Роль интерлейкина 17 в патогенезе ревматоидного артрита. Есть ли перспективы применения ингибиторов ИЛ-17?
https://doi.org/10.47360/1995-4484-2023-165-180
Аннотация
Ревматоидный артрит (РА) – иммуновоспалительное ревматическое заболевание (ИВРЗ), характеризующееся хроническим эрозивным артритом и системным поражением внутренних органов, приводящее к ранней инвалидности и сокращению продолжительности жизни пациентов. Благодаря прогрессу в изучении механизмов развития ИВРЗ и промышленной биотехнологии были созданы новые противовоспалительные лекарственные средства, применение которых позволило существенно повысить эффективность фармакотерапии РА. Тем не менее, возможности фармакотерапии РА ограничены. Парадоксально, но все генно-инженерные биологические препараты (ГИБП) независимо от механизма действия обладают примерно одинаковой эффективностью в отношении достижения ремиссии. Полагают, что относительно не удовлетворительные результаты терапии РА обусловлены гетерогенностью механизмов воспаления и боли. Обсуждаются значение Th17-типа иммунного ответа в патогенезе РА, результаты контролируемых исследований ингибиторов интерлейкина (ИЛ) 17 и целесообразность дальнейшего изучения эффективности этих препаратов у пациентов с определенными фенотипами РА.
Об авторах
Е. Л. НасоновРоссия
дмн, профессор, академик РАН, научный руководитель ФГБНУ НИИР им В.А. Насоновой; профессор, кафедра внутренних профессиональных болезней и ревматологии Первого МГМУ им. Сеченова
115522, Москва, Каширское шоссе, 34а;
119991, Москва, ул. Трубецкая, 8, стр. 2
А. С. Авдеева
Россия
дмн, старший научный сотрудник лаборатории иммунологии и молекулярной биологии ревматических заболеваний
115522, Москва, Каширское шоссе, 34а
Т. В. Коротаева
Россия
дмн, начальник отдела спондилоартритов, заведующий лаборатории псориатического артрита
115522, Москва, Каширское шоссе, 34а
Т. В. Дубинина
Россия
кмн, заведующий лабораторией аксиального спондилоартрита
115522, Москва, Каширское шоссе, 34а
Ю. В. Усачева
Россия
старший федеральный советник компании «Биокад»
198515, Санкт-Петербург, пос. Стрельна, ул. Связи, 38, стр. 1
Список литературы
1. Smolen JS, Aletaha D, Barton A, Burmester GR, Emery P, Firestein GS, et al. Rheumatoid arthritis. Nat Rev Dis Primers. 2018;4: 18001. doi: 10.1038/nrdp.2018.1
2. McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis. N Engl J Med. 2011;365(23):2205-2219. doi: 10.1056/NEJMra1004965
3. Насонов ЕЛ. Проблемы иммунопатологии ревматоидного артрита: эволюция болезни. Научно-практическая ревматология. 2017;55(3):277-294. doi: 10.14412/1995-4484-2017-277-294
4. Насонов ЕЛ (ред.). Генно-инженерные биологические препараты в лечении ревматоидного артрита. М.:ИМА-ПРЕСС;2013.
5. Насонов ЕЛ. Фармакотерапия ревматоидного артрита: новая стратегия, новые мишени. Научно-практическая ревматология. 2017;55(4):409-419. doi: 10.14412/1995-4484-2017-409-419
6. Baker KF, Isaacs JD. Novel therapies for immune-mediated inflammatory diseases: What can we learn from their use in rheumatoid arthritis, spondyloarthritis, systemic lupus erythematosus, psoriasis, Crohn’s disease and ulcerative colitis? Ann Rheum Dis. 2018;77(2):175-187. doi: 10.1136/annrheumdis-2017-211555
7. Smolen JS, Aletaha D, Bijlsma JW, Breedveld FC, Boumpas D, Burmester G, et al.; T2T Expert Committee. Treating rheumatoid arthritis to target: Recommendations of an international task force. Ann Rheum Dis. 2010;69(4):631-637. doi: 10.1136/ard.2009.123919
8. Smolen JS, Landewé RBM, Bijlsma JWJ, Burmester GR, Dougados M, Kerschbaumer A, et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2019 update. Ann Rheum Dis. 2020;79(6):685-699. doi: 10.1136/annrheumdis-2019-216655
9. Fraenkel L, Bathon JM, England BR, St Clair EW, Arayssi T, Carandang K, et al. 2021 American College of Rheumatology guideline for the treatment of rheumatoid arthritis. Arthritis Care Res (Hoboken). 2021;73(7):924-939. doi: 10.1002/acr.24596
10. Winthrop KL, Isaacs JD, Mease PJ, Boumpas DT, Baraliakos X, Gottenberg JE, et al. Unmet need in rheumatology: Reports from the Advances in Targeted Therapies meeting, 2022. Ann Rheum Dis. 2023 Jan 26:ard-2022-223528. doi: 10.1136/ard-2022-223528
11. Ajeganova S, Huizinga T. Sustained remission in rheumatoid arthritis: Latest evidence and clinical considerations. Ther Adv Musculoskelet Dis. 2017;9(10):249-262. doi: 10.1177/1759720X17720366
12. Smolen JS, Aletaha D. Rheumatoid arthritis therapy reappraisal: Strategies, opportunities and challenges. Nat Rev Rheumatol. 2015;11(5):276-289. doi: 10.1038/nrrheum.2015.8
13. Zhao J, Guo S, Schrodi SJ, He D. Molecular and cellular heterogeneity in rheumatoid arthritis: Mechanisms and clinical implications. Front Immunol. 2021;12:790122. doi: 10.3389/fimmu.2021.790122
14. Lewis MJ, Barnes MR, Blighe K, Goldmann K, Rana S, Hackney JA, et al. Molecular portraits of early rheumatoid arthritis identify clinical and treatment response phenotypes. Cell Rep. 2019;28(9):2455-2470.e5. doi: 10.1016/j.celrep.2019.07.091
15. Humby F, Lewis M, Ramamoorthi N, Hackney JA, Barnes MR, Bombardieri M, et al. Synovial cellular and molecular signatures stratify clinical response to csDMARD therapy and predict radiographic progression in early rheumatoid arthritis patients. Ann Rheum Dis. 2019;78(6):761-772. doi: 10.1136/annrheumdis-2018-214539
16. Rivellese F, Surace AEA, Goldmann K, Sciacca E, Çubuk C, Giorli G, et al.; R4RA collaborative group. Rituximab versus tocilizumab in rheumatoid arthritis: Synovial biopsy-based biomarker analysis of the phase 4 R4RA randomized trial. Nat Med. 2022;28(6):1256-1268. doi: 10.1038/s41591-022-01789-0
17. Ridgley LA, Anderson AE, Pratt AG. What are the dominant cytokines in early rheumatoid arthritis? Curr Opin Rheumatol. 2018;30(2):207-214. doi: 10.1097/BOR.0000000000000470
18. Taylor PC, Atzeni F, Balsa A, Gossec L, Müller-Ladner U, Pope J. The key comorbidities in patients with rheumatoid arthritis: A narrative review. J Clin Med. 2021;10(3):509. doi: 10.3390/jcm10030509
19. Aletaha D. Precision medicine and management of rheumatoid arthritis. J Autoimmun. 2020;110:102405. doi: 10.1016/j.jaut.2020.102405
