Preview

Научно-практическая ревматология

Расширенный поиск

Современная концепция аутоиммунитета в ревматологии

https://doi.org/10.47360/1995-4484-2023-397-420

Аннотация

В спектре механизмов хронического воспаления центральное место занимают два фундаментальных патологических процесса – аутоиммунитет и аутовоспаление. Аутоиммунитет и аутовоспаление – взаимопотенциирующие патологические процессы, их развитие рассматривают в рамках «иммуновоспалительного» континуума (непрерывность при многообразии элементов), отражающего тесную взаимосвязь между врожденным и приобретенным типами иммунного ответа. Аутоиммунитет – ведущий механизм патогенеза большой группы хронических воспалительных заболеваний человека, определяющихся как аутоиммунные болезни, частота которых в популяции превышает 10%. Достижения молекулярной биологии, фармакогенетики и биоинформатики создали предпосылки для индивидуализации терапии аутоиммунных ревматических заболеваний в рамках концепции «персонифицированной» (personalized) медицины. Изучение механизмов иммунопатогенеза, совершенствование диагностики, расшифровка природы молекулярной таксономии, разработки подходов к профилактике и персонифицированной терапии аутоиммунных заболеваний человека относятся к числу приоритетных направлений медицины XXI века

Об авторе

Е. Л. Насонов
ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой»; ФГАОУ ВО «Первый Московский государственный медицинский университет имени И.М. Сеченова» Минздрава России (Сеченовский Университет)
Россия

115522, Москва, Каширское шоссе, 34а
119991, Москва, ул. Трубецкая, 8, стр. 2



Список литературы

1. Medzhitov R. The spectrum of inflammatory responses. Science. 2021;374(6571):1070-1075. doi: 10.1126/science.abi5200

2. Furman D, Campisi J, Verdin E, Carrera-Bastos P, Targ S, Franceschi C, et al. Chronic inflammation in the etiology of disease across the life span. Nat Med. 2019;25(12):1822-1832. doi: 10.1038/s41591-019-0675-0

3. McGonagle D, McDermott MF. A proposed classification of the immunological diseases. PLoS Med. 2006;3(8):e297. doi: 10.1371/journal.pmed.0030297

4. Szekanecz Z, McInnes IB, Schett G, Szamosi S, Benkő S, Szűcs G. Autoinflammation and autoimmunity across rheumatic and musculoskeletal diseases. Nat Rev Rheumatol. 2021;17(10):585-595. doi: 10.1038/s41584-021-00652-9

5. Kerner G, Neehus AL, Philippot Q, Bohlen J, Rinchai D, Kerrouche N, et al. Genetic adaptation to pathogens and increased risk of inflammatory disorders in post-Neolithic Europe. Cell Genom. 2023;3(2):100248. doi: 10.1016/j.xgen.2022.100248

6. Hedrich CM, Tsokos GC. Bridging the gap between autoinflammation and autoimmunity. Clin Immunol. 2013;147(3):151-154. doi: 10.1016/j.clim.2013.03.006

7. Peckham D, Scambler T, Savic S, McDermott MF. The burgeoning field of innate immune-mediated disease and autoinflammation. J Pathol. 2017;241(2):123-139. doi: 10.1002/path.4812

8. Theofilopoulos AN, Kono DH, Baccala R. The multiple pathways to autoimmunity. Nat Immunol. 2017;18(7):716-724. doi: 10.1038/ni.3731

9. Hedrich CM. Shaping the spectrum – From autoinflammation to autoimmunity. Clin Immunol. 2016;165:21-28. doi: 10.1016/j.clim.2016.03.002

10. Bluestone JA. Mechanisms of tolerance. Immunol Rev. 2011;24(1):5-19. doi: 10.1111/j.1600-065X.2011.01019.x

11. Stanway JA, Isaacs JD. Tolerance-inducing medicines in autoimmunity: Rheumatology and beyond. Lancet Rheumatol. 2020;2(9):e565-e575. doi: 10.1016/S2665-9913(20)30100-4

12. Насонов ЕЛ, Александрова ЕН, Авдеева АС, Рубцов ЮП. Т-регуляторные клетки при ревматоидном артрите. Научно-практическая ревматология. 2014;52(4):430-437. [Nasonov EL, Aleksandrova EN, Avdeeva AS, Rubtsov YuP. T-regulatory cells in rheumatoid arthritis. Nauchno-Prakticheskaya Revmatologia = Rheumatology Science and Practice. 2014;52(4):430-437 (In Russ.)]. doi: 10.14412/1995-4484-2014-430-437

13. Dominguez-Villar M, Hafler DA. Regulatory T cells in autoimmune disease. Nat Immunol. 2018;19(7):665-673. doi: 10.1038/s41590-018-0120-4

14. Yasuda K, Takeuchi Y, Hirota K. The pathogenicity of Th17 cells in autoimmune diseases. Semin Immunopathol. 2019;41(3):283-297. doi: 10.1007/s00281-019-00733-8

15. Salinas GF, Braza F, Brouard S, Tak PP, Baeten D. The role of B lymphocytes in the progression from autoimmunity to autoimmune disease. Clin Immunol. 2013;146(1):34-45. doi: 10.1016/j.clim.2012.10.005

16. Moudgil KD, Choubey D. Cytokines in autoimmunity: Role in induction, regulation, and treatment. J Interferon Cytokine Res. 2011;31(10):695-703. doi: 10.1089/jir.2011.0065

17. Chetaille Nézondet AL, Poubelle PE, Pelletier M. The evaluation of cytokines to help establish diagnosis and guide treatment of autoinflammatory and autoimmune diseases. J Leukoc Biol. 2020;108(2):647-657. doi: 10.1002/JLB.5MR0120-218RRR

18. Kochi Y. Genetics of autoimmune diseases: Perspectives from genome-wide association studies. Int Immunol. 2016;28(4):155-161. doi: 10.1093/intimm/dxw002

19. Cho JH, Gregersen PK. Genomics and the multifactorial nature of human autoimmune disease. N Engl J Med. 2011;365(17):1612-1623. doi: 10.1056/NEJMra1100030

20. Ballestar E, Sawalha AH, Lu Q. Clinical value of DNA methylation markers in autoimmune rheumatic diseases. Nat Rev Rheumatol. 2020;16(9):514-524. doi: 10.1038/s41584-020-0470-9

21. Blanco LP, Kaplan MJ. Metabolic alterations of the immune system in the pathogenesis of autoimmune diseases. PLoS Biol. 2023;21(4):e3002084. doi: 10.1371/journal.pbio.3002084

22. Rosenblum MD, Remedios KA, Abbas AK. Mechanisms of human autoimmunity. J Clin Invest. 2015;125(6):2228-2233. doi: 10.1172/JCI78088

23. Wang L, Wang FS, Gershwin ME. Human autoimmune diseases: A comprehensive update. J Intern Med. 2015;278(4):369-395. doi: 10.1111/joim.12395

24. Liu E, Perl A. Pathogenesis and treatment of autoimmune rheumatic diseases. Curr Opin Rheumatol. 2019;31(3):307-315. doi: 10.1097/BOR.0000000000000594

25. Pisetsky DS. Pathogenesis of autoimmune disease. Nat Rev Nephrol. 2023 May 10:1-16. doi: 10.1038/s41581-023-00720-1

26. Sundaresan B, Shirafkan F, Ripperger K, Rattay K. The role of viral infections in the onset of autoimmune diseases. Viruses. 2023;15(3):782. doi: 10.3390/v15030782

27. Schett G, McInnes IB, Neurath MF. Reframing immune-mediated inflammatory diseases through signature cytokine hubs. N Engl J Med. 2021;385(7):628-639. doi: 10.1056/NEJMra1909094

28. van Wesemael TJ, Huizinga TWJ, Toes REM, an der Woude D. From phenotype to pathophysiology – Placing rheumatic diseases in an immunological perspective. Lancet Rheumatol. 2022;4(3): e166-e167. doi: 10.1016/S2665-9913(21)00369-6

29. Moutsopoulos HM. Autoimmune rheumatic diseases: One or many diseases? J Transl Autoimmun. 2021;4:100129. doi: 10.1016/j.jtauto.2021.100129

30. Barturen G, Beretta L, Cervera R, Van Vollenhoven R, Alarcón-Riquelme ME. Moving towards a molecular taxonomy of autoimmune rheumatic diseases. Nat Rev Rheumatol. 2018;14(2):75-93. doi: 10.1038/nrrheum.2017.220

31. Насонов ЕЛ, Александрова ЕН, Новиков АА. Аутоиммунные ревматические заболевания – проблемы иммунопатологии и персонифицированной терапии. Вестник РАМН. 2015;70(2): 169-182. [Nasonov EL, Aleksandrova EN, Novikov AA. Autoimmune rheumatic diseases – Problems of immunopathology and personalized treatment. Annals of the Russian Academy of Medical Sciences. 2015; 70(2):169-182 (In Russ.)]. doi: 10.15690/vramn.v70i2.1310

32. Buckley CD, Chernajovsky L, Chernajovsky Y, Modis LK, O’Neill LA, Brown D, et al. Immune-mediated inflammation across disease boundaries: Breaking down research silos. Nat Immunol. 2021;22(11):1344-1348. doi: 10.1038/s41590-021-01044

33. Radner H, Yoshida K, Smolen JS, Solomon DH. Multimorbidity and rheumatic conditions-enhancing the concept of comorbidity. Nat Rev Rheumatol. 2014;10(4):252-256. doi: 10.1038/nrrheum.2013.212

34. Насонов ЕЛ, Александрова ЕН, Новиков АА. Аутоиммунные ревматические заболевания: итоги и перспективы научных исследований. Научно-практическая ревматология. 2015;53(3): 230-237. [Nasonov EL, Aleksandrova EN, Novikov AA. Autoimmune rheumatic diseases: Results and prospects for researches. Nauchno-Prakticheskaya Revmatologia = Rheumatology Science and Practice. 2015;53(3):230-237 (In Russ.)]. doi: 10.14412/1995-4484-2015-230-237

35. McGonagle D, Aydin SZ, Gül A, Mahr A, Direskeneli H. ‘MHCI-opathy’-unified concept for spondyloarthritis and Behçet disease. Nat Rev Rheumatol. 2015;11(12):731-740. doi: 10.1038/nrrheum.2015.147

36. Kuiper JJ, Prinz JC, Stratikos E, Kuśnierczyk P, Arakawa A, Springer S, et al.; EULAR studygroup MHC-I-opathies. EULAR study group on ‘MHC-I-opathy’: Identifying disease-overarching mechanisms across disciplines and borders. Ann Rheum Dis. 2023;82(7):887-896. doi: 10.1136/ard-2022-222852

