Preview

Научно-практическая ревматология

Расширенный поиск

Роль нетоза в патогенезе иммуновоспалительных ревматических заболеваний

https://doi.org/10.47360/1995-4484-2023-513-530

Аннотация

Неконтролируемая активация нейтрофилов рассматривается как важный механизм тромбовоспаления и фиброза при иммуновоспалительных ревматических заболеваниях (ИВРЗ), злокачественных новообразованиях, атеросклерозе, COVID-19 и многих других острых и хронических воспалительных болезнях человека. Особое внимание привлечено к способности нейтрофилов формировать «сетевые» (web-like) структуры, получившие название «нейтрофильные внеклеточные ловушки», или NETs (neutrophil extracellular traps).
Процесс, связанный с образованием NETs и ослаблением их деградации, получил название нетоз (NETosis).
В статье суммированы данные о роли нетоза в патогенезе ИВРЗ, обсуждаются перспективы фармакотерапии, направленной на предотвращение формирования и разрушение NETs. 

Об авторах

Е. Л. Насонов
ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой»; ФГАОУ ВО «Первый Московский государственный медицинский университет имени И.М. Сеченова» Минздрава России (Сеченовский Университет)
Россия

115522, Москва, Каширское шоссе, 34а;
119991, Москва, ул. Трубецкая, 8, стр. 2


Конфликт интересов:

Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.



А. С. Авдеева
ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой»
Россия

115522, Москва, Каширское шоссе, 34а


Конфликт интересов:

Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.



Т. М. Решетняк
ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой»
Россия

115522, Москва, Каширское шоссе, 34а


Конфликт интересов:

Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.



А. П. Алексанкин
ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой»
Россия

115522, Москва, Каширское шоссе, 34а


Конфликт интересов:

Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.



Ю. П. Рубцов
ФГБУН Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова РАН; ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина» Минздрава России
Россия

117997, Москва, ул. Миклухо-Маклая, 16/10;
115522, Москва, Каширское шоссе, 23


Конфликт интересов:

Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.



Список литературы

1. Szekanecz Z, McInnes IB, Schett G, Szamosi S, Benkő S, Szűcs G. Autoinflammation and autoimmunity across rheumatic and musculoskeletal diseases. Nat Rev Rheumatol. 2021;17(10):585-595. doi: 10.1038/s41584-021-00652-9

2. Насонов ЕЛ. Современная концепция аутоиммунитета в ревматологии. Научно-практическая ревматология. 2023;61(4): 397-420. doi: 10.47360/1995-4484-2023-397-420

3. Hedrich CM. Shaping the spectrum – From autoinflammation to autoimmunity. Clin Immunol. 2016;165:21-28. doi: 10.1016/j.clim.2016.03.002

4. Насонов ЕЛ, Александрова ЕН, Новиков АА. Аутоиммунные ревматические заболевания: итоги и перспективы научных исследований. Научно-практическая ревматология. 2015;53(3): 230-237. doi: 10.14412/1995-4484-2015-230-237

5. Pinegin B, Vorobjeva N, Pinegin V. Neutrophil extracellular traps and their role in the development of chronic inflammation and autoimmunity. Autoimmun Rev. 2015;14(7):633-640. doi: 10.1016/j.autrev.2015.03.002

6. Wigerblad G, Kaplan MJ. Neutrophil extracellular traps in systemic autoimmune and autoinflammatory diseases. Nat Rev Immunol. 2023;23(5):274-288. doi: 10.1038/s41577-022-00787-0

7. Melbouci D, Haidar Ahmad A, Decker P. Neutrophil extracellular traps (NET): Not only antimicrobial but also modulators of innate and adaptive immunities in inflammatory autoimmune diseases. RMD Open. 2023;9(3):e003104. doi: 10.1136/rmdopen-2023-003104

8. Hidalgo A, Libby P, Soehnlein O, Aramburu IV, Papayannopoulos V, Silvestre-Roig C. Neutrophil extracellular traps: From physio logy to pathology. Cardiovasc Res. 2022;118(13):2737-2753. doi: 10.1093/cvr/cvab329

9. Li J, Zhang K, Zhang Y, Gu Z, Huang C. Neutrophils in COVID-19: Recent insights and advances. Virol J. 2023;20(1):169. doi: 10.1186/s12985-023-02116-w