20. Sebastiani M, Vacchi C, Manfredi A, Cassone G. Personalized medicine and machine learning: A roadmap for the future. J Clin Med. 2022;11(14):4110. doi: 10.3390/jcm11144110
21. Lin CMA, Cooles FAH, Isaacs JD. Precision medicine: The precision gap in rheumatic disease. Nat Rev Rheumatol. 2022;18(12):725-733. doi: 10.1038/s41584-022-00845-w
22. Pitzalis C, Choy EHS, Buch MH. Transforming clinical trials in rheumatology: Towards patient-centric precision medicine. Nat Rev Rheumatol. 2020;16(10):590-599. doi: 10.1038/s41584-020-0491-4
23. Heutz J, de Jong PHP. Possibilities for personalised medicine in rheumatoid arthritis: Hype or hope. RMD Open. 2021; 7:e001653. doi: 10.1136/rmdopen-2021-001653
24. Mucke J, Krusche M, Burmester GR. A broad look into the future of rheumatoid arthritis. Ther Adv Musculoskelet Dis. 2022;14:1759720X221076211. doi: 10.1177/1759720X221076211
25. Nagy G, Roodenrijs NMT, Welsing PMJ, Kedves M, Hamar A, van der Goes MC, et al. EULAR points to consider for the management of difficult-to-treat rheumatoid arthritis. Ann Rheum Dis. 2022;81(1):20-33. doi: 10.1136/annrheumdis-2021-220973
26. Tan Y, Buch MH. ‘Difficult to treat’ rheumatoid arthritis: Current position and considerations for next steps. RMD Open. 2022;8(2):e002387. doi: 10.1136/rmdopen-2022-002387
27. Насонов ЕЛ, Олюнин ЮА, Лила АМ. Ревматоидный артрит: проблемы ремиссии и резистентности к терапии. Научно-практическая ревматология. 2018;56(3):263-271. doi: 10.14412/1995-4484-2018-263-271
28. Rao DA, Gurish MF, Marshall JL, Slowikowski K, Fonseka CY, Liu Y, et al. Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis. Nature. 2017;542(7639):110-114. doi: 10.1038/nature20810
29. Paroli M, Caccavale R, Fiorillo MT, Spadea L, Gumina S, Candela V, et al. The double game played by Th17 cells in infection: Host defense and immunopathology. Pathogens. 2022;11(12):1547. doi: 10.3390/pathogens11121547
30. Mills KHG. IL-17 and IL-17-producing cells in protection versus pathology. Nat Rev Immunol. 2023;23(1):38-54. doi: 10.1038/s41577-022-00746-9
31. Miossec P, Kolls JK. Targeting IL-17 and Th17 cells in chronic inflammation. Nat Rev Drug Discov. 2012;11:763-76. doi: 10.1038/nrd3794
32. Lubberts E. The IL-23-IL-17 axis in inflammatory arthritis. Nat Rev Rheumatol. 2015;11(7):415-429. doi: 10.1038/nrrheum.2015.53
33. Насонов ЕЛ, Коротаева ТВ, Дубинина ТВ, Лила АМ. Ингибиторы ИЛ23/ИЛ17 при иммуновоспалительных ревматических заболеваниях: новые горизонты. Научно-практическая ревматология. 2019;57(4):400-406. doi: 10.14412/1995-4484-2019-400-406
34. van Hamburg JP, Tas SW. Molecular mechanisms underpinning T helper 17 cell heterogeneity and functions in rheumatoid arthritis. J Autoimmun. 2018;87:69-81. doi: 10.1016/j.jaut.2017.12.006
35. Padyukov L. Genetics of rheumatoid arthritis. Semin Immunopathol. 2022;44(1):47-62. doi: 10.1007/s00281-022-00912-0
36. McGeachy MJ, Cua DJ, Gaffen SL. The IL-17 family of cytokines in health and disease. Immunity. 2019;50(4):892-906. doi: 10.1016/j.immuni.2019.03.021
37. Beringer A, Miossec P. Systemic effects of IL-17 in inflammatory arthritis. Nat Rev Rheumatol. 2019;15(8):491-501. doi: 10.1038/s41584-019-0243-5
38. Robert M, Miossec P, Hot A. The Th17 pathway in vascular inflammation: Culprit or consort? Front Immunol. 2022;13:888763. doi: 10.3389/fimmu.2022.888763
39. Jiang X, Zhou R, Zhang Y, Zhu T, Li Q, Zhang W. Interleukin-17 as a potential therapeutic target for chronic pain. Front Immunol. 2022;13:999407. doi: 10.3389/fimmu.2022.999407
40. Насонов ЕЛ, Александрова ЕН, Авдеева АС, Рубцов ЮП. Т-регуляторные клетки при ревматоидном артрите. Научно-практическая ревматология. 2014;52(4):430-437. doi: 10.14412/1995-4484-2014-430-437
41. Noack M, Miossec P. Th17 and regulatory T cell balance in autoimmune and inflammatory diseases. Autoimmun Rev. 2014;13(6):668-677. doi: 10.1016/j.autrev.2013.12.004
42. Miossec P. Local and systemic effects of IL-17 in joint inflammation: A historical perspective from discovery to targeting. Cell Mol Immunol. 2021;18(4):860-865. doi: 10.1038/s41423-021-00644-5
43. Robert M, Miossec P. IL-17 in rheumatoid arthritis and precision medicine: From synovitis expression to circulating bioactive levels. Front Med (Lausanne). 2019;5:364. doi: 10.3389/fmed.2018.00364
44. Taams LS. Interleukin-17 in rheumatoid arthritis: Trials and tribulations. J Exp Med. 2020;217(3):e20192048. doi: 10.1084/jem.20192048
45. Zwicky P, Unger S, Becher B. Targeting interleukin-17 in chronic inflammatory disease: A clinical perspective. J Exp Med. 2020;217(1):e20191123. doi: 10.1084/jem.20191123
46. Yasuda K, Takeuchi Y, Hirota K. The pathogenicity of Th17 cells in autoimmune diseases. Semin Immunopathol. 2019;41(3):283-297. doi: 10.1007/s00281-019-00733-8
47. Pöllinger B, Junt T, Metzler B, Walker UA, Tyndall A, Allard C, et al. Th17 cells, not IL-17+ γδ T cells, drive arthritic bone destruction in mice and humans. J Immunol. 2011;186(4):2602-2612. doi: 10.4049/jimmunol.1003370
48. Nakae S, Nambu A, Sudo K, Iwakura Y. Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice. J Immunol. 2003;171(11):6173-6177. doi: 10.4049/jimmunol.171.11.6173
49. Plater-Zyberk C, Joosten LA, Helsen MM, Koenders MI, Baeuerle PA, van den Berg WB. Combined blockade of granulocyte-macrophage colony stimulating factor and interleukin 17 pathways potently suppresses chronic destructive arthritis in a tumour necrosis factor alpha-independent mouse model. Ann Rheum Dis. 2009;68(5):721-728. doi: 10.1136/ard.2007.085431
50. Lubberts E, Koenders MI, Oppers-Walgreen B, van den Bersselaar L, Coenen-de Roo CJ, Joosten LA, et al. Treatment with a neutralizing anti-murine interleukin-17 antibody after the onset of collagen-induced arthritis reduces joint inflammation, cartilage destruction, and bone erosion. Arthritis Rheum. 2004;50(2):650-659. doi: 10.1002/art.20001
51. Bush KA, Farmer KM, Walker JS, Kirkham BW. Reduction of joint inflammation and bone erosion in rat adjuvant arthritis by treatment with interleukin-17 receptor IgG1 Fc fusion protein. Arthritis Rheum. 2002;46(3):802-805. doi: 10.1002/art.10173
