modifying antirheumatic drugs and diabetes risk in patients with rheumatoid arthritis and psoriasis. JAMA. 2011;305(24):2525-2531. doi: 10.1001/jama.2011.878
53. Lillegraven S, Greenberg JD, Reed GW, Saunders K, Curtis JR, Harrold L, et al. Immunosuppressive treatment and the risk of diabetes in rheumatoid arthritis. PLoS One. 2019;14(1):e0210459. doi: 10.1371/journal.pone.0210459
54. Otsuka Y, Kiyohara C, Kashiwado Y, Sawabe T, Nagano S, Kimoto Y, et al. Effects of tumor necrosis factor inhibitors and tocilizumab on the glycosylated hemoglobin levels in patients with rheumatoid arthritis; an observational study. PLoS One. 2018;13(4):e0196368. doi: 10.1371/journal.pone.0196368
55. Mendy A, Forno E, Niyonsenga T, Gasana J. Blood biomarkers as predictors of long-term mortality in COPD. Clin Respir J. 2018;12:1891-1899. doi: 10.1111/crj.12752
56. Kang HK, Kim K, Lee H, Jeong BH, Koh WJ, Park HY. COPD assessment test score and serum C-reactive protein levels in stable COPD patients. Int J Chron Obstruct Pulmon Dis. 2016;11:3137-3143. doi: 10.2147/COPD.S118153
57. Silva DR, Gazzana MB, Knorst MM. C-reactive protein levels in stable COPD patients: A case-control study. Int J Chron Obstruct Pulmon Dis. 2015;10:1719-1725. doi: 10.2147/COPD.S87015
58. Doyle TJ, Patel AS, Hatabu H, Nishino M, Wu G, Osorio JC, et al. Detection of rheumatoid arthritis-interstitial lung disease is enhanced by serum biomarkers. Am J Respir Crit Care Med. 2015;191(12):1403-1412. doi: 10.1164/rccm.201411-1950OC
59. Low CA, Cunningham AL, Kao AH, Krishnaswami S, Kuller LH, Wasko MC. Association between C-reactive protein and depressive symptoms in women with rheumatoid arthritis. Biol Psychol. 2009;81(2):131-134. doi: 10.1016/j.biopsycho.2009.02.003
60. Kojima M, Kojima T, Suzuki S, Oguchi T, Oba M, Tsuchiya H, et al. Depression, inflammation, and pain in patients with rheumatoid arthritis. Arthritis Rheum. 2009;61(8):1018-1024. doi: 10.1002/art.24647
61. Figueiredo-Braga M, Cornaby C, Cortez A, Bernardes M, Terroso G, Figueiredo M, et al. Influence of biological therapeutics, cytokines, and disease activity on depression in rheumatoid arthritis. J Immunol Res. 2018;2018:5954897. doi: 10.1155/2018/5954897
62. Takata S, Wada H, Tamura M, Koide T, Higaki M, Mikura SI, et al. Kinetics of C-reactive protein (CRP) and serum amyloid A protein (SAA) in patients with community-acquired pneumonia (CAP), as presented with biologic half-life times. Biomarkers. 2011;16(6):530-535. doi: 10.3109/1354750X.2011.607189
63. Targonska-Stepniak B, Majdan M. Serum amyloid A as a marker of persistent inflammation and an indicator of cardiovascular and renal involvement in patients with rheumatoid arthritis. Mediators Inflamm. 2014;2014:793628. doi: 10.1155/2014/793628
64. Hagihara K, Nishikawa T, Isobe T, Song J, Sugamata Y, Yoshizaki K. IL-6 plays a critical role in the synergistic induction of human serum amyloid A (SAA) gene when stimulated with proinflammatory cytokines as analyzed with an SAA isoform real-time quantitative RT-PCR assay system. Biochem Biophys Res Commun. 2004;314(2):363-369. doi: 10.1016/j.bbrc.2003.12.096
65. Okuda Y, Ohnishi M, Matoba K, Jouyama K, Yamada A, Sawada N, et al. Comparison of the clinical utility of tocilizumab and anti-TNF therapy in AA amyloidosis complicating rheumatic diseases. Mod Rheumatol. 2014;24(1):137-143. doi: 10.3109/14397595.2013.854048