10. Волков ДВ, Тец ГВ, Рубцов ЮР, Степанов АВ, Габибов АГ. Внеклеточные ловушки нейтрофилов (NET): перспективы таргетной терапии. Acta Naturae 2021;13(3);15-21. doi: 10.32607/actanaturae.11503

11. Masucci MT, Minopoli M, Del Vecchio S, Carriero MV. The emerging role of neutrophil extracellular traps (NETs) in tumor progression and metastasis. Front Immunol. 2020;11:1749. doi: 10.3389/fimmu.2020.01749

12. Silvestre-Roig C, Fridlender ZG, Glogauer M, Scapini P. Neutrophil diversity in health and disease. Trends Immunol. 2019;40(7):565-583. doi: 10.1016/j.it.2019.04.012

13. Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol. 2013;13(3):159-175. doi: 10.1038/nri3399

14. Liew PX, Kubes P. The Neutrophil’s role during health and disease. Physiol Rev. 2019;99(2):1223-1248. doi: 10.1152/physrev.00012.2018

15. Rosales C. Neutrophils at the crossroads of innate and adaptive immunity. J Leukoc Biol. 2020;108(1):377-396. doi: 10.1002/JLB.4MIR0220-574RR

16. Ng LG, Ostuni R, Hidalgo A. Heterogeneity of neutrophils. Nat Rev Immunol. 2019;19(4):255-265. doi: 10.1038/s41577-019-0141-8

17. Wigerblad G, Cao Q, Brooks S, Naz F, Gadkari M, Jiang K, et al. Single-cell analysis reveals the range of transcriptional states of circulating human neutrophils. J Immunol. 2022;209(4):772-782. doi: 10.4049/jimmunol.2200154

18. Wang W, Su J, Yan M, Pan J, Zhang X. Neutrophil extracellular traps in autoimmune diseases: Analysis of the knowledge map. Front Immunol. 2023;14:1095421. doi: 10.3389/fimmu.2023.1095421

19. Wang H, Liu X, Jia Z, Liu L, Qi Y, Zhou Q, et al. Mapping current status and emerging trends in NETosis: A bibliometric study. Medicine (Baltimore). 2023;102(21):e33806. doi: 10.1097/MD.0000000000033806

20. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532-1535. doi: 10.1126/science

21. Papayannopoulos V. Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol. 2018;18(2):134-147. doi: 10.1038/nri.2017.105

22. Vorobjeva NV, Chernyak BV. NETosis: Molecular mechanisms, role in physiology and pathology. Biochemistry (Mosc). 2020;85(10):1178-1190. doi: 10.1134/S0006297920100065

23. Poli V, Zanoni I. Neutrophil intrinsic and extrinsic regulation of NETosis in health and disease. Trends Microbiol. 2023;31(3):280-293. doi: 10.1016/j.tim.2022.10.002

24. Colicchia M, Perrella G, Gant P, Rayes J. Novel mechanisms of thrombo-inflammation during infection: Spotlight on neutrophil extracellular trap-mediated platelet activation. Res Pract Thromb Haemost. 2023;7(2):100116. doi: 10.1016/j.rpth.2023.100116

25. Petretto A, Bruschi M, Pratesi F, Croia C, Candiano G, Ghiggeri G, et al. Neutrophil extracellular traps (NET) induced by different stimuli: A comparative proteomic analysis. PLoS One. 2019;14(7):e0218946. doi: 10.1371/journal.pone.0218946

26. Haidar Ahmad A, Melbouci D, Decker P. Polymorphonuclear neutrophils in rheumatoid arthritis and systemic lupus erythematosus: More complicated than anticipated. Immuno. 2022;2:85-103. doi: 10.3390/immuno201000

27. Bert S, Nadkarni S, Perretti M. Neutrophil-T cell crosstalk and the control of the host inflammatory response. Immunol Rev. 2023;314(1):36-49. doi: 10.1111/imr.13162

28. Huang SU, O’Sullivan KM. The expanding role of extracellular traps in inflammation and autoimmunity: The new players in casting dark webs. Int J Mol Sci. 2022;23(7):3793. doi: 10.3390/ijms23073793

29. Boeltz S, Amini P, Anders HJ, Andrade F, Bilyy R, Chatfield S, et al. To NET or not to NET: Current opinions and state of the science regarding the formation of neutrophil extracellular traps. Cell Death Differ. 2019;26(3):395-408. doi: 10.1038/s41418-018-0261-x