52. Chao CC, Chen SJ, Adamopoulos IE, Davis N, Hong K, Vu A, et al. Anti-IL-17A therapy protects against bone erosion in experimental models of rheumatoid arthritis. Autoimmunity. 2011;44(3):243-252. doi: 10.3109/08916934.2010.517815
53. Koenders MI, Lubberts E, Oppers-Walgreen B, van den Bersselaar L, Helsen MM, Di Padova FE, et al. Blocking of interleukin-17 during reactivation of experimental arthritis prevents joint inflammation and bone erosion by decreasing RANKL and interleukin-1. Am J Pathol. 2005;167(1):141-149. doi: 10.1016/S0002-9440(10)62961-6
54. Ishiguro A, Akiyama T, Adachi H, Inoue J, Nakamura Y. Therapeutic potential of anti-interleukin-17A aptamer: suppression of interleukin-17A signaling and attenuation of autoimmunity in two mouse models. Arthritis Rheum. 2011;63(2):455-466. doi: 10.1002/art.30108
55. Zhang Y, Ren G, Guo M, Ye X, Zhao J, Xu L, et al. Synergistic effects of interleukin-1β and interleukin-17A antibodies on collagen-induced arthritis mouse model. Int Immunopharmacol. 2013;15(2):199-205. doi: 10.1016/j.intimp.2012.12.010
56. Li Q, Ren G, Xu L, Wang Q, Qi J, Wang W, et al. Therapeutic efficacy of three bispecific antibodies on collagen-induced arthritis mouse model. Int Immunopharmacol. 2014;21(1):119-127. doi: 10.1016/j.intimp.2014.04.018
57. Chabaud M, Durand JM, Buchs N, Fossiez F, Page G, Frappart L, et al. Human interleukin-17: A T cell-derived proinflammatory cytokine produced by the rheumatoid synovium. Arthritis Rheum. 1999;42(5):963-970. doi: 10.1002/1529-0131(199905)42:5<963::AID-ANR15>3.0.CO;2-E
58. Chabaud M, Fossiez F, Taupin JL, Miossec P. Enhancing effect of IL-17 on IL-1-induced IL-6 and leukemia inhibitory factor production by rheumatoid arthritis synoviocytes and its regulation by Th2 cytokines. J Immunol. 1998;161(1):409-414.
59. Chabaud M, Page G, Miossec P. Enhancing effect of IL-1, IL-17, and TNF-alpha on macrophage inflammatory protein-3alpha production in rheumatoid arthritis: Regulation by soluble receptors and Th2 cytokines. J Immunol. 2001;167(10):6015-6020. doi: 10.4049/jimmunol.167.10.6015
60. Chabaud M, Garnero P, Dayer JM, Guerne PA, Fossiez F, Miossec P. Contribution of interleukin 17 to synovium matrix destruction in rheumatoid arthritis. Cytokine. 2000; 12(7):1092-1099. doi: 10.1006/cyto.2000.0681
61. Hot A, Miossec P. Effects of interleukin (IL)-17A and IL-17F in human rheumatoid arthritis synoviocytes. Ann Rheum Dis. 2011; 70(5):727-732. doi: 10.1136/ard.2010.143768
62. Hot A, Zrioual S, Toh ML, Lenief V, Miossec P. IL-17A-versus IL-17F-induced intracellular signal transduction pathways and modulation by IL-17RA and IL-17RC RNA interference in rheumatoid synoviocytes. Ann Rheum Dis. 2011; 70(2):341-348. doi: 10.1136/ard.2010.132233
63. Hwang SY, Kim JY, Kim KW, Park MK, Moon Y, Kim WU, et al. IL-17 induces production of IL-6 and IL-8 in rheumatoid arthritis synovial fibroblasts via NF-kappaB- and PI3-kinase/Akt-dependent pathways. Arthritis Res Ther. 2004; 6(2):R120-R128. doi: 10.1186/ar1038
64. Zrioual S, Toh ML, Tournadre A, Zhou Y, Cazalis MA, Pachot A, et al. IL-17RA and IL-17RC receptors are essential for IL-17A-induced ELR+ CXC chemokine expression in synoviocytes and are overexpressed in rheumatoid blood. J Immunol. 2008; 180(1):655-663. doi: 10.4049/jimmunol.180.1.655
65. Li G, Zhang Y, Qian Y, Zhang H, Guo S, Sunagawa M, et al. Interleukin-17A promotes rheumatoid arthritis synoviocytes migration and invasion under hypoxia by increasing MMP2 and MMP9 expression through NF-κB/HIF-1α pathway. Mol Immunol. 2013; 53(3):227-236. doi: 10.1016/j.molimm.2012.08.018
66. Hot A, Zrioual S, Lenief V, Miossec P. IL-17 and tumour necrosis factor α combination induces a HIF-1α-dependent invasive phenotype in synoviocytes. Ann Rheum Dis. 2012; 71(8):1393-1401. doi: 10.1136/annrheumdis-2011-200867
67. Moran EM, Mullan R, McCormick J, Connolly M, Sullivan O, Fitzgerald O, et al. Human rheumatoid arthritis tissue production of IL-17A drives matrix and cartilage degradation: Synergy with tumour necrosis factor-alpha, Oncostatin M and response to biologic therapies. Arthritis Res Ther. 2009; 11(4):R113. doi: 10.1186/ar2772
68. Adamopoulos IE, Chao CC, Geissler R, Laface D, Blumenschein W, Iwakura Y, et al. Interleukin-17A upregulates receptor activator of NF-kappaB on osteoclast precursors. Arthritis Res Ther. 2010; 12(1):R29. doi: 10.1186/ar2936
69. Sato K, Suematsu A, Okamoto K, Yamaguchi A, Morishita Y, Kadono Y, et al. Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J Exp Med. 2006; 203(12):2673-2682. doi: 10.1084/jem.20061775
70. Lavocat F, Maggi L, Annunziato F, Miossec P. T-cell clones from Th1, Th17 or Th1/17 lineages and their signature cytokines have different capacity to activate endothelial cells or synoviocytes. Cytokine. 2016; 88:241-250. doi: 10.1016/j.cyto.2016.09.019
71. Lavocat F, Osta B, Miossec P. Increased sensitivity of rheumatoid synoviocytes to Schnurri-3 expression in TNF-α and IL-17A induced osteoblastic differentiation. Bone. 2016; 87:89-96. doi: 10.1016/j.bone.2016.04.008
72. Dharmapatni AA, Smith MD, Crotti TN, Holding CA, Vincent C, Weedon HM, et al. TWEAK and Fn14 expression in the pathogenesis of joint inflammation and bone erosion in rheumatoid arthritis. Arthritis Res Ther. 2011;13(2):R51. doi: 10.1186/ar3294
73. Park JS, Park MK, Lee SY, Oh HJ, Lim MA, Cho WT, et al. TWEAK promotes the production of interleukin-17 in rheumatoid arthritis. Cytokine. 2012;60(1):143-149. doi: 10.1016/j.cyto.2012.06.285
74. Daoussis D, Andonopoulos AP, Liossis SN. Wnt pathway and IL-17: novel regulators of joint remodeling in rheumatic diseases. Looking beyond the RANK-RANKL-OPG axis. Semin Arthritis Rheum. 2010;39(5):369-383. doi: 10.1016/j.semarthrit.2008.10.008
75. Honorati MC, Neri S, Cattini L, Facchini A. Interleukin-17, a regulator of angiogenic factor release by synovial fibroblasts. Osteoarthritis Cartilage. 2006; 14(4):345-352. doi: 10.1016/j.joca.2005.10.004