66. Migita K, Koga T, Komori A, Torigoshi T, Maeda Y, Izumi Y, et al. Influence of Janus kinase inhibition on interleukin 6-mediated induction of acute-phase serum amyloid A in rheumatoid synovium. J Rheumatol. 2011;38(11):2309-2317. doi: 10.3899/jrheum.101362
67. Connolly M, Marrelli A, Blades M, McCormick J, Maderna P, Godson C, et al. Acute serum amyloid A induces migration, angiogenesis, and inflammation in synovial cells in vitro and in a human rheumatoid arthritis/SCID mouse chimera model. J Immunol. 2010;184(11):6427-6437. doi: 10.4049/jimmunol.0902941
68. Connolly M, Veale DJ, Fearon U. Acute serum amyloid A regulates cytoskeletal rearrangement, cell matrix interactions and promotes cell migration in rheumatoid arthritis. Ann Rheum Dis. 2011;70(7):1296-1303. doi: 10.1136/ard.2010.142240
69. Vallon R, Freuler F, Desta-Tsedu N, Robeva A, Dawson J, Wenner P, et al. Serum amyloid A (apoSAA) expression is up-regulated in rheumatoid arthritis and induces transcription of matrix metalloproteinases. J Immunol. 2001;166(4):2801-2807. doi: 10.4049/jimmunol.166.4.2801
70. O’Hara R, Murphy EP, Whitehead AS, FitzGerald O, Bresnihan B. Local expression of the serum amyloid A and formyl peptide receptor-like 1 genes in synovial tissue is associated with matrix metalloproteinase production in patients with inflammatory arthritis. Arthritis Rheum. 2004;50(6):1788-1799. doi: 10.1002/art.20301
71. Satomura K, Torigoshi T, Koga T, Maeda Y, Izumi Y, Jiuchi Y, et al. Serum amyloid A (SAA) induces pentraxin 3 (PTX3) production in rheumatoid synoviocytes. Mod Rheumatol. 2013;23(1):28-35. doi: 10.1007/s10165-012-0630-0
72. Hirota K, Yoshitomi H, Hashimoto M, Maeda S, Teradaira S, Sugimoto N, et al. Preferential recruitment of CCR6-expressing Th17 cells to inflamed joints via CCL20 in rheumatoid arthritis and its animal model. J Exp Med. 2007;204(12):2803-2812. doi: 10.1084/jem.20071397
73. Lucherini OM, Lopalco G, Cantarini L, Emmi G, Lopalco A, Venerito V, et al. Critical regulation of Th17 cell differentiation by serum amyloid-A signalling in Behcet’s disease. Immunol Lett. 2018;201:38-44. doi: 10.1016/j.imlet.2018.10.013
74. Migita K, Koga T, Satomura K, Izumi M, Torigoshi T, Maeda Y, et al. Serum amyloid A triggers the mosodium urate-mediated mature interleukin-1β production from human synovial fibroblasts. Arthritis Res Ther. 2012;14(3):R119. doi: 10.1186/ar3849
75. Migita K, Izumi Y, Fujikawa K, Agematsu K, Masumoto J, Jiuchi Y, et al. Dysregulated mature IL-1β production in familial Mediterranean fever. Rheumatology (Oxford). 2015;54(4):660-665. doi: 10.1093/rheumatology/keu359
76. Niemi K, Teirilä L, Lappalainen J, Rajamäki K, Baumann MH, Öörni K, et al. Serum amyloid A activates the NLRP3 inflammasome via P2X7 receptor and a cathepsin B-sensitive pathway. J Immunol. 2011;186(11):6119-6128. doi: 10.4049/jimmunol.1002843
77. Tölle M, Huang T, Schuchardt M, Jankowski V, Prüfer N, Jankowski J, et al. High-density lipoprotein loses its anti-inflammatory capacity by accumulation of pro-inflammatory-serum amyloid A. Cardiovasc Res. 2012;94(1):154-162. doi: 10.1093/cvr/cvs089
78. Artl A, Marsche G, Lestavel S, Sattler W, Malle E. Role of serum amyloid A during metabolism of acute-phase HDL by macrophages. Arterioscler Thromb Vasc Biol. 2000;20(3):763-772. doi: 10.1161/01.atv.20.3.763