30. Aymonnier K, Amsler J, Lamprecht P, Salama A, Witko-Sarsat V. The neutrophil: A key resourceful agent in immune-mediated vasculitis. Immunol Rev. 2023;314(1):326-356. doi: 10.1111/imr.13170

31. Salemme R, Peralta LN, Meka SH, Pushpanathan N, Alexander JJ. The role of NETosis in systemic lupus erythematosus. J Cell Immunol. 2019;1(2):33-42. doi: 10.33696/immunology.1.008

32. Wang M, Ishikawa T, Lai Y, Nallapothula D, Singh RR. Diverse roles of NETosis in the pathogenesis of lupus. Front Immunol. 2022;13:895216. doi: 10.3389/fimmu.2022.895216

33. Caielli S, Athale S, Domic B, Murat E, Chandra M, Banchereau R, et al. Oxidized mitochondrial nucleoids released by neutrophils drive type I interferon production in human lupus. J Exp Med. 2016;213(5):697-713. doi: 10.1084/jem.20151876

34. Garcia-Romo GS, Caielli S, Vega B, Connolly J, Allantaz F, Xu Z, et al. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci Transl Med. 2011;3(73):73ra20. doi: 10.1126/scitranslmed.3001201

35. Patiño-Trives AM, Pérez-Sánchez C, Pérez-Sánchez L, LuqueTévar M, Ábalos-Aguilera MC, Alcaide-Ruggiero L, et al. AntidsDNA antibodies increase the cardiovascular risk in systemic lupus erythematosus promoting a distinctive immune and vascular activation. Arterioscler Thromb Vasc Biol. 2021;41(9):2417-2430. doi: 10.1161/ATVBAHA.121.315928

36. Lindau D, Mussard J, Rabsteyn A, Ribon M, Kötter I, Igney A, et al. TLR9 independent interferon α production by neutrophils on NETosis in response to circulating chromatin, a key lupus autoantigen. Ann Rheum Dis. 2014;73(12):2199-2207. doi: 10.1136/annrheumdis-2012-203041

37. Hakkim A, Fürnrohr BG, Amann K, Laube B, Abed UA, Brinkmann V, et al. Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc Natl Acad Sci U S A. 2010;107(21):9813-9818. doi: 10.1073/pnas.0909927107

38. Leffler J, Martin M, Gullstrand B, Tydén H, Lood C, Truedsson L, et al. Neutrophil extracellular traps that are not degraded in systemic lupus erythematosus activate complement exacerbating the disease. J Immunol. 2012;188(7):3522-3531. doi: 10.4049/jimmunol.1102404

39. Lou H, Wojciak-Stothard B, Ruseva MM, Cook HT, Kelleher P, Pickering MC, et al. Autoantibody-dependent amplification of inflammation in SLE. Cell Death Dis. 2020;11(9):729. doi: 10.1038/s41419-020-02928-6

40. Lood C, Blanco LP, Purmalek MM, Carmona-Rivera C, De Ravin SS, Smith CK, et al. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat Med. 2016;22(2):146-153. doi: 10.1038/nm.4027

41. Georgakis S, Gkirtzimanaki K, Papadaki G, Gakiopoulou H, Drakos E, Eloranta ML, et al. NETs decorated with bioactive IL-33 infiltrate inflamed tissues and induce IFN-α production in patients with SLE. JCI Insight. 2021;6(21):e147671. doi: 10.1172/jci.insight.147671

42. Lande R, Ganguly D, Facchinetti V, Frasca L, Conrad C, Gregorio J, et al. Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus. Sci Transl Med. 2011;3(73):73ra19. doi: 10.1126/scitranslmed.3001180

43. Kahlenberg JM, Carmona-Rivera C, Smith CK, Kaplan MJ. Neutrophil extracellular trap-associated protein activation of the NLRP3 inflammasome is enhanced in lupus macrophages. J Immunol. 2013;190(3):1217-1226. doi: 10.4049/jimmunol.1202388

44. Barrera-Vargas A, Gómez-Martín D, Carmona-Rivera C, Merayo-Chalico J, Torres-Ruiz J, Manna Z, et al. Differential ubiquitination in NETs regulates macrophage responses in systemic lupus erythematosus. Ann Rheum Dis. 2018;77(6):944-950. doi: 10.1136/annrheumdis-2017-212617

45. Gestermann N, Di Domizio J, Lande R, Demaria O, Frasca L, Feldmeyer L, et al. Netting neutrophils activate autoreactive B cells in lupus. J Immunol. 2018;200(10):3364-3371. doi: 10.4049/jimmunol.1700778.