37. Scrivo R, D’Angelo S, Carriero A, Castellani C, Perrotta FM, Conti F, et al. The conundrum of psoriatic arthritis: A pathogenetic and clinical pattern at the midpoint of autoinflammation and autoimmunity. Clin Rev Allergy Immunol. 2023;65(1):72-85. doi: 10.1007/s12016-021-08914-w

38. Mauro D, Thomas R, Guggino G, Lories R, Brown MA, Ciccia F. Ankylosing spondylitis: An autoimmune or autoinflammatory disease? Nat Rev Rheumatol. 2021;17(7):387-404. doi: 10.1038/s41584-021-00625-y

39. McGonagle D, Watad A, Savic S. Mechanistic immunological based classification of rheumatoid arthritis. Autoimmun Rev. 2018;17(11):1115-1123. doi: 10.1016/j.autrev.2018.06.001

40. Shin JI, Lee KH, Joo YH, Lee JM, Jeon J, Jung HJ, et al. Inflammasomes and autoimmune and rheumatic diseases: A comprehensive review. J Autoimmun. 2019;103:102299. doi: 10.1016/j.jaut.2019.06.010

41. Kahlenberg JM, Kang I. Advances in disease mechanisms and translational technologies: Clinicopathologic significance of inflammasome activation in autoimmune diseases. Arthritis Rheumatol. 2020;72(3):386-395. doi: 10.1002/art.41127

42. Eaton WW, Nguyen TQ, Pedersen MG, Mortensen PB, Rose NR. Comorbidity of autoimmune diseases: A visual presentation. Autoimmun Rev. 2020;19(10):102638. doi: 10.1016/j.autrev.2020.102638

43. Rojas M, Ramírez-Santana C, Acosta-Ampudia Y, Monsalve DM, Rodriguez-Jimenez M, Zapata E, et al. New insights into the taxonomy of autoimmune diseases based on polyautoimmunity. J Autoimmun. 2022;126:102780. doi: 10.1016/j.jaut.2021.102780

44. Frazzei G, van Vollenhoven RF, de Jong BA, Siegelaar SE, van Schaardenburg D. Preclinical autoimmune disease: A comparison of rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis and type 1 diabetes. Front Immunol. 2022;13:899372. doi: 10.3389/fimmu.2022.899372

45. Ma WT, Chang C, Gershwin ME, Lian ZX. Development of autoantibodies precedes clinical manifestations of autoimmune diseases: A comprehensive review. J Autoimmun. 2017;83:95-112. doi: 10.1016/j.jaut.2017.07.003

46. Bieber K, Hundt JE, Yu X, Ehlers M, Petersen F, Karsten CM, et al. Autoimmune pre-disease. Autoimmun Rev. 2023;22(2):103236. doi: 10.1016/j.autrev.2022.103236

47. McInnes IB, Gravallese EM. Immune-mediated inflammatory disease therapeutics: Past, present and future. Nat Rev Immunol. 2021;21(10):680-686. doi: 10.1038/s41577-021-00603-1

48. Miller FW. The increasing prevalence of autoimmunity and autoimmune diseases: An urgent call to action for improved understanding, diagnosis, treatment, and prevention. Curr Opin Immunol. 2023;80:102266. doi: 10.1016/j.coi.2022.102266

49. Conrad N, Misra S, Verbakel JY, Verbeke G, Molenberghs G, Taylor PN, et al. Incidence, prevalence, and co-occurrence of autoimmune disorders over time and by age, sex, and socioeconomic status: A population-based cohort study of 22 million individuals in the UK. Lancet. 2023;401(10391):1878-1890. doi: 10.1016/S0140-6736(23)00457-9

50. Jacobson DL, Gange SJ, Rose NR, Graham NM. Epidemiology and estimated population burden of selected autoimmune diseases in the United States. Clin Immunol Immunopathol. 1997;84(3):223-243. doi: 10.1006/clin.1997.4412

51. Thomas SL, Griffiths C, Smeeth L, Rooney C, Hall AJ. Burden of mortality associated with autoimmune diseases among females in the United Kingdom. Am J Public Health. 2010;100(11):2279-2287. doi: 10.2105/AJPH.2009.180273

52. Mitratza M, Klijs B, Hak AE, Kardaun JWPF, Kunst AE. Systemic autoimmune disease as a cause of death: mortality burden and comorbidities. Rheumatology (Oxford). 2021;60(3):1321-1330. doi: 10.1093/rheumatology/keaa537

53. David T, Ling SF, Barton A. Genetics of immune-mediated inflammatory diseases. Clin Exp Immunol. 2018;193(1):3-12. doi: 10.1111/cei.13101

54. Zhang HG, McDermott G, Seyok T, Huang S, Dahal K, L’Yi S, et al. Identifying shared genetic architecture between rheumatoid arthritis and other conditions: A phenome-wide association study with genetic risk scores. EBioMedicine. 2023;92:104581. doi: 10.1016/j.ebiom.2023.104581

55. Tizaoui K, Terrazzino S, Cargnin S, Lee KH, Gauckler P, Li H, et al. The role of PTPN22 in the pathogenesis of autoimmune diseases: A comprehensive review. Semin Arthritis Rheum. 2021;51(3):513-522. doi: 10.1016/j.semarthrit.2021.03.004

56. Coss SL, Zhou D, Chua GT, Aziz RA, Hoffman RP, Wu YL, et al. The complement system and human autoimmune diseases. J Autoimmun. 2023;137:102979. doi: 10.1016/j.jaut.2022.102979

57. Rodero MP, Crow YJ. Type I interferon-mediated monogenic autoinflammation: The type I interferonopathies, a conceptual overview. J Exp Med. 2016;213(12):2527-2538. doi: 10.1084/jem.20161596

58. Costa F, Beltrami E, Mellone S, Sacchetti S, Boggio E, Gigliotti CL, et al. Genes and microbiota interaction in monogenic autoimmune disorders. Biomedicines. 2023;11(4):1127. doi: 10.3390/biomedicines11041127

59. Cepika AM, Sato Y, Liu JM, Uyeda MJ, Bacchetta R, Roncarolo MG. Tregopathies: Monogenic diseases resulting in regulatory T-cell deficiency. J Allergy Clin Immunol. 2018;142(6):1679-1695. doi: 10.1016/j.jaci.2018.10.026

60. Xiao F, Rui K, Shi X, Wu H, Cai X, Lui KO, et al. Epigenetic regulation of B cells and its role in autoimmune pathogenesis. Cell Mol Immunol. 2022;19(11):1215-1234. doi: 10.1038/s41423-022-00933-7

61. Zhang L, Wu H, Zhao M, Chang C, Lu Q. Clinical significance of miRNAs in autoimmunity. J Autoimmun. 2020;109:102438. doi: 10.1016/j.jaut.2020.102438

62. Cutolo M, Straub RH. Sex steroids and autoimmune rheumatic diseases: State of the art. Nat Rev Rheumatol. 2020;16(11):628-644. doi: 10.1038/s41584-020-0503-4

63. Kopp W. Pathogenesis of (smoking-related) non-communicable diseases – Evidence for a common underlying pathophysiological pattern. Front Physiol. 2022;13:1037750. doi: 10.3389/fphys.2022.1037750

64. Ishikawa Y, Terao C. The impact of cigarette smoking on risk of rheumatoid arthritis: A Narrative review. Cells. 2020;9(2):475. doi: 10.3390/cells9020475

65. Holers VM, Demoruelle MK, Kuhn KA, Buckner JH, Robinson WH, Okamoto Y, et al. Rheumatoid arthritis and the mucosal origins hypothesis: Protection turns to destruction. Nat Rev Rheumatol. 2018;14(9):542-557. doi: 10.1038/s41584-018-0070-0

66. Cutolo M, Smith V, Paolino S, Gotelli E. Involvement of the secosteroid vitamin D in autoimmune rheumatic diseases and COVID-19. Nat Rev Rheumatol. 2023;19(5):265-287. doi: 10.1038/s41584-023-00944-2

67. Shaheen WA, Quraishi MN, Iqbal TH. Gut microbiome and autoimmune disorders. Clin Exp Immunol. 2022;209(2):161-174. doi: 10.1093/cei/uxac057

68. Galgani M, Bruzzaniti S, Matarese G. Immunometabolism and autoimmunity. Curr Opin Immunol. 2020;67:10-17. doi: 10.1016/j.coi.2020.07.002

69. Wong EKS, Kavanagh D. Diseases of complement dysregulation – An overview. Semin Immunopathol. 2018;40(1):49-64. doi: 10.1007/s00281-017-0663-8

70. Baines AC, Brodsky RA. Complementopathies. Blood Rev. 2017;31(4):213-223. doi: 10.1016/j.blre.2017.02.003

71. Chaturvedi S, Braunstein EM, Brodsky RA. Antiphospholipid syndrome: Complement activation, complement gene mutations, and therapeutic implications. J Thromb Haemost. 2021;19(3):607-616. doi: 10.1111/jth.15082

72. Chaturvedi S, Braunstein EM, Yuan X, Yu J, Alexander A, et al. Complement activity and complement regulatory gene mutations are associated with thrombosis in APS and CAPS. Blood. 2020 Jan 23;135(4):239-251. doi: 10.1182/blood.2019003863.

73. Rubin SJS, Bloom MS, Robinson WH. B cell checkpoints in autoimmune rheumatic diseases. Nat Rev Rheumatol. 2019;15(5):303-315. doi: 10.1038/s41584-019-0211-0

74. Hendriks RW, Corneth OBJ. B cell signaling and activation in autoimmunity. Cells. 2023;12(3):499. doi: 10.3390/cells12030499

75. de Gruijter NM, Jebson B, Rosser EC. Cytokine production by human B cells: Role in health and autoimmune disease. Clin Exp Immunol. 2022;210(3):253-262. doi: 10.1093/cei/uxac090

76. Mouat IC, Goldberg E, Horwitz MS. Age-associated B cells in autoimmune diseases. Cell Mol Life Sci. 2022;79(8):402. doi: 10.1007/s00018-022-04433-9

77. Ray A, Dittel BN. Mechanisms of regulatory B cell function in autoimmune and inflammatory diseases beyond IL-10. J Clin Med. 2017;6(1):12. doi: 10.3390/jcm6010012

78. Jenks SA, Cashman KS, Zumaquero E, Marigorta UM, Patel AV, Wang X, et al. Distinct effector B cells induced by unregulated Toll-like receptor 7 contribute to pathogenic responses in systemic lupus erythematosus. Immunity. 2018;49(4):725-739.e6. doi: 10.1016/j.immuni.2018.08.015

79. Jenks SA, Cashman KS, Woodruff MC, Lee FE, Sanz I. Extrafollicular responses in humans and SLE. Immunol Rev. 2019;288(1): 136-148. doi: 10.1111/imr.12741