76. Zhang Q, Wu J, Cao Q, Xiao L, Wang L, He D, et al. A critical role of Cyr61 in interleukin-17-dependent proliferation of fibroblast-like synoviocytes in rheumatoid arthritis. Arthritis Rheum. 2009;60(12):3602-3612. doi: 10.1002/art.24999
77. Lee SY, Kwok SK, Son HJ, Ryu JG, Kim EK, Oh HJ, et al. IL-17-mediated Bcl-2 expression regulates survival of fibroblast-like synoviocytes in rheumatoid arthritis through STAT3 activation. Arthritis Res Ther. 2013;15(1):R31. doi: 10.1186/ar4179
78. Benedetti G, Bonaventura P, Lavocat F, Miossec P. IL-17A and TNF-α increase the expression of the antiapoptotic adhesion molecule Amigo-2 in arthritis synoviocytes. Front Immunol. 2016; 7:254. doi: 10.3389/fimmu.2016.00254
79. Toh ML, Gonzales G, Koenders MI, Tournadre A, Boyle D, Lubberts E, et al. Role of interleukin 17 in arthritis chronicity through survival of synoviocytes via regulation of synoviolin expression. PLoS One. 2010;5(10):e13416. doi: 10.1371/journal.pone.0013416
80. Kim EK, Kwon JE, Lee SY, Lee EJ, Kim DS, Moon SJ, et al. IL-17-mediated mitochondrial dysfunction impairs apoptosis in rheumatoid arthritis synovial fibroblasts through activation of autophagy. Cell Death Dis. 2017;8(1):e2565. doi: 10.1038/cddis.2016.490
81. Eljaafari A, Tartelin ML, Aissaoui H, Chevrel G, Osta B, Lavocat F, et al. Bone marrow-derived and synovium-derived mesenchymal cells promote Th17 cell expansion and activation through caspase 1 activation: Contribution to the chronicity of rheumatoid arthritis. Arthritis Rheum. 2012;64(7):2147-2157. doi: 10.1002/art.34391
82. Noack M, Ndongo-Thiam N, Miossec P. Interaction among activated lymphocytes and mesenchymal cells through podoplanin is critical for a high IL-17 secretion. Arthritis Res Ther. 2016;18:148. doi: 10.1186/s13075-016-1046-6
83. Metawi SA, Abbas D, Kamal MM, Ibrahim MK. Serum and synovial fluid levels of interleukin-17 in correlation with disease activity in patients with RA. Clin Rheumatol. 2011;30(9):1201-1207. doi: 10.1007/s10067-011-1737-y
84. Suurmond J, Dorjée AL, Boon MR, Knol EF, Huizinga TW, Toes RE, et al. Mast cells are the main interleukin 17-positive cells in anticitrullinated protein antibody-positive and -negative rheumatoid arthritis and osteoarthritis synovium. Arthritis Res Ther. 2011;13(5):R150. doi: 10.1186/ar3466
85. Ziolkowska M, Koc A, Luszczykiewicz G, Ksiezopolska-Pietrzak K, Klimczak E, Chwalinska-Sadowska H, et al. High levels of IL-17 in rheumatoid arthritis patients: IL-15 triggers in vitro IL-17 production via cyclosporin A-sensitive mechanism. J Immunol. 2000;164(5):2832-2838. doi: 10.4049/jimmunol.164.5.2832
86. Misra S, Mondal S, Chatterjee S, Dutta S, Sinha D, Bhattacharjee D, et al. Interleukin-17 as a predictor of subclinical synovitis in the remission state of rheumatoid arthritis. Cytokine. 2022;153:155837. doi: 10.1016/j.cyto.2022.155837
87. Ndongo-Thiam N, Miossec P. A cell-based bioassay for circulating bioactive IL-17: Application to destruction in rheumatoid arthritis. Ann Rheum Dis. 2015;74(8):1629-1631. doi: 10.1136/annrheumdis-2014-207110
88. Kotake S, Udagawa N, Takahashi N, Matsuzaki K, Itoh K, Ishiyama S, et al. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest. 1999;103(9):1345-1352. doi: 10.1172/JCI5703
89. Siloşi I, Boldeanu MV, Cojocaru M, Biciuşcă V, Pădureanu V, Bogdan M, et al. The relationship of cytokines IL-13 and IL-17 with autoantibodies profile in early rheumatoid arthritis. J Immunol Res. 2016;2016:3109135. doi: 10.1155/2016/3109135
90. Costa CM, Santos MATD, Pernambuco AP. Elevated levels of inflammatory markers in women with rheumatoid arthritis. J Immunoassay Immunochem. 2019;40(5):540-554. doi: 10.1080/15321819.2019.1649695
91. Schofield C, Fischer SK, Townsend MJ, Mosesova S, Peng K, Setiadi AF, et al. Characterization of IL-17AA and IL-17FF in rheumatoid arthritis and multiple sclerosis. Bioanalysis. 2016;8(22):2317-2327. doi: 10.4155/bio-2016-0207
92. Lee YH, Bae SC. Associations between circulating IL-17 levels and rheumatoid arthritis and between IL-17 gene polymorphisms and disease susceptibility: A meta-analysis. Postgrad Med J. 2017;93(1102):465-471. doi: 10.1136/postgradmedj-2016-134637
93. Honorati MC, Meliconi R, Pulsatelli L, Canè S, Frizziero L, Facchini A. High in vivo expression of interleukin-17 receptor in synovial endothelial cells and chondrocytes from arthritis patients. Rheumatology (Oxford). 2001;40(5):522-527. doi: 10.1093/rheumatology/40.5.522
94. Kirkham BW, Lassere MN, Edmonds JP, Juhasz KM, Bird PA, Lee CS, et al. Synovial membrane cytokine expression is predictive of joint damage progression in rheumatoid arthritis: A two-year prospective study (the DAMAGE study cohort). Arthritis Rheum. 2006;54(4):1122-1131. doi: 10.1002/art.21749
95. Kim KW, Cho ML, Park MK, Yoon CH, Park SH, Lee SH, et al. Increased interleukin-17 production via a phosphoinositide 3-kinase/Akt and nuclear factor kappaB-dependent pathway in patients with rheumatoid arthritis. Arthritis Res Ther. 2005;7(1):R139-R148. doi: 10.1186/ar1470
96. Zrioual S, Ecochard R, Tournadre A, Lenief V, Cazalis MA, Miossec P. Genome-wide comparison between IL-17A- and IL-17F-induced effects in human rheumatoid arthritis synoviocytes. J Immunol. 2009;182(5):3112-3120. doi: 10.4049/jimmunol.0801967
97. Lee K, Min HK, Koh SH, Lee SH, Kim HR, Ju JH, et al. Prognostic signature of interferon-γ and interleurkin-17A in early rheumatoid arthritis. Clin Exp Rheumatol. 2022;40(5):999-1005. doi: 10.55563/clinexprheumatol/mkbvch
98. Kokkonen H, Söderström I, Rocklöv J, Hallmans G, Lejon K, Rantapää Dahlqvist S. Up-regulation of cytokines and chemokines predates the onset of rheumatoid arthritis. Arthritis Rheum. 2010;62(2):383-391. doi: 10.1002/art.27186
99. Raza K, Falciani F, Curnow SJ, Ross EJ, Lee CY, Akbar AN, et al. Early rheumatoid arthritis is characterized by a distinct and transient synovial fluid cytokine profile of T cell and stromal cell origin. Arthritis Res Ther. 2005;7(4):R784-R795. doi: 10.1186/ar1733