46. Carmona-Rivera C, Zhao W, Yalavarthi S, Kaplan MJ. Neutrophil extracellular traps induce endothelial dysfunction in systemic lupus erythematosus through the activation of matrix metalloproteinase-2. Ann Rheum Dis. 2015;74(7):1417-1424. doi: 10.1136/annrheumdis-2013-204837

47. Blanco LP, Wang X, Carlucci PM, Torres-Ruiz JJ, Romo-Tena J, Sun HW, et al. RNA externalized by neutrophil extracellular traps promotes inflammatory pathways in endothelial cells. Arthritis Rheumatol. 2021;73(12):2282-2292. doi: 10.1002/art.41796

48. Arvieux J, Jacob MC, Roussel B, Bensa JC, Colomb MG. Neutrophil activation by anti-beta 2 glycoprotein I monoclonal antibodies via Fc gamma receptor II. J Leukoc Biol. 1995;57(3):387-394. doi: 10.1002/jlb.57.3.387

49. Kessenbrock K, Krumbholz M, Schönermarck U, Back W, Gross WL, Werb Z, et al. Netting neutrophils in autoimmune smallvessel vasculitis. Nat Med. 2009;15(6):623-625. doi: 10.1038/nm.1959

50. Sangaletti S, Tripodo C, Chiodoni C, Guarnotta C, Cappetti B, Casalini P, et al. Neutrophil extracellular traps mediate transfer of cytoplasmic neutrophil antigens to myeloid dendritic cells toward ANCA induction and associated autoimmunity. Blood. 2012;120(15):3007-3018. doi: 10.1182/blood-2012-03-416156

51. Khandpur R, Carmona-Rivera C, Vivekanandan-Giri A, Gizinski A, Yalavarthi S, Knight JS, et al. NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci Transl Med. 2013;5(178):178ra40. doi: 10.1126/scitranslmed.3005580

52. Pratesi F, Dioni I, Tommasi C, Alcaro MC, Paolini I, Barbetti F, et al. Antibodies from patients with rheumatoid arthritis target citrullinated histone 4 contained in neutrophils extracellular traps. Ann Rheum Dis. 2014;73(7):1414-1422. doi: 10.1136/annrheumdis-2012-202765

53. Ribon M, Seninet S, Mussard J, Sebbag M, Clavel C, Serre G, et al. Neutrophil extracellular traps exert both pro- and antiinflammatory actions in rheumatoid arthritis that are modulated by C1q and LL-37. J Autoimmun. 2019;98:122-131. doi: 10.1016/j.jaut.2019.01.003

54. Corsiero E, Bombardieri M, Carlotti E, Pratesi F, Robinson W, Migliorini P, et al. Single cell cloning and recombinant monoclonal antibodies generation from RA synovial B cells reveal frequent targeting of citrullinated histones of NETs. Ann Rheum Dis. 2016;75(10):1866-1875. doi: 10.1136/annrheumdis-2015-208356

55. O’Neil LJ, Barrera-Vargas A, Sandoval-Heglund D, MerayoChalico J, Aguirre-Aguilar E, Aponte AM, et al. Neutrophil-mediated carbamylation promotes articular damage in rheumatoid arthritis. Sci Adv. 2020;6(44):eabd2688. doi: 10.1126/sciadv.abd2688

56. de Bont CM, Stokman MEM, Faas P, Thurlings RM, Boelens WC, Wright HL, et al. Autoantibodies to neutrophil extracellular traps represent a potential serological biomarker in rheumatoid arthritis. J Autoimmun. 2020;113:102484. doi: 10.1016/j.jaut.2020.102484

57. Papadaki G, Kambas K, Choulaki C, Vlachou K, Drakos E, Bertsias G, et al. Neutrophil extracellular traps exacerbate Th1-mediated autoimmune responses in rheumatoid arthritis by promoting DC maturation. Eur J Immunol. 2016;46(11):2542-2554. doi: 10.1002/eji.201646542