80. Vincent FB, Morand EF, Schneider P, Mackay F. The BAFF/APRIL system in SLE pathogenesis. Nat Rev Rheumatol. 2014;10(6):365-373. doi: 10.1038/nrrheum.2014.33

81. Stohl W, Hilbert DM. The discovery and development of belimumab: The anti-BLyS-lupus connection. Nat Biotechnol. 2012;30(1):69-77. doi: 10.1038/nbt.2076

82. Насонов ЕЛ, Попкова ТВ, Лила АМ. Белимумаб в лечении системной красной волчанки: 20 лет фундаментальных исследований, 10 лет клинической практики. Научно-практическая ревматология. 2021;59(4):367-383. [Nasonov EL, Popkova TV, Lila AM. Belimumab in the treatment of systemic lupus erythematosus: 20 years of basic research, 10 years of clinical practice. Nauchno-Prakticheskaya Revmatologia = Rheumatology Science and Practice. 2021;59(4):367-383 (In Russ.)]. doi: 10.47360/1995-4484-2021-367-383

83. Annunziato F, Romagnani C, Romagnani S. The 3 major types of innate and adaptive cell-mediated effector immunity. J Allergy Clin Immunol. 2015;135(3):626-635. doi: 10.1016/j.jaci.2014.11.001

84. Насонов ЕЛ. Ингибиция иммунных контрольных точек и аутоиммунитет: ревматологические проблемы. Научно-практическая ревматология. 2018;56(1):5-9. [Nasonov EL. Immune checkpoint inhibition and autoimmunity: Rheumatological problems. Nauchno-Prakticheskaya Revmatologia = Rheumatology Science and Practice. 2018;56(1):5-9 (In Russ.)]. doi: 10.14412/1995-4484-2018-5-9

85. Khan S, Gerber DE. Autoimmunity, checkpoint inhibitor therapy and immune-related adverse events: A review. Semin Cancer Biol. 2020;64:93-101. doi: 10.1016/j.semcancer.2019.06.012

86. Walker LSK. The link between circulating follicular helper T cells and autoimmunity. Nat Rev Immunol. 2022;22(9):567-575. doi: 10.1038/s41577-022-00693-5

87. Воробьева НВ, Черняк БВ. НЕТоз: молекулярные механизмы, роль в физиологии и патологии. Биохимия. 2020;85(10):1383-1397. [Vorobjeva NV, Chernyak BV. NETosis: Molecular mechanisms, role in physiology and pathology. Biochemistry (Moscow). 2020;85(10):1383-1397 (In Russ.)]. doi: 10.31857/S0320972520100061

88. Papayannopoulos V. Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol. 2018;18(2):134-147. doi: 10.1038/nri.2017.105

89. Wigerblad G, Kaplan MJ. Neutrophil extracellular traps in systemic autoimmune and autoinflammatory diseases. Nat Rev Immunol. 2023;23(5):274-288. doi: 10.1038/s41577-022-00787-0

90. Paget C, Doz-Deblauwe E, Winter N, Briard B. Specific NLRP3 inflammasome assembling and regulation in neutrophils: Relevance in inflammatory and infectious diseases. Cells. 2022;11(7):1188. doi: 10.3390/cells11071188

91. Crow MK, Olferiev M, Kirou KA. Type I interferons in autoimmune disease. Annu Rev Pathol. 2019;14:369-393. doi: 10.1146/annurev-pathol-020117-043952

92. Насонов ЕЛ, Авдеева АС. Иммуновоспалительные ревматические заболевания, связанные с интерфероном типа I: новые данные. Научно-практическая ревматология. 2019;57(4):452-461. [Nasonov EL, Avdeeva AS. Immunoinflammatory rheumatic diseases associated with type I interferon: New evidence. Nauchno-Prakticheskaya Revmatologia = Rheumatology Science and Practice. 2019;57(4):452-461 (In Russ.)]. doi: 10.14412/1995-4484-2019-452-461

93. Postal M, Vivaldo JF, Fernandez-Ruiz R, Paredes JL, Appenzeller S, Niewold TB. Type I interferon in the pathogenesis of systemic lupus erythematosus. Curr Opin Immunol. 2020;67:87-94. doi: 10.1016/j.coi.2020.10.014

94. Antiochos B, Casciola-Rosen L. Interferon and autoantigens: intersection in autoimmunity. Front Med (Lausanne). 2023;10:1165225. doi: 10.3389/fmed.2023.1165225

95. Suurmond J, Diamond B. Autoantibodies in systemic autoimmune diseases: Specificity and pathogenicity. J Clin Invest. 2015;125(6):2194-2202. doi: 10.1172/JCI78084

96. Pashnina IA, Krivolapova IM, Fedotkina TV, Ryabkova VA, Chereshneva MV, Churilov LP, et al. Antinuclear autoantibodies in health: autoimmunity is not a synonym of autoimmune disease. Antibodies (Basel). 2021;10(1):9. doi: 10.3390/antib10010009

97. Dillon CF, Weisman MH, Miller FW. Population-based estimates of humoral autoimmunity from the U.S. National Health and Nutrition Examination Surveys, 1960–2014. PLoS One. 2020;15(1):e0226516. doi: 10.1371/journal.pone.0226516

98. Dinse GE, Parks CG, Weinberg CR, Co CA, Wilkerson J, Zeldin DC, et al. Increasing prevalence of antinuclear antibodies in the United States. Arthritis Rheumatol. 2020;72(6):1026-1035. doi: 10.1002/art.41214

99. Rivera-Correa J, Rodriguez A. Autoantibodies during infectious diseases: Lessons from malaria applied to COVID-19 and other infections. Front Immunol. 2022;13:938011. doi: 10.3389/fimmu.2022.938011

100. Sakowska J, Arcimowicz Ł, Jankowiak M, Papak I, Markiewicz A, et al. Autoimmunity and cancer – Two sides of the same coin. Front Immunol. 2022;13:793234. doi: 10.3389/fimmu.2022.793234

101. Porsch F, Mallat Z, Binder CJ. Humoral immunity in atherosclerosis and myocardial infarction: From B cells to antibodies. Cardiovasc Res. 2021;117(13):2544-2562. doi: 10.1093/cvr/cvab285

102. Meier LA, Binstadt BA. The contribution of autoantibodies to inflammatory cardiovascular pathology. Front Immunol. 2018;9:911. doi: 10.3389/fimmu.2018.00911

103. Prüss H. Autoantibodies in neurological disease. Nat Rev Immunol. 2021;21(12):798-813. doi: 10.1038/s41577-021-00543-w

104. Matarese G. The link between obesity and autoimmunity. Science. 2023;379(6639):1298-1300. doi: 10.1126/science.ade0113

105. Goebel A, Andersson D, Helyes Z, Clark JD, Dulake D, Svensson C. The autoimmune aetiology of unexplained chronic pain. Autoimmun Rev. 2022;21(3):103015. doi: 10.1016/j.autrev.2021.103015

106. Ryabkova VA, Gavrilova NY, Poletaeva AA, Pukhalenko AI, Koshkina IA, Churilov LP, et al. Autoantibody correlation signatures in fibromyalgia and myalgic encephalomyelitis/chronic fatigue syndrome: Association with symptom severity. Biomedicines. 2023;11(2):257. doi: 10.3390/biomedicines11020257

107. Malle L, Patel RS, Martin-Fernandez M, Stewart OJ, Philippot Q, Buta S, et al. Autoimmunity in Down’s syndrome via cytokines, CD4 T cells and CD11c+ B cells. Nature. 2023;615(7951):305-314. doi: 10.1038/s41586-023-05736-y

108. Zhang T, Feng X, Dong J, Xu Z, Feng B, Haas KM, et al. Cardiac troponin T and autoimmunity in skeletal muscle aging. Geroscience. 2022;44(4):2025-2045. doi: 10.1007/s11357-022-00513-7

109. Costagliola G, Cappelli S, Consolini R. Autoimmunity in primary immunodeficiency disorders: An updated review on pathogenic and clinical implications. J Clin Med. 2021;10(20):4729. doi: 10.3390/jcm10204729

110. Shome M, Chung Y, Chavan R, Park JG, Qiu J, LaBaer J. Serum autoantibodyome reveals that healthy individuals share common autoantibodies. Cell Rep. 2022;39(9):110873. doi: 10.1016/j.celrep.2022.110873

111. Burbelo PD, Iadarola MJ, Keller JM, Warner BM. Autoantibodies targeting intracellular and extracellular proteins in autoimmunity. Front Immunol. 2021;12:548469. doi: 10.3389/fimmu.2021.548469

112. Ludwig RJ, Vanhoorelbeke K, Leypoldt F, Kaya Z, Bieber K, McLachlan SM, et al. Mechanisms of autoantibody-induced pathology. Front Immunol. 2017;8:603. doi: 10.3389/fimmu.2017.00603

113. Александрова ЕН, Новиков АА, Насонов ЕЛ. Современные подходы к лабораторной диагностике ревматических заболеваний: роль молекулярных и клеточных биомаркеров. Научно-практическая ревматология. 2016;54(3):324-338. [Aleksandrova EN, Novikov AA, Nasonov EL. Current approaches to the laboratory diagnosis of rheumatic diseases: Role of molecular and cellular biomarkers. Nauchno-Prakticheskaya Revmatologia = Rheumatology Science and Practice. 2016;54(3):324-338 (In Russ.)]. doi: 10.14412/1995-4484-2016-324-338

114. Volkov M, Coppola M, Huizinga R, Eftimov F, Huizinga TWJ, van der Kooi AJ, et al.; T2B Consortium. Comprehensive overview of autoantibody isotype and subclass distribution. J Allergy Clin Immunol. 2022;150(5):999-1010. doi: 10.1016/j.jaci.2022.05.023

115. Fritzler MJ, Choi MY, Satoh M, Mahler M. Autoantibody discovery, assay development and adoption: Death valley, the sea of survival and beyond. Front Immunol. 2021;12:679613. doi: 10.3389/fimmu.2021.679613

116. Puel A, Bastard P, Bustamante J, Casanova JL. Human autoantibodies underlying infectious diseases. J Exp Med. 2022;219(4):e20211387. doi: 10.1084/jem.20211387

117. Scherer HU, van der Woude D, Toes REM. From risk to chronicity: Evolution of autoreactive B cell and antibody responses in rheumatoid arthritis. Nat Rev Rheumatol. 2022;18(7):371-383. doi: 10.1038/s41584-022-00786-4

118. Kissel T, Toes REM, Huizinga TWJ, Wuhrer M. Glycobiology of rheumatic diseases. Nat Rev Rheumatol. 2023;19(1):28-43. doi: 10.1038/s41584-022-00867-4

119. Sokolova MV, Schett G, Steffen U. Autoantibodies in rheumatoid arthritis: Historical background and novel findings. Clin Rev Allergy Immunol. 2022;63(2):138-151. doi: 10.1007/s12016-021-08890-1