79. Zhao Y, Zhou S, Heng CK. Impact of serum amyloid A on tissue factor and tissue factor pathway inhibitor expression and activity in endothelial cells. Arterioscler Thromb Vasc Biol. 2007;27(7):1645-1650. doi: 10.1161/ATVBAHA.106.137455
80. Wang X, Chai H, Wang Z, Lin PH, Yao Q, Chen C. Serum amyloid A induces endothelial dysfunction in porcine coronary arteries and human coronary artery endothelial cells. Am J Physiol Heart Circ Physiol. 2008;295(6):H2399-Р2408. doi: 10.1152/ajpheart.00238.2008
81. Migita K, Yamasaki S, Shibatomi K, Ida H, Kita M, Kawakami A, et al. Impaired degradation of serum amyloid A (SAA) protein by cytokine-stimulated monocytes. Clin Exp Immunol. 2001;123(3):408-411. doi: 10.1046/j.1365-2249.2001.01472.x
82. Magy N, Benson MD, Liepnieks JJ, Kluve-Beckerman B. Cellular events associated with the initial phase of AA amyloidogenesis: Insights from a human monocyte model. Amyloid. 2007;14(1):51-63. doi: 10.1080/13506120601116575
83. Connolly M, Mullan RH, McCormick J, Matthews C, Sullivan O, Kennedy A, et al. Acute-phase serum amyloid A regulates tumor necrosis factor α and matrix turnover and predicts disease progression in patients with inflammatory arthritis before and after biologic therapy. Arthritis Rheum. 2012;64(4):1035-1045. doi: 10.1002/art.33455
84. Shen C, Sun XG, Liu N, Mu Y, Hong CC, Wei W, et al. Increased serum amyloid A and its association with autoantibodies, acute phase reactants and disease activity in patients with rheumatoid arthritis. Mol Med Rep. 2015;11(2):1528-1534. doi: 10.3892/mmr.2014.2804
85. Chambers RE, MacFarlane DG, Whicher JT, Dieppe PA. Serum amyloid-A protein concentration in rheumatoid arthritis and its role in monitoring disease activity. Ann Rheum Dis. 1983;42(6):665-667. doi: 10.1136/ard.42.6.665
86. Cunnane G, Grehan S, Geoghegan S, McCormack C, Shields D, Whitehead AS, et al. Serum amyloid A in the assessment of early inflammatory arthritis. J Rheumatol. 2000;27(1):58-63.
87. Yoo J, Lee SK, Lim M, Sheen D, Choi EH, Kim SA. Exosomal amyloid A and lymphatic vessel endothelial hyaluronic acid receptor-1 proteins are associated with disease activity in rheumatoid arthritis. Arthritis Res Ther. 2017;19(1):119. doi: 10.1186/s13075-017-1334-9
88. Hwang YG, Balasubramani GK, Metes ID, Levesque MC, Bridges SL Jr, Moreland LW. Differential response of serum amyloid A to different therapies in early rheumatoid arthritis and its potential value as a disease activity biomarker. Arthritis Res Ther. 2016;18(1):108. doi: 10.1186/s13075-016-1009-y
89. Wild N, Karl J, Grunert VP, Schmitt RI, Garczarek U, Krause F, et al. Diagnosis of rheumatoid arthritis: Multivariate analysis of biomarkers. Biomarkers. 2008;13(1):88-105. doi: 10.1080/13547500701669410
90. Targońska-Stępniak B, Dryglewska M, Majdan M. Influence of long-term leflunomide treatment on serum amyloid concentration in rheumatoid arthritis patients. Pharmacol Rep. 2010;62(4):719-725. doi: 10.1016/s1734-1140(10)70329-7
91. Ma MHY, Defranoux N, Li W, Sasso EH, Ibrahim F, Scott DL, et al. A multi-biomarker disease activity score can predict sustained remission in rheumatoid arthritis. Arthritis Res Ther. 2020;22(1):158. doi: 10.1186/s13075-020-02240-w
92. Boeters DM, Burgers LE, Sasso EH, Huizinga TWJ, van der Helm-van Mil AHM. ACPA-negative RA consists of subgroups: Patients with high likelihood of achieving sustained DMARD-free remission can be identified by serological markers at disease presentation. Arthritis Res Ther. 2019;21(1):121. doi: 10.1186/s13075-019-1902-2