58. Carmona-Rivera C, Carlucci PM, Goel RR, James E, Brooks SR, Rims C, et al. Neutrophil extracellular traps mediate articular cartilage damage and enhance cartilage component immunogenicity in rheumatoid arthritis. JCI Insight. 2020;5(13):e139388. doi: 10.1172/jci.insight.139388

59. Pisetsky DS, Lipsky PE. New insights into the role of antinuclear antibodies in systemic lupus erythematosus. Nat Rev Rheumatol. 2020;16(10):565-579. doi: 10.1038/s41584-020-0480-7

60. Sokolova MV, Schett G, Steffen U. Autoantibodies in rheumatoid arthritis: Historical background and novel findings. Clin Rev Allergy Immunol. 2022;63(2):138-151. doi: 10.1007/s12016-021-08890-1

61. Renaudineau Y, Deocharan B, Jousse S, Renaudineau E, Putterman C, Youinou P. Anti-alpha-actinin antibodies: A new marker of lupus nephritis. Autoimmun Rev. 2007;6(7):464-468. doi: 10.1016/j.autrev.2007.02.001

62. Seret G, Cañas F, Pougnet-Di Costanzo L, Hanrotel-Saliou C, Jousse-Joulin S, Le Meur Y, et al. Anti-alpha-actinin antibodies are part of the anti-cell membrane antibody spectrum that characterize patients with lupus nephritis. J Autoimmun. 2015;61:54-61. doi: 10.1016/j.jaut.2015.05.009

63. Renaudineau Y, Croquefer S, Jousse S, Renaudineau E, Devauchelle V, Guéguen P, et al. Association of alpha-actininbinding anti-double-stranded DNA antibodies with lupus nephritis. Arthritis Rheum. 2006;54(8):2523-2532. doi: 10.1002/art.22015

64. Mason LJ, Ravirajan CT, Rahman A, Putterman C, Isenberg DA. Is alpha-actinin a target for pathogenic anti-DNA antibodies in lupus nephritis? Arthritis Rheum. 2004;50(3):866-870. doi: 10.1002/art.20103

65. Zhao Z, Weinstein E, Tuzova M, Davidson A, Mundel P, Marambio P, et al. Cross-reactivity of human lupus anti-DNA antibodies with alpha-actinin and nephritogenic potential. Arthritis Rheum. 2005;52(2):522-530. doi: 10.1002/art.20862

66. Bruschi M, Galetti M, Sinico RA, Moroni G, Bonanni A, Radice A, et al. Glomerular autoimmune multicomponents of human lupus nephritis in vivo (2): Planted antigens. J Am Soc Nephrol. 2015;26(8):1905-1924. doi: 10.1681/ASN.2014050493

67. Mosca M, Chimenti D, Pratesi F, Baldini C, Anzilotti C, Bombardieri S, et al. Prevalence and clinico-serological correlations of anti-alpha-enolase, anti-C1q, and anti-dsDNA antibodies in patients with systemic lupus erythematosus. J Rheumatol. 2006;33(4):695-697.

68. Bruschi M, Sinico RA, Moroni G, Pratesi F, Migliorini P, Galetti M, et al. Glomerular autoimmune multicomponents of human lupus nephritis in vivo: α-enolase and annexin AI. J Am Soc Nephrol. 2014;25(11):2483-2498. doi: 10.1681/ASN.2013090987

69. Bruschi M, Petretto A, Vaglio A, Santucci L, Candiano G, Ghiggeri GM. Annexin A1 and autoimmunity: From basic science to clinical applications. Int J Mol Sci. 2018;19(5):1348. doi: 10.3390/ijms19051348

70. Trendelenburg M. Autoantibodies against complement component C1q in systemic lupus erythematosus. Clin Transl Immunology. 2021;10(4):e1279. doi: 10.1002/cti2.1279

71. Sturfelt G, Jonsson H, Hellmer G, Sjöholm AG. Clustering of neutrophil leucocytes in serum: Possible role of C1q-containing immune complexes. Clin Exp Immunol. 1993;93(2):237-241. doi: 10.1111/j.1365-2249.1993.tb07972.x

72. Orbai AM, Truedsson L, Sturfelt G, Nived O, Fang H, Alarcón GS, et al. Anti-C1q antibodies in systemic lupus erythematosus. Lupus. 2015;24(1):42-49. doi: 10.1177/0961203314547791