120. Monahan RC, van den Beukel MD, Borggreven NV, Fronczek R, Huizinga TWJ, Kloppenburg M, et al. Autoantibodies against specific post-translationally modified proteins are present in patients with lupus and associate with major neuropsychiatric manifestations. RMD Open. 2022;8(1):e002079. doi: 10.1136/rmdopen-2021-002079

121. Koneczny I. Update on IgG4-mediated autoimmune diseases: New insights and new family members. Autoimmun Rev. 2020;19(10):102646. doi: 10.1016/j.autrev.2020.102646

122. Koneczny I, Tzartos J, Mané-Damas M, Yilmaz V, Huijbers MG, Lazaridis K, et al. IgG4 Autoantibodies in organ-specific autoimmunopathies: Reviewing class switching, antibody-producing cells, and specific immunotherapies. Front Immunol. 2022;13:834342. doi: 10.3389/fimmu.2022.834342

123. McDonnell T, Wincup C, Buchholz I, Pericleous C, Giles I, Ripoll V, et al. The role of beta-2-glycoprotein I in health and disease associating structure with function: More than just APS. Blood Rev. 2020;39:100610. doi: 10.1016/j.blre.2019.100610

124. Knight JS, Kanthi Y. Mechanisms of immunothrombosis and vasculopathy in antiphospholipid syndrome. Semin Immunopathol. 2022;44(3):347-362. doi: 10.1007/s00281-022-00916-w

125. Насонов ЕЛ, Попкова ТВ, Панафидина ТА. Проблемы ранней системной красной волчанки в период пандемии COVID-19. Научно-практическая ревматология. 2021;59(2):119-128. [Nasonov EL, Popkova TV, Panafidina TA. Problems of early diagnosis of systemic lupus erythematosus during the COVID-19 pandemic. Nauchno-Prakticheskaya Revmatologia = Rheumatology Science and Practice. 2021;59(2):119-128 (In Russ.)]. doi: 10.47360/1995-4484-2021-119-128

126. Lambers WM, Westra J, Bootsma H, de Leeuw K. From incomplete to complete systemic lupus erythematosus; A review of the predictive serological immune markers. Semin Arthritis Rheum. 2021;51(1):43-48. doi: 10.1016/j.semarthrit.2020.11.006

127. Гордеев АВ, Галушко ЕА, Насонов ЕЛ. Концепция мультиморбидности в ревматологической практике. Научно-практическая ревматология. 2014;52(4):362-365. [Gordeev AV, Galushko EA, Nasonov EL. The concept of multimorbidity in rheumatologic practice. Nauchno-Prakticheskaya Revmatologia = Rheumatology Science and Practice. 2014;52(4):362-365 (In Russ.)]. doi: 10.14412/1995-4484-2014-362-365

128. Taylor PC, Atzeni F, Balsa A, Gossec L, Müller-Ladner U, Pope J. The key comorbidities in patients with rheumatoid arthritis: A narrative review. J Clin Med. 2021;10(3):509. doi: 10.3390/jcm10030509

129. Figus FA, Piga M, Azzolin I, McConnell R, Iagnocco A. Rheumatoid arthritis: Extra-articular manifestations and comorbidities. Autoimmun Rev. 2021;20(4):102776. doi: 10.1016/j.autrev.2021.102776

130. Fulop T, Witkowski JM, Olivieri F, Larbi A. The integration of inflammaging in age-related diseases. Semin Immunol. 2018;40:17-35. doi: 10.1016/j.smim.2018.09.003

131. Alsaleh G, Richter FC, Simon AK. Age-related mechanisms in the context of rheumatic disease. Nat Rev Rheumatol. 2022;18(12):694-710. doi: 10.1038/s41584-022-00863-8

132. Santos-Moreno P, Burgos-Angulo G, Martinez-Ceballos MA, Pizano A, Echeverri D, Bautista-Niño PK, et al. Inflammaging as a link between autoimmunity and cardiovascular disease: The case of rheumatoid arthritis. RMD Open. 2021;7(1):e001470. doi: 10.1136/rmdopen-2020-001470

133. Weber BN, Giles JT, Liao KP. Shared inflammatory pathways of rheumatoid arthritis and atherosclerotic cardiovascular disease. Nat Rev Rheumatol. 2023 May 25. doi: 10.1038/s41584-023-00969-7

134. Appleton BD, Major AS. The latest in systemic lupus erythematosus-accelerated atherosclerosis: Related mechanisms inform assessment and therapy. Curr Opin Rheumatol. 2021;33(2):211-218. doi: 10.1097/BOR.0000000000000773

135. Roy P, Orecchioni M, Ley K. How the immune system shapes atherosclerosis: Roles of innate and adaptive immunity. Nat Rev Immunol. 2022;22(4):251-265. doi: 10.1038/s41577-021-00584-1

136. Engelen SE, Robinson AJB, Zurke YX, Monaco C. Therapeutic strategies targeting inflammation and immunity in atherosclerosis: How to proceed? Nat Rev Cardiol. 2022;19(8):522-542. doi: 10.1038/s41569-021-00668-4

137. Conrad N, Verbeke G, Molenberghs G, Goetschalckx L, Callender T, Cambridge G, et al. Autoimmune diseases and cardiovascular risk: a population-based study on 19 autoimmune diseases and 12 cardiovascular diseases in 22 million individuals in the UK. Lancet. 2022;400(10354):733-743. doi: 10.1016/S0140-6736(22)01349-6

138. Lopalco G, Rigante D, Cantarini L, Imazio M, Lopalco A, Emmi G, et al. The autoinflammatory side of recurrent pericarditis: Enlightening the pathogenesis for a more rational treatment. Trends Cardiovasc Med. 2021;31(5):265-274. doi: 10.1016/j.tcm.2020.04.006

139. Насонов ЕЛ, Сукмарова ЗН, Попкова ТВ, Белов БС. Проблемы иммунопатологии и перспективы фармакотерапии идиопатического рецидивирующего перикардита: применение ингибитора интерлейкина 1 (Анакинра). Научнопрактическая ревматология. 2023;61(1):47-61. [Nasonov EL, Sukmarova ZN, Popkova TV, Belov BS. Problems of immunopathology and prospects for pharmacotherapy of idiopathic recurrent pericarditis: Using an interleukin 1 inhibitor (Anakinra). Nauchno-Prakticheskaya Revmatologia = Rheumatology Science and Practice. 2023;61(1):47-61 (In Russ.)]. doi: 10.47360/1995-4484-2023-47-61

140. Ананьева ЛП. Интерстициальное поражение легких, ассоциированное с системной склеродермией (прогрессирующим системным склерозом). Научно-практическая ревматология. 2017;55(1):87-95. [Ananyeva LP. Interstitial lung disease associated with systemic sclerosis. Nauchno-Prakticheskaya Revmatologia = Rheumatology Science and Practice. 2017;55(1):87-95 (In Russ.)]. doi: 10.14412/1995-4484-2017-87-95

141. Насонов ЕЛ, Ананьева ЛП, Авдеев СН. Интерстициальные заболевания легких при ревматоидном артрите: мультидисциплинарная проблема ревматологии и пульмонологии. Научно-практическая ревматология. 2022;60(6):517-534. [Nasonov EL, Ananyeva LP, Avdeev SN. Interstitial lung disease in rheumatoid arthritis: A multidisciplinary problem in rheumatology and pulmonology. Nauchno-Prakticheskaya Revmatologia = Rheumatology Science and Practice. 2022;60(6):517-534 (In Russ.)]. doi: 10.47360/1995-4484-2022-1

142. Fardellone P, Salawati E, Le Monnier L, Goëb V. Bone loss, osteoporosis, and fractures in patients with rheumatoid arthritis: A review. J Clin Med. 2020;9(10):3361. doi: 10.3390/jcm9103361

143. An HJ, Tizaoui K, Terrazzino S, Cargnin S, Lee KH, et al. Sarcopenia in Autoimmune and Rheumatic Diseases: A Comprehensive Review. Int J Mol Sci. 2020;21(16):5678. doi: 10.3390/ijms21165678.

144. Лисицына ТА, Вельтищев ДЮ, Лила АМ, Насонов ЕЛ. Интерлейкин 6 как патогенетический фактор, опосредующий формирование клинических проявлений, и мишень для терапии ревматических заболеваний и депрессивных расстройств. Научно-практическая ревматология. 2019;57(3):318-327. [Lisitsyna TA, Veltishchev DYu, Lila AM, Nasonov EL. Interleukin 6 as a pathogenic factor mediating clinical manifestations and a therapeutic target for rheumatic diseases and depressive disorders. Nauchno-Prakticheskaya Revmatologia = Rheumatology Science and Practice. 2019;57(3):318-327 (In Russ.)]. doi: 10.14412/1995-4484-2019-318-327

145. Altmann DM. Neuroimmunology and neuroinflammation in autoimmune, neurodegenerative and psychiatric disease. Immunology. 2018;154(2):167-168. doi: 10.1111/imm.12943

146. Marrie RA, Bernstein CN. Psychiatric comorbidity in immunemediated inflammatory diseases. World Psychiatry. 2021;20(2): 298-299. doi: 10.1002/wps.20873

147. Насонов ЕЛ. Коронавирусная болезнь 2019 (COVID-19): размышления ревматолога. Научно-практическая ревматология. 2020;58(2):123-132. [Nasonov EL. Coronavirus disease 2019 (COVID-19): A rheumatologist’s thoughts. Nauchno-Prakticheskaya Revmatologia = Rheumatology Science and Practice. 2020;58(2):123-132 (In Russ.)]. doi: 10.14412/1995-4484-2020-123-132

148. Zhang Q, Bastard P; COVID Human Genetic Effort; Cobat A, Casanova JL. Human genetic and immunological determinants of critical COVID-19 pneumonia. Nature. 2022;603(7902):587-598. doi: 10.1038/s41586-022-04447-0

149. Liu Y, Sawalha AH, Lu Q. COVID-19 and autoimmune diseases. Curr Opin Rheumatol. 2021;33(2):155-162. doi: 10.1097/BOR.0000000000000776

150. Knight JS, Caricchio R, Casanova JL, Combes AJ, Diamond B, Fox SE, et al. The intersection of COVID-19 and autoimmunity. J Clin Invest. 2021;131(24):e154886. doi: 10.1172/JCI154886

151. Dotan A, Muller S, Kanduc D, David P, Halpert G, Shoenfeld Y. The SARS-CoV-2 as an instrumental trigger of autoimmunity. Autoimmun Rev. 2021;20(4):102792. doi: 10.1016/j.autrev.2021.102792

152. Sher EK, Ćosović A, Džidić-Krivić A, Farhat EK, Pinjić E, Sher F. COVID-19 a triggering factor of autoimmune and multiinflammatory diseases. Life Sci. 2023;319:121531. doi: 10.1016/j.lfs.2023.121531