93. Migita K, Izumi Y, Jiuchi Y, Kozuru H, Kawahara C, Izumi M, et al. Effects of Janus kinase inhibitor tofacitinib on circulating serum amyloid A and interleukin-6 during treatment for rheumatoid arthritis. Clin Exp Immunol. 2014;175(2):208-214. doi: 10.1111/cei.12234
94. Doyle MK, Rahman MU, Frederick B, Birbara CA, de Vries D, Toedter G, et al. Effects of subcutaneous and intravenous golimumab on inflammatory biomarkers in patients with rheumatoid arthritis: results of a phase 1, randomized, open-label trial. Rheumatology (Oxford). 2013;52(7):1214-1219. doi: 10.1093/rheumato logy/kes381
95. Kobayashi T, Yokoyama T, Ito S, Kobayashi D, Yamagata A, Okada M, et al. Periodontal and serum protein profiles in patients with rheumatoid arthritis treated with tumor necrosis factor inhibitor adalimumab. J Periodontol. 2014;85(11):1480-1488. doi: 10.1902/jop.2014.140194
96. Hammer HB, Fagerhol MK, Wien TN, Kvien TK. The soluble biomarker calprotectin (an S100 protein) is associated to ultrasonographic synovitis scores and is sensitive to change in patients with rheumatoid arthritis treated with adalimumab. Arthritis Res Ther. 2011;13(5):178. doi: 10.1186/ar3503
97. Gabay C, Burmester GR, Strand V, Msihid J, Zilberstein M, Kimura T, et al. Sarilumab and adalimumab differential effects on bone remodelling and cardiovascular risk biomarkers, and predictions of treatment outcomes. Arthritis Res Ther. 2020;22(1):70. doi: 10.1186/s13075-020-02163-6
98. Moreira AC, Mesquita G, Gomes MS. Ferritin: An inflmmatory player keeping iron at the core of pathogen-host interactions, Microorganisms. 2020;8(4):589. doi: 10.3390/microorganisms8040589
99. Harrison PM, Arosio P. The ferritins: Molecular properties, iron storage function and cellular regulation. Biochim Biophys Acta. 1996;1275:161-203. doi: 10.1016/0005-2728(96)00022-9
100. Mahroum N, Alghory A, Kiyak Z, Alwani A, Seida R, Alrais M, et al. Ferritin – From iron, through inflammation and autoimmunity, to COVID-19. J Autoimmun. 2022;126:102778. doi: 10.1016/j.jaut.2021.102778
101. Jacobs A, Miller F, Worwood M, Beamish MR, Wardrop CA. Ferritin in the serum of normal subjects and patients with iron deficiency and iron overload. Br Med J. 1972;4(5834):206-208. doi: 10.1136/bmj.4.5834.206
102. Birgegård G, Hällgren R, Killander A, Strömberg A, Venge P, Wide L. Serum ferritin during infection. A longitudinal study. Scand J Haematol. 1978;21(4):333-340. doi: 10.1111/j.1600-0609.1978.tb00374.x
103. Weiss G, Ganz T, Goodnough LT. Anemia of inflmmation. Blood. 2019;133:40-50. doi: 10.1056/NEJMra1804281
104. Recalcati S, Invernizzi P, Arosio P, Cairo G. New functions for an iron storage protein: The role of ferritin in immunity and autoimmunity. J Autoimmun. 2008;30:84-89. doi: 10.1016/j.jaut.2007.11.003
105. Sharif K, Vieira Borba V, Zandman-Goddard G, Shoenfeld Y. Eppur Si Muove: Ferritin is essential in modulating inflammation. Clin Exp Immunol. 2018;191(2):149-150. doi: 10.1111/cei.13069
106. Cragg SJ, Wagstaff M, Worwood M. Detection of a glycosylated subunit in human serum ferritin. Biochem J. 1981;199:565-571. doi: 10.1042/bj1990565
107. Tran TN, Eubanks SK, Schaffer KJ, Zhou CY, Linder MC. Secretion of ferritin by rat hepatoma cells and its regulation by inflammatory cytokines and iron. Blood. 1997;90(12):4979-4986.