73. Horváth L, Czirják L, Fekete B, Jakab L, Prohászka Z, Cervenak L, et al. Levels of antibodies against C1q and 60 kDa family of heat shock proteins in the sera of patients with various autoimmune diseases. Immunol Lett. 2001;75(2):103-109. doi: 10.1016/s0165-2478(00)00287-x

74. Цанян МЭ, Александрова ЕН, Соловьев СК, Насонов ЕЛ. Антитела к Clq при системной красной волчанке биологический маркер активности, предиктор развития нефрита и неблагоприятного жизненного прогноза. Научно-практическая ревматология. 2013;51(1):71-75. doi: 10.14412/1995-4484-2013-1205

75. Mansour RB, Lassoued S, Gargouri B, El Gaïd A, Attia H, Fakhfakh F. Increased levels of autoantibodies against catalase and superoxide dismutase associated with oxidative stress in patients with rheumatoid arthritis and systemic lupus erythematosus. Scand J Rheumatol. 2008;37(2):103-108. doi: 10.1080/03009740701772465

76. Yaniv G, Twig G, Shor DB, Furer A, Sherer Y, Mozes O, et al. A volcanic explosion of autoantibodies in systemic lupus erythematosus: A diversity of 180 different antibodies found in SLE patients. Autoimmun Rev. 2015;14(1):75-79. doi: 10.1016/j.autrev.2014.10.003

77. Janssen KMJ, de Smit MJ, Withaar C, Brouwer E, van Winkelhoff AJ, Vissink A, et al. Autoantibodies against citrullinated histone H3 in rheumatoid arthritis and periodontitis patients. J Clin Periodontol. 2017;44(6):577-584. doi: 10.1111/jcpe.12727

78. Kumar SV, Kulkarni OP, Mulay SR, Darisipudi MN, Romoli S, Thomasova D, et al. Neutrophil extracellular trap-related extracellular histones cause vascular necrosis in severe GN. J Am Soc Nephrol. 2015;26(10):2399-2413. doi: 10.1681/ASN.2014070673

79. Tian J, Avalos AM, Mao SY, Chen B, Senthil K, Wu H, et al. Tolllike receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat Immunol. 2007;8(5):487-496. doi: 10.1038/ni1457

80. Abdulahad DA, Westra J, Bijzet J, Limburg PC, Kallenberg CG, Bijl M. High mobility group box 1 (HMGB1) and anti-HMGB1 antibodies and their relation to disease characteristics in systemic lupus erythematosus. Arthritis Res Ther. 2011;13(3):R71. doi: 10.1186/ar3332

81. Avalos AM, Kiefer K, Tian J, Christensen S, Shlomchik M, Coyle AJ, et al. RAGE-independent autoreactive B cell activation in response to chromatin and HMGB1/DNA immune complexes. Autoimmunity. 2010;43(1):103-110. doi: 10.3109/08916930903384591

82. Tamiya H, Tani K, Miyata J, Sato K, Urata T, Lkhagvaa B, et al. Defensins- and cathepsin G-ANCA in systemic lupus erythematosus. Rheumatol Int. 2006;27(2):147-152. doi: 10.1007/s00296-006-0173-9

83. Neumann A, Berends ET, Nerlich A, Molhoek EM, Gallo RL, Meerloo T, et al. The antimicrobial peptide LL-37 facilitates the formation of neutrophil extracellular traps. Biochem J. 2014;464(1):3-11. doi: 10.1042/BJ20140778

84. Neumann A, Völlger L, Berends ET, Molhoek EM, Stapels DA, Midon M, et al. Novel role of the antimicrobial peptide LL-37 in the protection of neutrophil extracellular traps against degradation by bacterial nucleases. J Innate Immun. 2014;6(6):860-868. doi: 10.1159/000363699

85. Pauly D, Nagel BM, Reinders J, Killian T, Wulf M, Ackermann S, et al. A novel antibody against human properdin inhibits the alternative complement system and specifically detects properdin from blood samples. PLoS One. 2014;9(5):e96371. doi: 10.1371/journal.pone.0096371

86. Nozal P, Garrido S, Martínez-Ara J, Picazo ML, Yébenes L, Álvarez-Doforno R, et al. Case report: Lupus nephritis with autoantibodies to complement alternative pathway proteins and C3 gene mutation. BMC Nephrol. 2015;16:40. doi: 10.1186/s12882-015-0032-6