153. Merad M, Blish CA, Sallusto F, Iwasaki A. The immunology and immunopathology of COVID-19. Science. 2022;375(6585): 1122-1127. doi: 10.1126/science.abm8108

154. Altmann DM, Whettlock EM, Liu S, Arachchillage DJ, Boyton RJ. The immunology of long COVID. Nat Rev Immunol. 2023 Jul 11. doi: 10.1038/s41577-023-00904-7

155. Насонов ЕЛ. Иммунопатология и иммунофармакотерапия коронавирусной болезни 2019 (COVID-19): фокус на интерлейкин 6. Научно-практическая ревматология. 2020;58(3): 245-261. [Nasonov EL. Immunopathology and immunopharmacotherapy of coronavirus disease 2019 (COVID-19): Focus on interleukin 6. Nauchno-Prakticheskaya Revmatologia = Rheumatology Science and Practice. 2020;58(3):245-261 (In Russ.)]. doi: 10.14412/1995-4484-2020-245-261

156. Каледа МИ, Никишина ИП, Федоров ЕС, Насонов ЕЛ. Коронавирусная болезнь 2019 (COVID-19) у детей: уроки педиатрической ревматологии. Научно-практическая ревматология. 2020;58(5):469-479. [Kaleda MI, Nikishina IP, Fedorov ES, Nasonov EL. Coronavirus disease 2019 (COVID-19) in children: Lessons from pediatric rheumatology. Nauchno-Prakticheskaya Revmatologia = Rheumatology Science and Practice. 2020;58(5):469-479 (In Russ.)]. doi: 10.47360/1995-4484-2020-469-479

157. Насонов ЕЛ, Бекетова ТВ, Решетняк ТМ, Лила АМ, Ананьева ЛП, Лисицина ТА, и др. Коронавирусная болезнь 2019 (COVID-19) и иммуновоспалительные ревматические заболевания: на перекрестке проблем тромбовоспаления и аутоиммунитета. Научно-практическая ревматология. 2020;58(4):353-367. [Nasonov EL, Beketova TV, Reshetnyak TM, Lila AM, Ananieva LP, Lisitsyna TA, et al. Coronavirus disease 2019 (COVID-19) and immune-mediated inflammatory rheumatic diseases: At the crossroads of thromboinflammation and autoimmunity. Nauchno-Prakticheskaya Revmatologia = Rheumatology Science and Practice. 2020;58(4):353-367 (In Russ.)]. doi: 10.47360/1995-4484-2020-353-367

158. Wagner DD, Heger LA. Thromboinflammation: From atherosclerosis to COVID-19. Arterioscler Thromb Vasc Biol. 2022;42(9):1103-1112. doi: 10.1161/ATVBAHA.122.317162

159. Nasonov EL, Samsonov MY, Lila AM. Coronavirus infection 2019 (COVID-19) and autoimmunity. Her Russ Acad Sci. 2022;92(4):398-403. doi: 10.1134/S1019331622040062

160. Grainger R, Kim AHJ, Conway R, Yazdany J, Robinson PC. COVID-19 in people with rheumatic diseases: Risks, outcomes, treatment considerations. Nat Rev Rheumatol. 2022;18(4):191-204. doi: 10.1038/s41584-022-00755-x

161. Zacharias H, Dubey S, Koduri G, D’Cruz D. Rheumatological complications of COVID-19. Autoimmun Rev. 2021;20(9):102883. doi: 10.1016/j.autrev.2021.102883

162. Metyas S, Chen C, Aung T, Ballester A, Cheav S. Rheumatologic manifestations of post SARS-CoV-2 infection: A case series. Curr Rheumatol Rev. 2022;18(4):346-351. doi: 10.2174/1573397118666 220211155716

163. Tang KT, Hsu BC, Chen DY. Autoimmune and rheumatic manifestations associated with COVID-19 in adults: An updated systematic review. Front Immunol. 2021;12:645013. doi: 10.3389/fimmu.2021.645013

164. Chang R, Yen-Ting Chen T, Wang SI, Hung YM, Chen HY, Wei CJ. Risk of autoimmune diseases in patients with COVID-19: A retrospective cohort study. EClinicalMedicine. 2023;56:101783. doi: 10.1016/j.eclinm.2022.101783

165. Tesch F, Ehm F, Vivirito A, Wende D, Batram M, Loser F, et al. Incident autoimmune diseases in association with SARS-CoV-2 infection: A matched cohort study. Clin Rheumatol. 2023 Jun 19. doi: 10.1007/s10067-023-06670-0

166. Syed U, Subramanian A, Wraith DC, Lord JM, McGee K, Ghokale K, et al. The incidence of immune mediated inflammatory diseases following COVID-19: A matched cohort study in UK primary care. medRxiv 2022;10.06.22280775. doi: 10.1101/2022.10.06.22280775

167. Woodruff MC, Ramonell RP, Nguyen DC, Cashman KS, Saini AS, Haddad NS, et al. Extrafollicular B cell responses correlate with neutralizing antibodies and morbidity in COVID-19. Nat Immunol. 2020;21(12):1506-1516. doi: 10.1038/s41590-020-00814-z

168. Bastard P, Rosen LB, Zhang Q, Michailidis E, Hoffmann HH, Zhang Y, et al.; NIAID-USUHS Immune Response to COVID Group; COVID Clinicians; Imagine COVID Group; French COVID Cohort Study Group; Milieu Intérieur Consortium; CoV-Contact Cohort; Amsterdam UMC Covid-19 Biobank; COVID Human Genetic Effort. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science. 2020;370(6515):eabd4585. doi: 10.1126/science.abd4585

169. Wang X, Tang Q, Li H, Jiang H, Xu J, Bergquist R, Qin Z. Autoantibodies against type I interferons in COVID-19 infection: A systematic review and meta-analysis. Int J Infect Dis. 2023;130: 147-152. doi: 10.1016/j.ijid.2023.03.011

170. Bastard P, Zhang Q, Zhang SY, Jouanguy E, Casanova JL. Type I interferons and SARS-CoV-2: From cells to organisms. Curr Opin Immunol. 2022;74:172-182. doi: 10.1016/j.coi.2022.01.003

171. Gupta S, Nakabo S, Chu J, Hasni S, Kaplan MJ. Association between anti-interferon-alpha autoantibodies and COVID-19 in systemic lupus erythematosus. medRxiv. 2020;2020.10.29.20222000. doi: 10.1101/2020.10.29.20222000

172. Beydon M, Nicaise-Roland P, Mageau A, Farkh C, Daugas E, Descamps V, et al. Autoantibodies against IFNα in patients with systemic lupus erythematosus and susceptibility for infection: A retrospective case-control study. Sci Rep. 2022;12(1):11244. doi: 10.1038/s41598-022-15508-9

173. Moritz CP, Paul S, Stoevesandt O, Tholance Y, Camdessanché JP, Antoine JC. Autoantigenomics: Holistic characterization of autoantigen repertoires for a better understanding of autoimmune diseases. Autoimmun Rev. 2020;19(2):102450. doi: 10.1016/j.autrev.2019.102450

174. Gao ZW, Zhang HZ, Liu C, Dong K. Autoantibodies in COVID-19: Frequency and function. Autoimmun Rev. 2021;20(3):102754. doi: 10.1016/j.autrev.2021.102754

175. Damoiseaux J, Dotan A, Fritzler MJ, Bogdanos DP, Meroni PL, Roggenbuck D, et al. Autoantibodies and SARS-CoV2 infection: The spectrum from association to clinical implication: Report of the 15th Dresden Symposium on Autoantibodies. Autoimmun Rev. 2022;21(3):103012. doi: 10.1016/j.autrev.2021.103012

176. Насонов ЕЛ. Коронавирусная болезнь 2019 (COVID-19) и аутоиммунитет. Научно-практическая ревматология. 2021;59(1):5-30. [Nasonov EL. Coronavirus disease 2019 (COVID-19) and autoimmunity. Nauchno-Prakticheskaya Revmatologia = Rheumatology Science and Practice. 2021;59(1):5-30 (In Russ.)]. doi: 10.47360/1995-4484-2021-5-30

177. Wang EY, Mao T, Klein J, Dai Y, Huck JD, Jaycox JR, et al. Diverse functional autoantibodies in patients with COVID-19. Nature. 2021;595(7866):283-288. doi: 10.1038/s41586-021-03631-y

178. Chang SE, Feng A, Meng W, Apostolidis SA, Mack E, Artandi M, et al. New-onset IgG autoantibodies in hospitalized patients with COVID-19. Nat Commun. 2021;12(1):5417. doi: 10.1038/s41467-021-25509-3

179. Wong AKH, Woodhouse I, Schneider F, Kulpa DA, Silvestri G, Maier CL. Broad auto-reactive IgM responses are common in critically ill patients, including those with COVID-19. Cell Rep Med. 2021;2(6):100321. doi: 10.1016/j.xcrm.2021.100321

180. Juanes-Velasco P, Landeira-Viñuela A, García-Vaquero ML, Lecrevisse Q, Herrero R, Ferruelo A, et al. SARS-CoV-2 infection triggers auto-immune response in ARDS. Front Immunol. 2022;13:732197. doi: 10.3389/fimmu.2022.732197

181. Consiglio CR, Cotugno N, Sardh F, Pou C, Amodio D, Rodriguez L, et al.; CACTUS Study Team. The immunology of multisystem inflammatory syndrome in children with COVID-19. Cell. 2020;183(4):968-981.e7. doi: 10.1016/j.cell.2020.09.016

182. Gruber CN, Patel RS, Trachtman R, Lepow L, Amanat F, Krammer F, et al. Mapping systemic inflammation and antibody responses in multisystem inflammatory syndrome in children (MIS-C). Cell. 2020;183(4):982-995.e14. doi: 10.1016/j.cell.2020.09.034

183. Pfeifer J, Thurner B, Kessel C, Fadle N, Kheiroddin P, Regitz E, et al. Autoantibodies against interleukin-1 receptor antagonist in multisystem inflammatory syndrome in children: A multicentre, retrospective, cohort study. Lancet Rheumatol. 2022;4(5):e329-e337. doi: 10.1016/S2665-9913(22)00064-9

184. Baiocchi GC, Vojdani A, Rosenberg AZ, Vojdani E, Halpert G, Ostrinski Y, et al. Cross-sectional analysis reveals autoantibody signatures associated with COVID-19 severity. J Med Virol. 2023;95(2):e28538. doi: 10.1002/jmv.28538

185. Visvabharathy L, Zhu C, Orban ZS, Yarnoff K, Palacio N, Jimenez M, et al. Autoantibody production is enhanced after mild SARSCoV-2 infection despite vaccination in individuals with and without long COVID. medRxiv. 2023;2023.04.07.23288243. doi: 10.1101/20 23.04.07.23288243