100. van Hamburg JP, Asmawidjaja PS, Davelaar N, Mus AM, Colin EM, Hazes JM, et al. Th17 cells, but not Th1 cells, from patients with early rheumatoid arthritis are potent inducers of matrix metalloproteinases and proinflammatory cytokines upon synovial fibroblast interaction, including autocrine interleukin-17A production. Arthritis Rheum. 2011;63(1):73-83. doi: 10.1002/art.30093
101. Kotake S, Nanke Y, Yago T, Kawamoto M, Kobashigawa T, Yamanaka H. Elevated ratio of Th17 cell-derived Th1 cells (CD161(+)Th1 cells) to CD161(+)Th17 cells in peripheral blood of early-onset rheumatoid arthritis patients. Biomed Res Int. 2016;2016:4186027. doi: 10.1155/2016/4186027
102. Feldmann M, Maini RN. Anti-TNF alpha therapy of rheumatoid arthritis: What have we learned? Annu Rev Immunol. 2001;19:163-196. doi: 10.1146/annurev.immunol.19.1.163
103. Fossiez F, Djossou O, Chomarat P, Flores-Romo L, Ait-Yahia S, Maat C, et al. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J Exp Med. 1996;183(6):2593-2603. doi: 10.1084/jem.183.6.2593
104. Hartupee J, Liu C, Novotny M, Li X, Hamilton T. IL-17 enhances chemokine gene expression through mRNA stabilization. J Immunol. 2007;179(6):4135-4141. doi: 10.4049/jimmunol.179.6.4135
105. Hartupee J, Liu C, Novotny M, Sun D, Li X, Hamilton TA. IL-17 signaling for mRNA stabilization does not require TNF receptor-associated factor 6. J Immunol. 2009;182(3):1660-1666. doi: 10.4049/jimmunol.182.3.1660
106. Herjan T, Hong L, Bubenik J, Bulek K, Qian W, Liu C, et al. IL-17-receptor-associated adaptor Act1 directly stabilizes mRNAs to mediate IL-17 inflammatory signaling. Nat Immunol. 2018;19(4):354-365. doi: 10.1038/s41590-018-0071-9
107. Beringer A, Thiam N, Molle J, Bartosch B, Miossec P. Synergistic effect of interleukin-17 and tumour necrosis factor-α on inflammatory response in hepatocytes through interleukin-6-dependent and independent pathways. Clin Exp Immunol. 2018;193(2):221-233. doi: 10.1111/cei.13140
108. Dayer JM. The pivotal role of interleukin-1 in the clinical manifestations of rheumatoid arthritis. Rheumatology (Oxford). 2003;42(Suppl 2):ii3-ii10. doi: 10.1093/rheumatology/keg326
109. Chabaud M, Lubberts E, Joosten L, van Den Berg W, Miossec P. IL-17 derived from juxta-articular bone and synovium contributes to joint degradation in rheumatoid arthritis. Arthritis Res. 2001;3(3):168-177. doi: 10.1186/ar294
110. Kehlen A, Pachnio A, Thiele K, Langner J. Gene expression induced by interleukin-17 in fibroblast-like synoviocytes of patients with rheumatoid arthritis: upregulation of hyaluronan-binding protein TSG-6. Arthritis Res Ther. 2003;5(4):R186-R192. doi: 10.1186/ar762
111. Wu Q, Wang Y, Wang Q, Yu D, Wang Y, Song L, et al. The bispecific antibody aimed at the vicious circle of IL-1β and IL-17A, is beneficial for the collagen-induced rheumatoid arthritis of mice through NF-κB signaling pathway. Immunol Lett. 2016;179:68-79. doi: 10.1016/j.imlet.2016.09.001
112. Lee KMC, Achuthan AA, Hamilton JA. GM-CSF: A promising target in inflammation and autoimmunity. Immunotargets Ther. 2020;9:225-240. doi: 10.2147/ITT.S262566
113. van Nieuwenhuijze AE, van de Loo FA, Walgreen B, Bennink M, Helsen M, van den Bersselaar L, et al. Complementary action of granulocyte macrophage colony-stimulating factor and interleukin-17A induces interleukin-23, receptor activator of nuclear factor-κB ligand, and matrix metalloproteinases and drives bone and cartilage pathology in experimental arthritis: Rationale for combination therapy in rheumatoid arthritis. Arthritis Res Ther. 2015;17(1):163. doi: 10.1186/s13075-015-0683-5
114. Dakin SG, Coles M, Sherlock JP, Powrie F, Carr AJ, Buckley CD. Pathogenic stromal cells as therapeutic targets in joint inflammation. Nat Rev Rheumatol. 2018;14(12):714-726. doi: 10.1038/s41584-018-0112-7
115. Liu D, Cao T, Wang N, Liu C, Ma N, Tu R, et al. IL-25 attenuates rheumatoid arthritis through suppression of Th17 immune responses in an IL-13-dependent manner. Sci Rep. 2016;6:36002. doi: 10.1038/srep36002
116. Lavocat F, Ndongo-Thiam N, Miossec P. Interleukin-25 produced by synoviocytes has anti-inflammatory effects by acting as a receptor antagonist for interleukin-17A function. Front Immunol. 2017;8:647. doi: 10.3389/fimmu.2017.00647
117. Ndongo-Thiam N, Clement A, Pin JJ, Razanajaona-Doll D, Miossec P. Negative association between autoantibodies against IL-17, IL-17/anti-IL-17 antibody immune complexes and destruction in rheumatoid arthritis. Ann Rheum Dis. 2016;75(7):1420-1422. doi: 10.1136/annrheumdis-2016-209149
118. Fischer JA, Hueber AJ, Wilson S, Galm M, Baum W, Kitson C, et al. Combined inhibition of tumor necrosis factor α and interleukin-17 as a therapeutic opportunity in rheumatoid arthritis: Development and characterization of a novel bispecific antibody. Arthritis Rheumatol. 2015;67(1):51-62. doi: 10.1002/art.38896
119. Fleischmann RM, Wagner F, Kivitz AJ, Mansikka HT, Khan N, Othman AA, et al. Safety, tolerability, and pharmacodynamics of ABT-122, a tumor necrosis factor- and interleukin-17-targeted dual variable domain immunoglobulin, in patients with rheumatoid arthritis. Arthritis Rheumatol. 2017;69(12):2283-2291. doi: 10.1002/art.40319
120. Khatri A, Goss S, Jiang P, Mansikka H, Othman AA. Pharmacokinetics of ABT-122, a TNF-α- and IL-17A-targeted dual-variable domain immunoglobulin, in healthy subjects and patients with rheumatoid arthritis: Results from three phase I trials. Clin Pharmacokinet. 2018;57(5):613-623. doi: 10.1007/s40262-017-0580-y
121. Lyman M, Lieuw V, Richardson R, Timmer A, Stewart C, Granger S, et al. A bispecific antibody that targets IL-6 receptor and IL-17A for the potential therapy of patients with autoimmune and inflammatory diseases. J Biol Chem. 2018;293(24):9326-9334. doi: 10.1074/jbc.M117.818559
122. Qi J, Kan F, Ye X, Guo M, Zhang Y, Ren G, et al. A bispecific antibody against IL-1β and IL-17A is beneficial for experimental rheumatoid arthritis. Int Immunopharmacol. 2012;14(4):770-778. doi: 10.1016/j.intimp.2012.10.005
123. Benschop RJ, Chow CK, Tian Y, Nelson J, Barmettler B, Atwell S, et al. Development of tibulizumab, a tetravalent bispecific antibody targeting BAFF and IL-17A for the treatment of autoimmune disease. MAbs. 2019;11(6):1175-1190. doi: 10.1080/19420862.2019.1624463