108. Fahmy M, Young P. Modulation of iron metabolism in monocyte cell line U937 by inflmmatory cytokines: Changes in transferrin uptake, iron handling and ferritin mRNA, Biochem J. 1993; 296(Pt 1):175-181. doi: 10.1042/bj2960175
109. Kotze MJ, van Velden DP, van Rensburg SJ, Erasmus R. Pathogenic mechanisms underlying iron deficiency and iron overload: New insights for clinical application. EJIFCC. 2009;20(2):108-123.
110. Simcox JA, McClain DA. Iron and diabetes risk. Cell Metabol. 2013;17(3):329-341. doi: 10.1016/j.cmet.2013.02.007
111. El Osta R, Grandpre N, Monnin N, Hubert J, Koscinski I. Hypogonadotropic hypogonadism in men with hereditary hemochromatosis. Basic Clin Androl. 2017;27:13. doi: 10.1186/s12610-017-0057-8
112. Chacon AH, Morrison B, Hu S. Acquired hemochromatosis with pronounced pigment deposition of the upper eyelids. J Clin Aesthet Dermatol. 2013;6:44-46.
113. Knovich MA, Storey JA, Coffman LG, Torti SV, Torti FM. Ferritin for the clinician. Blood Rev. 2009;23(3):95-104. doi: 10.1016/j.blre.2008.08.001
114. Plays M, Müller S, Rodriguez R. Chemistry and biology of ferritin. Metallomics. 2021;13(5):mfab021. doi: 10.1093/mtomcs/mfab021
115. Thompson KJ, Fried MG, Ye Z, Boyer P, Connor JR. Regulation, mechanisms and proposed function of ferritin translocation to cell nuclei. J Cell Sci. 2002;115(Pt 10):2165-2177. doi: 10.1242/jcs.115.10.2165
116. Üsküdar Cansu D, Üsküdar Teke H, Cansu GB, Korkmaz C. Evaluation of hyperferritinemia causes in rheumatology practice: A retrospective, single-center experience. Rheumatol Int. 2021;41(9):1617-1624. doi: 10.1007/s00296-021-04935-y
117. Abe E, Arai M. Synovial fluid ferritin in traumatic hemarthrosis, rheumatoid arthritis and osteoarthritis. Tohoku J Exp Med. 1992;168(3):499-505. doi: 10.1620/tjem.168.499
118. Vanarsa K, Ye Y, Han J, Xie C, Mohan C, Wu T. Inflammation associated anemia and ferritin as disease markers in SLE. Arthritis Res Ther. 2012;14(4):R182. doi: 10.1186/ar4012
119. Beyan E, Beyan C, Demirezer A, Ertuğrul E, Uzuner A. The relationship between serum ferritin levels and disease activity in systemic lupus erythematosus. Scand J Rheumatol. 2003;32(4):225-228. doi: 10.1080/03009740310003712
120. Mehta B, Efthimiou P. Ferritin in adult-onset Still’s disease: Just a useful innocent bystander? Int J Inflmm. 2012;2012:298405. doi: 10.1155/2012/298405
121. Efthimiou P, Paik PK, Bielory L. Diagnosis and management of adult onset Still’s disease, Ann Rheum Dis. 2006;65:564-572. doi: 10.1136/ard.2005.042143
122. Di Benedetto P, Cipriani P, Iacono D, Pantano I, Caso F, Emmi G, et al. Ferritin and C-reactive protein are predictive biomarkers of mortality and macrophage activation syndrome in adult onset Still’s disease. Analysis of the multicentre Gruppo Italiano di Ricerca in Reumatologia Clinica e Sperimentale (GIRRCS) cohort. PLoS One. 2020;15(7):e0235326. doi: 10.1371/journal.pone.0235326
Рецензия
Для цитирования:
Авдеева А.С. Маркеры воспаления при ревматических заболеваниях. Научно-практическая ревматология. 2022;60(6):561–569. https://doi.org/10.47360/1995-4484-2022-561-569
For citation:
Avdeeva A.S. Inflammatory markers in rheumatic diseases. Rheumatology Science and Practice. 2022;60(6):561–569. (In Russ.) https://doi.org/10.47360/1995-4484-2022-561-569