186. Taeschler P, Cervia C, Zurbuchen Y, Hasler S, Pou C, Tan Z, et al. Autoantibodies in COVID-19 correlate with antiviral humoral responses and distinct immune signatures. Allergy. 2022;77(8):2415-2430. doi: 10.1111/all.15302

187. Son K, Jamil R, Chowdhury A, Mukherjee M, Venegas C, Miyasaki K, et al. Circulating anti-nuclear autoantibodies in COVID-19 survivors predict long COVID symptoms. Eur Respir J. 2023;61(1): 2200970. doi: 10.1183/13993003.00970-2022

188. Woodruff MC, Ramonell RP, Haddad NS, Anam FA, Rudolph ME, Walker TA, et al. Dysregulated naive B cells and de novo autoreactivity in severe COVID-19. Nature. 2022;611(7934):139-147. doi: 10.1038/s41586-022-05273-0

189. Rojas M, Rodríguez Y, Acosta-Ampudia Y, Monsalve DM, Zhu C, Li QZ, et al. Autoimmunity is a hallmark of post-COVID syndrome. J Transl Med. 2022;20(1):129. doi: 10.1186/s12967-022-03328-4

190. Bhadelia N, Olson A, Smith E, Riefler K, Cabrejas J, Ayuso MJ, et al. Longitudinal analysis reveals elevation then sustained higher expression of autoantibodies for six months after SARS-CoV-2 infection. medRxiv. 2022;2022.05.04.22274681. doi: 10.1101/2022. 05.04.22274681

191. Liu Y, Ebinger JE, Mostafa R, Budde P, Gajewski J, Walker B, et al. Paradoxical sex-specific patterns of autoantibody response to SARS-CoV-2 infection. J Transl Med. 2021;19(1):524. doi: 10.1186/s12967-021-03184-8

192. Lichtenstein B, Zheng Y, Gjertson D, Ferbas KG, Rimoin AW, Yang OO, et al. Vascular and non-HLA autoantibody profiles in hospitalized patients with COVID-19. Front Immunol. 2023:1197326 doi: 10.3389/fimmu.2023.1197326.

193. Park SH, Suh JW, Yang KS, Kim JY, Kim SB, Sohn JW, et al. Clinical significance of antinuclear antibody positivity in patients with severe coronavirus disease 2019. Korean J Intern Med. 2023;38(3):417-426. doi: 10.3904/kjim.2022.352

194. Feng A, Yang EY, Moore AR, Dhingra S, Chang SE, Yin X, et al. Autoantibodies are highly prevalent in non-SARS-CoV-2 respiratory infections and critical illness. JCI Insight. 2023;8(3):e163150. doi: 10.1172/jci.insight.163150

195. Seeßle J, Waterboer T, Hippchen T, Simon J, Kirchner M, Lim A, et al. Persistent symptoms in adult patients 1 year after coronavirus disease 2019 (COVID-19): A prospective cohort study. Clin Infect Dis. 2022;74(7):1191-1198. doi: 10.1093/cid/ciab611

196. Umbrello M, Nespoli S, Pisano E, Bonino C, Muttini S. Autoantibodies in severe COVID-19-related acute respiratory distress syndrome: Just innocent bystanders? Int J Rheum Dis. 2021;24(3):462-464. doi: 10.1111/1756-185X.14077

197. Moody R, Sonda S, Johnston FH, Smith KJ, Stephens N, McPherson M, et al. Antibodies against Spike protein correlate with broad autoantigen recognition 8 months post SARS-CoV-2 exposure, and anti-calprotectin autoantibodies associated with better clinical outcomes. Front Immunol. 2022;13:945021. doi: 10.3389/fimmu.2022.945021

198. Muri J, Cecchinato V, Cavalli A, Shanbhag AA, Matkovic M, Biggiogero M, et al. Autoantibodies against chemokines post-SARS-CoV-2 infection correlate with disease course. Nat Immunol. 2023;24(4):604-611. doi: 10.1038/s41590-023-01445-w

199. Wang EY, Dai Y, Rosen CE, Schmitt MM, Dong MX, Ferré EMN, et al. High-throughput identification of autoantibodies that target the human exoproteome. Cell Rep Methods. 2022;2(2):100172. doi: 10.1016/j.crmeth.2022.100172

200. Насонов ЕЛ (ред.). Антифосфолипидный синдром. М.:Литтерра;2004. [Nasonov EL (ed.). Antiphospholipid syndrome. Moscow:Litterra;2004 (In Russ.)].

201. Garcia D, Erkan D. Diagnosis and management of the antiphospholipid syndrome. N Engl J Med. 2018;378(21):2010-2021. doi: 10.1056/NEJMra1705454

202. Pignatelli P, Ettorre E, Menichelli D, Pani A, Violi F, Pastori D. Seronegative antiphospholipid syndrome: Refining the value of “non-criteria” antibodies for diagnosis and clinical management. Haematologica. 2020;105(3):562-572. doi: 10.3324/haematol. 2019.221945

203. Litvinova E, Darnige L, Kirilovsky A, Burnel Y, de Luna G, Dragon-Durey MA. Prevalence and significance of non-conventional antiphospholipid antibodies in patients with clinical APS criteria. Front Immunol. 2018;9:2971. doi: 10.3389/fimmu.2018.02971

204. Shi H, Zuo Y, Navaz S, Harbaugh A, Hoy CK, Ghandi AA. et al. Endothelial cell-activating antibodies in COVID-19. Arthritis Rheumatol. 2022;74(7):1132-1138. doi: 10.1002/art.42094

205. Zuo Y, Estes SK, Ali RA, Gandhi AA, Yalavarthi S, Shi H, et al. Prothrombotic autoantibodies in serum from patients hospitalized with COVID-19. Sci Transl Med. 2020;12(570):eabd3876. doi: 10.1126/scitranslmed.abd3876

206. Taha M, Samavati L. Antiphospholipid antibodies in COVID-19: A meta-analysis and systematic review. RMD Open. 2021;7(2): e001580. doi: 10.1136/rmdopen-2021-001580

207. Butt A, Erkan D, Lee AI. COVID-19 and antiphospholipid antibodies. Best Pract Res Clin Haematol. 2022;35(3):101402. doi: 10.1016/j.beha.2022.101402

208. Meroni PL, Borghi MO. Antiphospholipid antibodies and COVID-19 thrombotic vasculopathy: One swallow does not make a summer. Ann Rheum Dis. 2021;80(9):1105-1107. doi: 10.1136/annrheumdis-2021-220520

209. Favaloro EJ, Henry BM, Lippi G. COVID-19 and antiphospholipid antibodies: Time for a reality check? Semin Thromb Hemost. 2022;48(1):72-92. doi: 10.1055/s-0041-1728832

210. Mendel A, Fritzler MJ, St-Pierre Y, Rauch J, Bernatsky S, Vinet É. Outcomes associated with antiphospholipid antibodies in COVID-19: A prospective cohort study. Res Pract Thromb Haemost. 2023;7(1):100041. doi: 10.1016/j.rpth.2023.100041

211. Hollerbach A, Müller-Calleja N, Pedrosa D, Canisius A, Sprinzl MF, et al. Pathogenic lipid-binding antiphospholipid antibodies are associated with severity of COVID-19. J Thromb Haemost. 2021;19(9):2335-2347. doi: 10.1111/jth.15455

212. Zuniga M, Gomes C, Carsons SE, Bender MT, Cotzia P, Miao QR, et al. Autoimmunity to annexin A2 predicts mortality among hospitalised COVID-19 patients. Eur Respir J. 2021;58(4): 2100918. doi: 10.1183/13993003.00918-2021

213. Benjamin LA, Paterson RW, Moll R, Pericleous C, Brown R, Mehta PR, et al.; UCLH Queen Square COVID-19 Biomarker Study group. Antiphospholipid antibodies and neurological manifestations in acute COVID-19: A single-centre cross-sectional study. EClinicalMedicine. 2021;39:101070. doi: 10.1016/j.eclinm.2021.101070

214. Zuo Y, Yalavarthi S, Navaz SA, Hoy CK, Harbaugh A, Gockman K, et al. Autoantibodies stabilize neutrophil extracellular traps in COVID-19. JCI Insight. 2021;6(15):e150111. doi: 10.1172/jci.insight.150111

215. Zuo Y, Navaz S, Tsodikov A, Kmetova K, Kluge L, Ambati A, et al.; Antiphospholipid Syndrome Alliance for Clinical Trials and InternatiOnal Networking. Anti-neutrophil extracellular trap antibodies in antiphospholipid antibody-positive patients: Results from the antiphospholipid syndrome alliance for clinical trials and international networking clinical database and repository. Arthritis Rheumatol. 2023 Mar 2. doi: 10.1002/art.42489

216. Zuo Y, Yalavarthi S, Gockman K, Madison JA, Gudjonsson JE, Kahlenberg JM, et al. Anti-neutrophil extracellular trap antibodies and impaired neutrophil extracellular trap degradation in antiphospholipid syndrome. Arthritis Rheumatol. 2020;72(12):2130-2135. doi: 10.1002/art.41460

217. de Bont CM, Stokman MEM, Faas P, Thurlings RM, Boelens WC, Wright HL, et al. Autoantibodies to neutrophil extracellular traps represent a potential serological biomarker in rheumatoid arthritis. J Autoimmun. 2020;113:102484. doi: 10.1016/j.jaut.2020.102484

218. Yalavarthi S, Gould TJ, Rao AN, Mazza LF, Morris AE, NúñezÁlvarez C, et al. Release of neutrophil extracellular traps by neutrophils stimulated with antiphospholipid antibodies: a newly identified mechanism of thrombosis in the antiphospholipid syndrome. Arthritis Rheumatol. 2015;67(11):2990-3003. doi: 10.1002/art.39247

219. Pisareva E, Badiou S, Mihalovičová L, Mirandola A, Pastor B, Kudriavtsev A, et al. Persistence of neutrophil extracellular traps and anticardiolipin auto-antibodies in post-acute phase COVID-19 patients. J Med Virol. 2023;95(1):e28209. doi: 10.1002/jmv.28209

220. Bertin D, Brodovitch A, Lopez A, Arcani R, Thomas GM, Bezanie A, et al. Anti-cardiolipin IgG autoantibodies associate with circulating extracellular DNA in severe COVID-19. Sci Rep. 2022;12(1):12523. doi: 10.1038/s41598-022-15969-y

221. Pisetsky DS. Antibodies to neutrophil extracellular traps: novel markers for the antiphospholipids syndrome. Arthritis Rheum. 2023. URL: https://onlinelibrary.whileu.com/doi/10.1002/art.42548.