124. Blanco FJ, Möricke R, Dokoupilova E, Codding C, Neal J, Andersson M, et al. Secukinumab in active rheumatoid arthritis: A phase III randomized, double-blind, active comparator- and placebo-controlled study. Arthritis Rheumatol. 2017;69(6):1144-1153. doi: 10.1002/art.40070
125. Tahir H, Deodhar A, Genovese M, Takeuchi T, Aelion J, Van den Bosch F, et al. Secukinumab in active rheumatoid arthritis after anti-TNFα therapy: A randomized, double-blind placebo-controlled phase 3 study. Rheumatol Ther. 2017;4(2):475-488. doi: 10.1007/s40744-017-0086-y
126. Burmester GR, Durez P, Shestakova G, Genovese MC, Schulze-Koops H, Li Y, et al. Association of HLA-DRB1 alleles with clinical responses to the anti-interleukin-17A monoclonal antibody secukinumab in active rheumatoid arthritis. Rheumatology (Oxford). 2016;55(1):49-55. doi: 10.1093/rheumatology/kev258
127. Genovese MC, Greenwald M, Cho CS, Berman A, Jin L, Cameron GS, et al. A phase II randomized study of subcutaneous ixekizumab, an anti-interleukin-17 monoclonal antibody, in rheumatoid arthritis patients who were naive to biologic agents or had an inadequate response to tumor necrosis factor inhibitors. Arthritis Rheumatol. 2014;66(7):1693-1704. doi: 10.1002/art.38617
128. Pavelka K, Chon Y, Newmark R, Lin SL, Baumgartner S, Erondu N. A study to evaluate the safety, tolerability, and efficacy of brodalumab in subjects with rheumatoid arthritis and an inadequate response to methotrexate. J Rheumatol. 2015;42(6):912-919. doi: 10.3899/jrheum.141271
129. Glatt S, Taylor PC, McInnes IB, Schett G, Landewé R, Baeten D, et al. Efficacy and safety of bimekizumab as add-on therapy for rheumatoid arthritis in patients with inadequate response to certolizumab pegol: A proof-of-concept study. Ann Rheum Dis. 2019;78(8):1033-1040. doi: 10.1136/annrheumdis-2018-214943
130. Genovese MC, Weinblatt ME, Aelion JA, Mansikka HT, Peloso PM, Chen K, et al. ABT-122, a bispecific dual variable domain immunoglobulin targeting tumor necrosis factor and interleukin-17A, in patients with rheumatoid arthritis with an inadequate response to methotrexate: A randomized, double-blind study. Arthritis Rheumatol. 2018;70(11):1710-1720. doi: 10.1002/art.40580
131. Smolen JS, Agarwal SK, Ilivanova E, Xu XL, Miao Y, Zhuang Y, et al. A randomised phase II study evaluating the efficacy and safety of subcutaneously administered ustekinumab and guselkumab in patients with active rheumatoid arthritis despite treatment with methotrexate. Ann Rheum Dis. 2017;76(5):831-839. doi: 10.1136/annrheumdis-2016-209831
132. Hueber W, Patel DD, Dryja T, Wright AM, Koroleva I, Bruin G, et al.; Effects of AIN457, a fully human antibody to interleukin-17A, on psoriasis, rheumatoid arthritis, and uveitis. Sci Transl Med. 2010;2(52):52ra72. doi: 10.1126/scitranslmed.3001107
133. Genovese MC, Durez P, Richards HB, Supronik J, Dokoupilova E, Mazurov V, et al. Efficacy and safety of secukinumab in patients with rheumatoid arthritis: A phase II, dose-finding, double-blind, randomised, placebo controlled study. Ann Rheum Dis. 2013;72(6):863-869. doi: 10.1136/annrheumdis-2012-201601
134. Strand V, Kosinski M, Gnanasakthy A, Mallya U, Mpofu S. Secukinumab treatment in rheumatoid arthritis is associated with incremental benefit in the clinical outcomes and HRQoL improvements that exceed minimally important thresholds. Health Qual Life Outcomes. 2014;12:31. doi: 10.1186/1477-7525-12-31
135. Genovese MC, Durez P, Richards HB, Supronik J, Dokoupilova E, Aelion JA, et al. One-year efficacy and safety results of secukinumab in patients with rheumatoid arthritis: phase II, dose-finding, double-blind, randomized, placebo-controlled study. J Rheumatol. 2014;41(3):414-421. doi: 10.3899/jrheum.130637
136. Tlustochowicz W, Rahman P, Seriolo B, Krammer G, Porter B, Widmer A, et al. Efficacy and safety of subcutaneous and intravenous loading dose regimens of secukinumab in patients with active rheumatoid arthritis: Results from a randomized phase II study. J Rheumatol. 2016;43(3):495-503. doi: 10.3899/jrheum.150117
137. de Almeida DE, Ling S, Holoshitz J. New insights into the functional role of the rheumatoid arthritis shared epitope. FEBS Lett. 2011;585(23):3619-3626. doi: 10.1016/j.febslet.2011.03.035
138. Koenders MI, Marijnissen RJ, Joosten LA, Abdollahi-Roodsaz S, Di Padova FE, van de Loo FA, et al. T cell lessons from the rheumatoid arthritis synovium SCID mouse model: CD3-rich synovium lacks response to CTLA-4Ig but is successfully treated by interleukin-17 neutralization. Arthritis Rheum. 2012;64(6): 1762-1770. doi: 10.1002/art.34352
139. Huang Y, Fan Y, Liu Y, Xie W, Zhang Z. Efficacy and safety of secukinumab in active rheumatoid arthritis with an inadequate response to tumor necrosis factor inhibitors: A meta-analysis of phase III randomized controlled trials. Clin Rheumatol. 2019;38(10):2765-2776. doi: 10.1007/s10067-019-04595-1
140. Dokoupilová E, Aelion J, Takeuchi T, Malavolta N, Sfikakis PP, Wang Y, et al. Secukinumab after anti-tumour necrosis factor-α therapy: A phase III study in active rheumatoid arthritis. Scand J Rheumatol. 2018;47(4):276-281. doi: 10.1080/03009742.2017.1390605
141. Genovese MC, Weinblatt ME, Mease PJ, Aelion JA, Peloso PM, Chen K, et al. Dual inhibition of tumour necrosis factor and interleukin-17A with ABT-122: Open-label long-term extension studies in rheumatoid arthritis or psoriatic arthritis. Rheumatology (Oxford). 2018;57(11):1972-1981. doi: 10.1093/rheumatology/key173
142. Georgantas RW III, Ruzek M, Davis JW, Hong F, Asque E, Idler K, et al. Genomic and epigenetic bioinformatics demonstrate dual TNF-α and IL17A target engagement by ABT-122, and suggest mainly TNF-α-mediated relative target contribution to drug response in MTX-IR rheumatoid arthritis patients. Arthritis Rheumatol. 2016;68(Suppl 10). URL: https://acrabstracts.org/abstract/genomic-and-epigenetic-bioinformatics-demonstrate-dual-tnf-%ce%b1-and-il17a-target-engagement-by-abt-122-and-suggest-mainly-tnf-%ce%b1-mediated-relative-target-contribution-to-drug-response-i/. (Accessed: DD Month 2023).