87. Schultz DR, Tozman EC. Antineutrophil cytoplasmic antibodies: Major autoantigens, pathophysiology, and disease associations. Semin Arthritis Rheum. 1995;25(3):143-159. doi: 10.1016/s0049-0172(95)80027-1

88. Silva de Souza AW. Autoantibodies in systemic vasculitis. Front Immunol. 2015;6:184. doi: 10.3389/fimmu.2015.00184

89. Zhao MH, Liu N, Zhang YK, Wang HY. Antineutrophil cytoplasmic autoantibodies (ANCA) and their target antigens in Chinese patients with lupus nephritis. Nephrol Dial Transplant. 1998;13(11):2821-2824. doi: 10.1093/ndt/13.11.2821

90. Manolova I, Dancheva M, Halacheva K. Antineutrophil cytoplasmic antibodies in patients with systemic lupus erythematosus: Prevalence, antigen specificity, and clinical associations. Rheumatol Int. 2001;20(5):197-204. doi: 10.1007/s002960100108

91. Nässberger L, Jonsson H, Sjöholm AG, Sturfelt G, Heubner A. Circulating anti-elastase in systemic lupus erythematosus. Lancet. 1989;1(8636):509. doi: 10.1016/s0140-6736(89)91420-7

92. Schulte-Pelkum J, Radice A, Norman GL, Lόpez Hoyos M, Lakos G, Buchner C, et al. Novel clinical and diagnostic aspects of antineutrophil cytoplasmic antibodies. J Immunol Res. 2014;2014:185416. doi: 10.1155/2014/185416

93. Carmona-Rivera C, Kaplan MJ. Detection of SLE antigens in neutrophil extracellular traps (NETs). Methods Mol Biol. 2014;1134:151-161. doi: 10.1007/978-1-4939-0326-9_11

94. Tang S, Zhang Y, Yin SW, Gao XJ, Shi WW, Wang Y, et al. Neutrophil extracellular trap formation is associated with autophagyrelated signalling in ANCA-associated vasculitis. Clin Exp Immunol. 2015;180(3):408-418. doi: 10.1111/cei.12589

95. Kain R. L29. Relevance of anti-LAMP-2 in vasculitis: Why the controversy. Presse Med. 2013;42(4 Pt 2):584-588. doi: 10.1016/j.lpm.2013.01.029

96. Kain R, Rees AJ. What is the evidence for antibodies to LAMP2 in the pathogenesis of ANCA associated small vessel vasculitis? Curr Opin Rheumatol. 2013;25(1):26-34. doi: 10.1097/BOR.0b013e32835b4f8f

97. O’Sullivan KM, Lo CY, Summers SA, Elgass KD, McMillan PJ, Longano A, et al. Renal participation of myeloperoxidase in antineutrophil cytoplasmic antibody (ANCA)-associated glomerulonephritis. Kidney Int. 2015;88(5):1030-1046. doi: 10.1038/ki.2015.202

98. Kaul A, Gordon C, Crow MK, Touma Z, Urowitz MB, van Vollenhoven R, Ruiz-Irastorza G, et al. Systemic lupus erythematosus. Nat Rev Dis Primers. 2016;2:16039. doi: 10.1038/nrdp.2016.39

99. Tsokos GC. Autoimmunity and organ damage in systemic lupus erythematosus. Nat Immunol. 2020;21(6):605-614. doi: 10.1038/s41590-020-0677-6

100. Crow MK. Pathogenesis of systemic lupus erythematosus: Risks, mechanisms and therapeutic targets. Ann Rheum Dis. 2023;82(8):999-1014. doi: 10.1136/ard-2022-223741

101. Насонов ЕЛ, Авдеева АС. Иммуновоспалительные ревматические заболевания, связанные с интерфероном типа I: новые данные. Научно-практическая ревматология. 2019;57(4):452-461. doi: 10.14412/1995-4484-2019-452-461

102. Psarras A, Wittmann M, Vital EM. Emerging concepts of type I interferons in SLE pathogenesis and therapy. Nat Rev Rheumatol. 2022;18(10):575-590. doi: 10.1038/s41584-022-00826-z

103. Ma S, Jiang W, Zhang X, Liu W. Insights into the pathogenic role of neutrophils in systemic lupus erythematosus. Curr Opin Rheumatol. 2023;35(2):82-88. doi: 10.1097/BOR.0000000000000912