222. Gomes C, Zuniga M, Crotty KA, Qian K, Lin LH, Argyropoulos KV, et al. Autoimmune anti-DNA antibodies predict disease severity in COVID-19 patients. medRxiv. 2021;2021.01.04.20249054. doi: 10.1101/2021.01.04.20249054

223. Cheng AP, Cheng MP, Gu W, Sesing Lenz J, Hsu E, Schurr E, et al. Cell-free DNA tissues of origin by methylation profiling reveals significant cell, tissue, and organ-specific injury related to COVID-19 severity. Med. 2021;2(4):411-422.e5. doi: 10.1016/j.medj.2021.01.001

224. Giannini M, Ohana M, Nespola B, Zanframundo G, Geny B, Meyer A. Similarities between COVID-19 and anti-MDA5 syndrome: What can we learn for better care? Eur Respir J. 2020;56(3): 2001618. doi: 10.1183/13993003.01618-2020

225. Dias Junior AG, Sampaio NG, Rehwinkel J. A balancing act: MDA5 in antiviral immunity and autoinflammation. Trends Microbiol. 2019;27(1):75-85. doi: 10.1016/j.tim.2018.08.007

226. Wang G, Wang Q, Wang Y, Liu C, Wang L, Chen H, et al. Presence of anti-MDA5 antibody and its value for the clinical assessment in patients with COVID-19: A retrospective cohort study. Front Immunol. 2021;12:791348. doi: 10.3389/fimmu.2021.791348

227. Rodriguez-Perez AI, Labandeira CM, Pedrosa MA, Valenzuela R, Suarez-Quintanilla JA, Cortes-Ayaso M, et al. Autoantibodies against ACE2 and angiotensin type-1 receptors increase severity of COVID-19. J Autoimmun. 2021;122:102683. doi: 10.1016/j.jaut.2021.102683

228. Casciola-Rosen L, Thiemann DR, Andrade F, Trejo-Zambrano MI, Leonard EK, Spangler JB, et al. IgM anti-ACE2 autoantibodies in severe COVID-19 activate complement and perturb vascular endothelial function. JCI Insight. 2022;7(9):e158362. doi: 10.1172/jci.insight.158362

229. Miedema J, Schreurs M, van der Sar-van der Brugge S, Paats M, Bakker M, et al. Antibodies against angiotensin II receptor type 1 and endothelin A receptor are associated with an unfavorable COVID19 disease course. Front Immunol. 2021;12:684142. doi: 10.3389/fimmu.2021.684142

230. Briquez PS, Rouhani SJ, Yu J, Pyzer AR, Trujillo J, Dugan HL, et al. Severe COVID-19 induces autoantibodies against angiotensin II that correlate with blood pressure dysregulation and disease severity. Sci Adv. 2022;8(40):eabn3777. doi: 10.1126/sciadv.abn3777

231. Murphy WJ, Longo DL. A possible role for anti-idiotype antibodies in SARS-CoV-2 infection and vaccination. N Engl J Med. 2022;386(4):394-396. doi: 10.1056/NEJMcibr2113694

232. Cabral-Marques O, Halpert G, Schimke LF, Ostrinski Y, Vojdani A, Baiocchi GC, et al. Autoantibodies targeting GPCRs and RAS-related molecules associate with COVID-19 severity. Nat Commun. 2022;13(1):1220. doi: 10.1038/s41467-022-28905-5

233. Cabral-Marques O, Riemekasten G. Functional autoantibodies targeting G protein-coupled receptors in rheumatic diseases. Nat Rev Rheumatol. 2017;13(11):648-656. doi: 10.1038/nrrheum.2017.134

234. Fugger L, Jensen LT, Rossjohn J. Challenges, progress, and prospects of developing therapies to treat autoimmune diseases. Cell. 2020;181(1):63-80. doi: 10.1016/j.cell.2020.03.007

235. Marinho A, Delgado Alves J, Fortuna J, Faria R, Almeida I, Alves G, et al. Biological therapy in systemic lupus erythematosus, antiphospholipid syndrome, and Sjögren’s syndrome: Evidence-and practice-based guidance. Front Immunol. 2023;14: 1117699. doi: 10.3389/fimmu.2023.1117699

236. Moingeon P. Artificial intelligence-driven drug development against autoimmune diseases. Trends Pharmacol Sci. 2023;44(7):411-424. doi: 10.1016/j.tips.2023.04.005

237. Baker KF, Isaacs JD. Novel therapies for immune-mediated inflammatory diseases: What can we learn from their use in rheumatoid arthritis, spondyloarthritis, systemic lupus erythematosus, psoriasis, Crohn’s disease and ulcerative colitis? Ann Rheum Dis. 2018;77(2):175-187. doi: 10.1136/annrheumdis-2017-211555

238. Насонов ЕЛ. Фармакотерапия ревматоидного артрита: новая стратегия, новые мишени. Научно-практическая ревматология. 2017;55(4):409-419. [Nasonov EL. Pharmacotherapy for rheumatoid arthritis: New strategy, new targets. Nauchno-Prakticheskaya Revmatologia = Rheumatology Science and Practice. 2017;55(4):409-419 (In Russ.)]. doi: 10.14412/1995-4484-2017-409-419

239. Насонов ЕЛ, Лила АМ. Ингибиция интерлейкина 6 при иммуновоспалительных ревматических заболеваниях: достижения, перспективы и надежды. Научно-практическая ревматология. 2017;55(6):590-599. [Nasonov EL, Lila AM. Inhibition of interleukin 6 in immune inflammatory rheumatic diseases: Achievements, prospects, and hopes. Nauchno-Prakticheskaya Revmatologia = Rheumatology Science and Practice. 2017;55(6):590-599 (In Russ.)]. doi: 10.14412/1995-4484-2017-590-599

240. Насонов ЕЛ, Авдеева АС, Попкова ТВ. Новые возможности фармакотерапии системной красной волчанки: перспективы применения анифролумаба (моноклональные антитела к рецепторам интерферона типа I). Научно-практическая ревматология. 2021;59(5):537-546. [Nasonov EL, Avdeeva AS, Popkova TV. New possibilities of pharmacotherapy for systemic lupus erythematosus: Prospects for the use of anifrolumab (monoclonal antibodies to type I interferon receptor). Nauchno-Prakticheskaya Revmatologia = Rheumatology Science and Practice. 2021;59(5):537-546 (In Russ.)]. doi: 10.47360/1995-4484-2021-537-546

241. Lee DSW, Rojas OL, Gommerman JL. B cell depletion therapies in autoimmune disease: Advances and mechanistic insights. Nat Rev Drug Discov. 2021;20(3):179-199. doi: 10.1038/s41573-020-00092-2

242. Насонов ЕЛ, Бекетова ТВ, Ананьева ЛП, Васильев ВИ, Соловьев СК, Авдеева АС. Перспективы анти-В-клеточной терапии при иммуновоспалительных ревматических заболеваниях. Научно-практическая ревматология. 2019;57:1-40. [Nasonov EL, Beketova TV, Ananyeva LP, Vasilyev VI, Solovyev SK, Avdeeva AS. Prospects for anti-B-cell therapy in immuno-inflammatory rheumatic diseases. Nauchno-Prakticheskaya Revmatologia = Rheumatology Science and Practice. 2019;57:1-40 (In Russ.)]. doi: 10.14412/1995-4484-2019-3-40

243. Насонов ЕЛ. Абатацепт при ревматоидном артрите: новая форма, новые механизмы, новые возможности. Научно-практическая ревматология. 2015;53(5):522-541. [Nasonov EL. Abatacept for rheumatoid arthritis: A novel formulation, new mechanisms, new possibilities. Nauchno-Prakticheskaya Revmatologia = Rheumatology Science and Practice. 2015;53(5):522-541 (In Russ.)]. doi: 10.14412/1995-4484-2015-522-541

244. Насонов ЕЛ, Лила АМ. Ингибиторы Янус-киназ при иммуновоспалительных ревматических заболеваниях: новые возможности и перспективы. Научно-практическая ревматология. 2019;57(1):8-16. [Nasonov EL, Lila AM. Janus kinase inhibitors in immuno-inflammatory rheumatic diseases: New opportunities and prospects. Nauchno-Prakticheskaya Revmatologia = Rheumatology Science and Practice. 2019;57(1):8-16 (In Russ.)]. doi: 10.14412/1995-4484-2019-8-16

245. Philips RL, Wang Y, Cheon H, Kanno Y, Gadina M, Sartorelli V, et al. The JAK-STAT pathway at 30: Much learned, much more to do. Cell. 2022;185(21):3857-3876. doi: 10.1016/j.cell.2022.09.023

246. Smolen JS, Aletaha D, Bijlsma JW, Breedveld FC, Boumpas D, Burmester G, et al.; T2T Expert Committee. Treating rheumatoid arthritis to target: Recommendations of an international task force. Ann Rheum Dis. 2010;69(4):631-637. doi: 10.1136/ard.2009.123919

247. van Vollenhoven RF, Mosca M, Bertsias G, Isenberg D, Kuhn A, Lerstrøm K, et al. Treat-to-target in systemic lupus erythematosus: Recommendations from an international task force. Ann Rheum Dis. 2014;73(6):958-967. doi: 10.1136/annrheumdis-2013-205139

248. Hahn J, Cook NR, Alexander EK, Friedman S, Walter J, Bubes V, et al. Vitamin D and marine omega 3 fatty acid supplementation and incident autoimmune disease: VITAL randomized controlled trial. BMJ. 2022;376:e066452. doi: 10.1136/bmj-2021-066452

249. Levy RA, Gonzalez-Rivera T, Khamashta M, Fox NL, Jones-Leone A, Rubin B, et al. 10 years of belimumab experience: What have we learnt? Lupus. 2021;30(11):1705-1721. doi: 10.1177/09612033211028653

250. Merino-Vico A, Frazzei G, van Hamburg JP, Tas SW. Targeting B cells and plasma cells in autoimmune diseases: From established treatments to novel therapeutic approaches. Eur J Immunol. 2023;53(1):e2149675. doi: 10.1002/eji.202149675

251. Furie RA, Aroca G, Cascino MD, Garg JP, Rovin BH, Alvarez A, et al. B-cell depletion with obinutuzumab for the treatment of proliferative lupus nephritis: A randomised, double-blind, placebo-controlled trial. Ann Rheum Dis. 2022;81(1):100-107. doi: 10.1136/annrheumdis-2021-220920

252. Насонов ЕЛ, Авдеева АС. Деплеция В-клеток при иммуно-воспалительных ревматических заболеваниях и коронавирусная болезнь 2019 (COVID-19). Научно-практическая ревматология. 2021;59(4):384-393. [Nasonov EL, Avdeeva AS. B cell depletion in immune-mediated rheumatic diseases and coronavirus disease 2019 (COVID-19). Nauchno-Prakticheskaya Revmatologia = Rheumatology Science and Practice. 2021;59(4):384-393 (In Russ.)]. doi: .47360/1995-4484-2021-384-393