143. Mease PJ, Genovese MC, Weinblatt ME, Peloso PM, Chen K, Othman AA, et al. Phase II study of ABT-122, a tumor necrosis factor- and interleukin-17A-targeted dual variable domain immunoglobulin, in patients with psoriatic arthritis with an inadequate response to methotrexate. Arthritis Rheumatol. 2018;70(11):1778-1789. doi: 10.1002/art.40579
144. Genovese MC, Becker JC, Schiff M, Luggen M, Sherrer Y, Kremer J, et al. Abatacept for rheumatoid arthritis refractory to tumor necrosis factor alpha inhibition. N Engl J Med. 2005;353(11):1114-1123. doi: 10.1056/NEJMoa050524
145. Smolen JS, Kay J, Doyle M, Landewé R, Matteson EL, Gaylis N, et al. Golimumab in patients with active rheumatoid arthritis after treatment with tumor necrosis factor α inhibitors: Findings with up to five years of treatment in the multicenter, randomized, double-blind, placebo-controlled, phase 3 GO-AFTER study. Arthritis Res Ther. 2015;17(1):14. doi: 10.1186/s13075-015-0516-6
146. Emery P, Keystone E, Tony HP, Cantagrel A, van Vollenhoven R, Sanchez A, et al. IL-6 receptor inhibition with tocilizumab improves treatment outcomes in patients with rheumatoid arthritis refractory to anti-tumour necrosis factor biologicals: Results from a 24-week multicentre randomised placebo-controlled trial. Ann Rheum Dis. 2008;67(11):1516-1523. doi: 10.1136/ard.2008.092932
147. Cohen SB, Emery P, Greenwald MW, Dougados M, Furie RA, Genovese MC, et al.; REFLEX Trial Group. Rituximab for rheumatoid arthritis refractory to anti-tumor necrosis factor therapy: Results of a multicenter, randomized, double-blind, placebo-controlled, phase III trial evaluating primary efficacy and safety at twenty-four weeks. Arthritis Rheum. 2006;54(9):2793-2806. doi: 10.1002/art.22025
148. Schett G, Elewaut D, McInnes IB, Dayer JM, Neurath MF. How cytokine networks fuel inflammation: Toward a cytokine-based disease taxonomy. Nat Med. 2013;19(7):822-824. doi: 10.1038/nm.3260
149. McInnes IB, Buckley CD, Isaacs JD. Cytokines in rheumatoid arthritis – shaping the immunological landscape. Nat Rev Rheumatol. 2016;12(1):63-68. doi: 10.1038/nrrheum.2015.171
150. Schett G, McInnes IB, Neurath MF. Reframing immune-mediated inflammatory diseases through signature cytokine hubs. N Engl J Med. 2021;385(7):628-639. doi: 10.1056/NEJMra1909094
151. He C, Xue C, Zhu G, Kang P. Efficacy and safety of interleukin-17 inhibitors in the treatment of chronic rheumatic diseases: A combined and updated meta-analysis. J Clin Pharm Ther. 2021;46(4):895-906. doi: 10.1111/jcpt.13416
152. Tam HKJ, Robinson PC, Nash P. Inhibiting IL-17A and IL-17F in rheumatic disease: Therapeutics help to elucidate disease mechanisms. Curr Rheumatol Rep. 2022;24(10):310-320. doi: 10.1007/s11926-022-01084-4
153. van Baarsen LG, Lebre MC, van der Coelen D, Aarrass S, Tang MW, Ramwadhdoebe TH, et al. Heterogeneous expression pattern of interleukin 17A (IL-17A), IL-17F and their receptors in synovium of rheumatoid arthritis, psoriatic arthritis and osteoarthritis: Possible explanation for nonresponse to anti-IL-17 therapy? Arthritis Res Ther. 2014;16(4):426. doi: 10.1186/s13075-014-0426-z
154. Gullick NJ, Evans HG, Church LD, Jayaraj DM, Filer A, Kirkham BW, et al. Linking power Doppler ultrasound to the presence of Th17 cells in the rheumatoid arthritis joint. PLoS One. 2010;5(9):e12516. doi: 10.1371/journal.pone.0012516
155. Chen DY, Chen YM, Chen HH, Hsieh CW, Lin CC, Lan JL. Increasing levels of circulating Th17 cells and interleukin-17 in rheumatoid arthritis patients with an inadequate response to anti-TNF-α therapy. Arthritis Res Ther. 2011;13(4):R126. doi: 10.1186/ar3431
156. Alzabin S, Abraham SM, Taher TE, Palfreeman A, Hull D, McNamee K, et al. Incomplete response of inflammatory arthritis to TNFα blockade is associated with the Th17 pathway. Ann Rheum Dis. 2012;71(10):1741-1748. doi: 10.1136/annrheumdis-2011-201024
157. Hull DN, Williams RO, Pathan E, Alzabin S, Abraham S, Taylor PC. Anti-tumour necrosis factor treatment increases circulating T helper type 17 cells similarly in different types of inflammatory arthritis. Clin Exp Immunol. 2015;181(3):401-406. doi: 10.1111/cei.12626
158. Hull DN, Cooksley H, Chokshi S, Williams RO, Abraham S, Taylor PC. Increase in circulating Th17 cells during anti-TNF therapy is associated with ultrasonographic improvement of synovitis in rheumatoid arthritis. Arthritis Res Ther. 2016;18(1):303. doi: 10.1186/s13075-016-1197-5
159. Yue C, You X, Zhao L, Wang H, Tang F, Zhang F, et al. The effects of adalimumab and methotrexate treatment on peripheral Th17 cells and IL-17/IL-6 secretion in rheumatoid arthritis patients. Rheumatol Int. 2010;30(12):1553-1557. doi: 10.1007/s00296-009-1179-x
160. Aerts NE, De Knop KJ, Leysen J, Ebo DG, Bridts CH, Weyler JJ, et al. Increased IL-17 production by peripheral T helper cells after tumour necrosis factor blockade in rheumatoid arthritis is accompanied by inhibition of migration-associated chemokine receptor expression. Rheumatology (Oxford). 2010;49(12):2264-2272. doi: 10.1093/rheumatology/keq224
161. Basdeo SA, Cluxton D, Sulaimani J, Moran B, Canavan M, Orr C, et al. Ex-Th17 (nonclassical Th1) cells are functionally distinct from classical Th1 and Th17 cells and are not constrained by regulatory T cells. J Immunol. 2017;198(6):2249-2259. doi: 10.4049/jimmunol.1600737
162. Millier MJ, Fanning NC, Frampton C, Stamp LK, Hessian PA. Plasma interleukin-23 and circulating IL-17A+IFNγ+ ex-Th17 cells predict opposing outcomes of anti-TNF therapy in rheumatoid arthritis. Arthritis Res Ther. 2022;24(1):57. doi: 10.1186/s13075-022-02748-3