253. Hiepe F, Dörner T, Hauser AE, Hoyer BF, Mei H, Radbruch A. Long-lived autoreactive plasma cells drive persistent autoimmune inflammation. Nat Rev Rheumatol. 2011;7(3):170-178. doi: 10.1038/nrrheum.2011.1

254. Ostendorf L, Burns M, Durek P, Heinz GA, Heinrich F, Garantziotis P, et al. Targeting CD38 with daratumumab in refractory systemic lupus erythematosus. N Engl J Med. 2020;383(12):1149-1155. doi: 10.1056/NEJMoa2023325

255. Pleguezuelo DE, Díaz-Simón R, Cabrera-Marante O, Lalueza A, Paz-Artal E, Lumbreras C, et al. Case report: Resetting the humoral immune response by targeting plasma cells with daratumumab in anti-phospholipid syndrome. Front Immunol. 2021;12:667515. doi: 10.3389/fimmu.2021.667515

256. Orvain C, Boulch M, Bousso P, Allanore Y, Avouac J. Is there a place for chimeric antigen receptor-T cells in the treatment of chronic autoimmune rheumatic diseases? Arthritis Rheumatol. 2021;73(11):1954-1965. doi: 10.1002/art.41812

257. Zhang Z, Xu Q, Huang L. B cell depletion therapies in autoimmune diseases: Monoclonal antibodies or chimeric antigen receptor-based therapy? Front Immunol. 2023;14:1126421. doi: 10.3389/fimmu.2023.1126421

258. Jin X, Xu Q, Pu C, Zhu K, Lu C, Jiang Y, et al. Therapeutic efficacy of anti-CD19 CAR-T cells in a mouse model of systemic lupus erythematosus. Cell Mol Immunol. 2021;18(8):1896-1903. doi: 10.1038/s41423-020-0472-1

259. Mougiakakos D, Krönke G, Völkl S, Kretschmann S, Aigner M, Kharboutli S, et al. CD19-targeted CAR T cells in refractory systemic lupus erythematosus. N Engl J Med. 2021;385(6):567-569. doi: 10.1056/NEJMc2107725

260. Mackensen A, Müller F, Mougiakakos D, Böltz S, Wilhelm A, Aigner M, et al. Anti-CD19 CAR T cell therapy for refractory systemic lupus erythematosus. Nat Med. 2022;28(10):2124-2132. doi: 10.1038/s41591-022-02017-5

261. Pecher AC, Hensen L, Klein R, Schairer R, Lutz K, Atar D, et al. CD19-targeting CAR T cells for myositis and interstitial lung disease associated with antisynthetase syndrome. JAMA. 2023;329(24):2154-2162. doi: 10.1001/jama.2023.8753

262. Goulden B, Isenberg D. Anti-IFNαR MAbs for the treatment of systemic lupus erythematosus. Expert Opin Biol Ther. 2021;21(4):519-528. doi: 10.1080/14712598.2021.1841164

263. Niebel D, de Vos L, Fetter T, Brägelmann C, Wenzel J. Cutaneous lupus erythematosus: An update on pathogenesis and future therapeutic directions. Am J Clin Dermatol. 2023;24(4):521-540. doi: 10.1007/s40257-023-00774-8

264. Xue C, Yao Q, Gu X, Shi Q, Yuan X, Chu Q, Bao Z, et al. Evolving cognition of the JAK-STAT signaling pathway: autoimmune disorders and cancer. Signal Transduct Target Ther. 2023;8(1):204. doi: 10.1038/s41392-023-01468-7

265. Tanaka Y, Luo Y, O’Shea JJ, Nakayamada S. Janus kinase-targeting therapies in rheumatology: A mechanisms-based approach. Nat Rev Rheumatol. 2022;18(3):133-145. doi: 10.1038/s41584-021-00726-8

266. Mok CC. Targeted small molecules for systemic lupus erythematosus: Drugs in the pipeline. Drugs. 2023;83(6):479-496. doi: 10.1007/s40265-023-01856-x

267. Moura RA, Fonseca JE. JAK inhibitors and modulation of B cell immune responses in rheumatoid arthritis. Front Med (Lausanne). 2021;7:607725. doi: 10.3389/fmed.2020.607725

268. Hasni SA, Gupta S, Davis M, Poncio E, Temesgen-Oyelakin Y, Carlucci PM, et al. Phase 1 double-blind randomized safety trial of the Janus kinase inhibitor tofacitinib in systemic lupus erythematosus. Nat Commun. 2021;12(1):3391. doi: 10.1038/s41467-021-23361-z

269. Nikolopoulos D, Parodis I. Janus kinase inhibitors in systemic lupus erythematosus: Implications for tyrosine kinase 2 inhibition. Front Med (Lausanne). 2023;10:1217147. doi: 10.3389/fmed.2023.1217147

270. Crepeau RL, Ford ML. Challenges and opportunities in targeting the CD28/CTLA-4 pathway in transplantation and autoimmunity. Expert Opin Biol Ther. 2017;17(8):1001-1012. doi: 10.1080/14712598.2017.1333595

271. Iwata S, Nakayamada S, Fukuyo S, Kubo S, Yunoue N, Wang SP, et al. Activation of Syk in peripheral blood B cells in patients with rheumatoid arthritis: A potential target for abatacept therapy. Arthritis Rheumatol. 2015;67(1):63-73. doi: 10.1002/art.38895

272. Merrill JT, Burgos-Vargas R, Westhovens R, Chalmers A, D’Cruz D, Wallace DJ, et al. The efficacy and safety of abatacept in patients with non-life-threatening manifestations of systemic lupus erythematosus: Results of a twelve-month, multicenter, exploratory, phase IIb, randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 2010;62(10):3077-3087. doi: 10.1002/art.27601

273. Tjärnlund A, Tang Q, Wick C, Dastmalchi M, Mann H, Tomasová Studýnková J, et al. Abatacept in the treatment of adult dermatomyositis and polymyositis: A randomised, phase IIb treatment delayed-start trial. Ann Rheum Dis. 2018;77(1):55-62. doi: 10.1136/annrheumdis-2017-211751

274. Khanna D, Spino C, Johnson S, Chung L, Whitfield ML, Denton CP, et al. Abatacept in early diffuse cutaneous systemic sclerosis: Results of a phase II investigator-initiated, multicenter, double-blind, randomized, placebo-controlled trial. Arthritis Rheumatol. 2020;72(1):125-136. doi: 10.1002/art.41055

275. Chung L, Spino C, McLain R, Johnson SR, Denton CP, Molitor JA, et al. Safety and efficacy of abatacept in early diffuse cutaneous systemic sclerosis (ASSET): Open-label extension of a phase 2, double-blind randomised trial. Lancet Rheumatol. 2020;2(12):e743-e753. doi: 10.1016/s2665-9913(20)30237-x

276. Langford CA, Monach PA, Specks U, Seo P, Cuthbertson D, McAlear CA, et al.; Vasculitis Clinical Research Consortium. An open-label trial of abatacept (CTLA4-IG) in non-severe relapsing granulomatosis with polyangiitis (Wegener’s). Ann Rheum Dis. 2014;73(7):1376-1379. doi: 10.1136/annrheumdis-2013-204164

277. de Wolff L, van Nimwegen JF, Mossel E, van Zuiden GS, Stel AJ, Majoor KI, et al. Long-term abatacept treatment for 48 weeks in patients with primary Sjögren’s syndrome: The open-label extension phase of the ASAP-III trial. Semin Arthritis Rheum. 2022;53:151955. doi: 10.1016/j.semarthrit.2022.151955

278. Насонов ЕЛ, Решетняк ТМ, Алекберова ЗС. Тромботическая микроангиопатия в ревматологии: связь тромбовоспаления и аутоиммунитета. Терапевтический архив. 2020;92(5):4-14. [Nasonov EL, Reshetnyak TM, Alekberova ZS. Thrombotic microangiopathy in rheumatology: A link between thrombosis and autoimmunity. Terapevticheskii arkhiv. 2020;92(5):4-14 (In Russ.)]. doi: 10.26442/00403660.2020.05.000697

279. Mazzariol M, Manenti L, Vaglio A. The complement system in antineutrophil cytoplasmic antibody-associated vasculitis: pathogenic player and therapeutic target. Curr Opin Rheumatol. 2023;35(1):31-36. doi: 10.1097/BOR.0000000000000914

280. Rafael-Vidal C, Pérez N, Altabás I, Garcia S, Pego-Reigosa JM. Blocking IL-17: A promising strategy in the treatment of systemic rheumatic diseases. Int J Mol Sci. 2020;21(19):7100. doi: 10.3390/ijms21197100

281. Akiyama S, Sakuraba A. Distinct roles of interleukin-17 and T helper 17 cells among autoimmune diseases. J Transl Autoimmun. 2021;4:100104. doi: 10.1016/j.jtauto.2021.100104.

282. Winthrop KL, Isaacs JD, Mease PJ, Boumpas DT, Baraliakos X, Gottenberg JE, et al. Unmet need in rheumatology: Reports from the Advances in Targeted Therapies Meeting, 2022. Ann Rheum Dis. 2023;82(5):594-598. doi: 10.1136/ard-2022-223528

283. Насонов ЕЛ, Лила АМ, Галушко ЕА, Амирджанова ВН. Стратегия развития ревматологии: от научных достижений к практическому здравоохранению. Научно-практическая ревматология. 2017;55(4):339-343. [Nasonov EL, Lila AM, Galushko EA, Amirdzhanova VN. Strategy for development of rheumatology: From scientific achievements to practical healthcare. Nauchno-Prakticheskaya Revmatologia = Rheumatology Science and Practice. 2017;55(4):339-343 (In Russ.)]. doi: 10.14412/1995-4484-2017-339-343

284. Laigle L, Chadli L, Moingeon P. Biomarker-driven development of new therapies for autoimmune diseases: Current status and future promises. Expert Rev Clin Immunol. 2023;19(3):305-314. doi: 10.1080/1744666X.2023.2172404

285. Felten R, Mertz P, Sebbag E, Scherlinger M, Arnaud L. Novel therapeutic strategies for autoimmune and inflammatory rheumatic diseases. Drug Discov Today. 2023;28(7):103612. doi: 10.1016/j.drudis.2023.103612


Рецензия

Для цитирования:


Насонов Е.Л. Современная концепция аутоиммунитета в ревматологии. Научно-практическая ревматология. 2023;61(4):397-420. https://doi.org/10.47360/1995-4484-2023-397-420

For citation:


Nasonov E.L. Modern concept of autoimmunity in rheumatology. Rheumatology Science and Practice. 2023;61(4):397-420. (In Russ.) https://doi.org/10.47360/1995-4484-2023-397-420

Просмотров: 1502


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1995-4484 (Print)
ISSN 1995-4492 (Online)