163. Дибров ДА. АЦЦП-негативный ревматоидный артрит – клинические и иммунологические особенности. Научно-практическая ревматология. 2022;60(3):314-326. doi: 10.47360/1995-4484-2022-314-326
164. Li K, Wang M, Zhao L, Liu Y, Zhang X. ACPA-negative rheumatoid arthritis: from immune machanisms to clinical rtanskation. eBioMed. 2022;m83:104233. doi: 10/10/1016/jebiom.2022.104233
165. Myasoedova E, Davis J, Matteson EL, Crowson CS. Is the epidemiology of rheumatoid arthritis changing? Results from a population-based incidence study, 1985–2014. Ann Rheum Dis. 202079(4):440-444. doi: 10.1136/annrheumdis-2019-216694
166. Barra L, Pope JE, Orav JE, Boire G, Haraoui B, Hitchon C, et al.; CATCH Investigators. Prognosis of seronegative patients in a large prospective cohort of patients with early inflammatory arthritis. J Rheumatol. 2014;41(12):2361-2369. doi: 10.3899/jrheum.140082
167. Carbonell-Bobadilla N, Soto-Fajardo C, Amezcua-Guerra LM, Batres-Marroquín AB, Vargas T, Hernández-Diazcouder A, et al. Patients with seronegative rheumatoid arthritis have a different phenotype than seropositive patients: A clinical and ultrasound study. Front Med (Lausanne). 2022;9:978351. doi: 10.3389/fmed.2022.978351
168. Nordberg LB, Lillegraven S, Lie E, Aga AB, Olsen IC, Hammer HB, et al.; and the ARCTIC working group. Patients with seronegative RA have more inflammatory activity compared with patients with seropositive RA in an inception cohort of DMARD-naïve patients classified according to the 2010 ACR/EULAR criteria. Ann Rheum Dis. 2017;76(2):341-345. doi: 10.1136/annrheumdis-2015-208873
169. Choi S, Lee KH. Clinical management of seronegative and seropositive rheumatoid arthritis: A comparative study. PLoS One. 2018;13(4):e0195550. doi: 10.1371/journal.pone.0195550
170. Qu C-H, Hou Y, Bi YF, Han QR, Jiao QR, Zou QF. Diagnostic vakues of serum IL-10 and IL-17 in rheumatoid arthritis and their correlation with serum 14-304g prorein. Eur Rev Med Pharmacol Scu. 2019;23:1898-1906.
171. Mease PJ, Bhutani MK, Hass S, Yi E, Hur P, Kim N. Comparison of clinical manifestations in rheumatoid arthritis vs. spondyloarthritis: A systematic literature review. Rheumatol Ther. 2022;9(2):331-378. doi: 10.1007/s40744-021-00407-8
172. Merola JF, Espinoza LR, Fleischmann R. Distinguishing rheumatoid arthritis from psoriatic arthritis. RMD Open. 2018;4(2):e000656. doi: 10.1136/rmdopen-2018-000656
173. Paalanen K, Puolakka K, Nikiphorou E, Hannonen P, Sokka T. Is seronegative rheumatoid arthritis true rheumatoid arthritis? A nationwide cohort study. Rheumatology (Oxford). 2021;60(5):2391-2395. doi: 10.1093/rheumatology/keaa623
174. Osman N, Mohamed FI, Hassan AA. Kamel SR, Ahmed SS. Frequency of inflammatory back pain and sacroiliitis in Egyptian patients with rheumatoid arthritis. Egypt J Radiol Nucl Med. 2019;50:25. doi: 10.1186/s43055-019-0019-6
175. Can G, Solmaz D, Binicier O, Akar S, Birlik M, Soysal O, et al. High frequency of inflammatory back pain and other features of spondyloarthritis in patients with rheumatoid arthritis. Rheumatol Int. 2013;33(5):1289-1293. doi: 10.1007/s00296-012-2553-7
176. Flores-Robles BJ, Labrador-Sánchez E, Andrés-Trasahedo E, Pinillos-Aransay V, Joven-Zapata MY, Torrecilla Lerena L, et al. Concurrence of rheumatoid arthritis and ankylosing spondylitis: Analysis of seven cases and literature review. Case Rep Rheumatol. 2022;2022:8500567. doi: 10.1155/2022/8500567
177. Zhao GW, Huang LF, Li D, Zeng Y. Ankylosing spondylitis coexists with rheumatoid arthritis and Sjögren’s syndrome: A case report with literature review. Clin Rheumatol. 2021;40(5):2083-2086. doi: 10.1007/s10067-020-05350-7
178. Isaacs JD, Cohen SB, Emery P, Tak PP, Wang J, Lei G, et al. Effect of baseline rheumatoid factor and anticitrullinated peptide antibody serotype on rituximab clinical response: A meta-analysis. Ann Rheum Dis. 2013;72(3):329-336. doi: 10.1136/annrheumdis-2011-201117
179. Gottenberg JE, Courvoisier DS, Hernandez MV, Iannone F, Lie E, Canhão H, et al. Brief report: Association of rheumatoid factor and anti-citrullinated protein antibody positivity with better effectiveness of abatacept: Results from the pan-European registry analysis. Arthritis Rheumatol. 2016;68(6):1346-1352. doi: 10.1002/art.39595
180. Harrold LR, Litman HJ, Connolly SE, Kelly S, Hua W, Alemao E, et al. Effect of anticitrullinated protein antibody status on response to abatacept or antitumor necrosis factor-α therapy in patients with rheumatoid arthritis: A US national observational study. J Rheumatol. 2018;45(1):32-39. doi: 10.3899/jrheum.170007
181. Mulhearn B, Barton A, Viatte S. Using the immunophenotype to predict response to biologic drugs in rheumatoid arthritis. J Pers Med. 2019;9(4):46. doi: 10.3390/jpm9040046
182. Potter C, Hyrich KL, Tracey A, Lunt M, Plant D, Symmons DP, et al.; BRAGGSS. Association of rheumatoid factor and anti-cyclic citrullinated peptide positivity, but not carriage of shared epitope or PTPN22 susceptibility variants, with anti-tumour necrosis factor response in rheumatoid arthritis. Ann Rheum Dis. 2009;68(1):69-74. doi: 10.1136/ard.2007.084715
Рецензия
Для цитирования:
Насонов Е.Л., Авдеева А.С., Коротаева Т.В., Дубинина Т.В., Усачева Ю.В. Роль интерлейкина 17 в патогенезе ревматоидного артрита. Есть ли перспективы применения ингибиторов ИЛ-17? Научно-практическая ревматология. 2023;61(2):165-180. https://doi.org/10.47360/1995-4484-2023-165-180
For citation:
Nasonov E.L., Avdeeva A.S., Korotaeva T.V., Dubinina T.V., Usacheva J.V. The role of interleukin 17 in the pathogenesis of rheumatoid arthritis. Are there any prospects for the use of IL-17 inhibitors? Rheumatology Science and Practice. 2023;61(2):165-180. (In Russ.) https://doi.org/10.47360/1995-4484-2023-165-180