104. Banchereau R, Hong S, Cantarel B, Baldwin N, Baisch J, Edens M, et al. Personalized immunomonitoring uncovers molecular networks that stratify lupus patients. Cell. 2016;165(3):551-565. doi: 10.1016/j.cell.2016.03.008

105. Mistry P, Nakabo S, O’Neil L, Goel RR, Jiang K, Carmona-Rivera C, et al. Transcriptomic, epigenetic, and functional analyses implicate neutrophil diversity in the pathogenesis of systemic lupus erythematosus. Proc Natl Acad Sci U S A. 2019;116(50):25222-25228. doi: 10.1073/pnas.1908576116

106. Bashant KR, Aponte AM, Randazzo D, Rezvan Sangsari P, Wood AJ, Bibby JA, et al. Proteomic, biomechanical and functional analyses define neutrophil heterogeneity in systemic lupus erythematosus. Ann Rheum Dis. 2021;80(2):209-218. doi: 10.1136/annrheumdis-2020-218338

107. Scapini P, Marini O, Tecchio C, Cassatella MA. Human neutrophils in the saga of cellular heterogeneity: insights and open questions. Immunol Rev. 2016;273(1):48-60. doi: 10.1111/imr.12448

108. Herrero-Cervera A, Soehnlein O, Kenne E. Neutrophils in chronic inflammatory diseases. Cell Mol Immunol. 2022;19(2):177-191. doi: 10.1038/s41423-021-00832-3

109. Midgley A, Beresford MW. Increased expression of low density granulocytes in juvenile-onset systemic lupus erythematosus patients correlates with disease activity. Lupus. 2016;25(4):407-411. doi: 10.1177/0961203315608959

110. Carlucci PM, Purmalek MM, Dey AK, Temesgen-Oyelakin Y, Sakhardande S, Joshi AA, et al. Neutrophil subsets and their gene signature associate with vascular inflammation and coronary atherosclerosis in lupus. JCI Insight. 2018;3(8):e99276. doi: 10.1172/jci.insight.99276

111. Coit P, Yalavarthi S, Ognenovski M, Zhao W, Hasni S, Wren JD, et al. Epigenome profiling reveals significant DNA demethylation of interferon signature genes in lupus neutrophils. J Autoimmun. 2015;58:59-66. doi: 10.1016/j.jaut.2015.01.004

112. Rahman S, Sagar D, Hanna RN, Lightfoot YL, Mistry P, Casey KA, et al. Low-density granulocytes activate T cells and demonstrate a non-suppressive role in systemic lupus erythematosus. Ann Rheum Dis. 2019;78(7):957-966. doi: 10.1136/annrheumdis-2018-214620

113. Villanueva E, Yalavarthi S, Berthier CC, Hodgin JB, Khandpur R, Lin AM, et al. Netting neutrophils induce endothelial damage, infiltrate tissues, and expose immunostimulatory molecules in systemic lupus erythematosus. J Immunol. 2011;187(1):538-552. doi: 10.4049/jimmunol.1100450

114. Denny MF, Yalavarthi S, Zhao W, Thacker SG, Anderson M, Sandy AR, et al. A distinct subset of proinflammatory neutrophils isolated from patients with systemic lupus erythematosus induces vascular damage and synthesizes type I IFNs. J Immunol. 2010;184(6):3284-3297. doi: 10.4049/jimmunol.0902199

115. van der Linden M, van den Hoogen LL, Westerlaken GHA, Fritsch-Stork RDE, van Roon JAG, Radstake TRDJ, et al. Neutrophil extracellular trap release is associated with antinuclear antibodies in systemic lupus erythematosus and anti-phospholipid syndrome. Rheumatology (Oxford). 2018;57(7):1228-1234. doi: 10.1093/rheumatology/key067

116. Yu Y, Su K. Neutrophil extracellular traps and systemic lupus erythematosus. J Clin Cell Immunol. 2013;4:139. doi: 10.4172/2155-9899.1000139

117. Jiménez-Alcázar M, Rangaswamy C, Panda R, Bitterling J, Simsek YJ, Long AT, et al. Host DNases prevent vascular occlusion by neutrophil extracellular traps. Science. 2017;358(6367):1202-1206. doi: 10.1126/science.aam8897

118. Al-Mayouf SM, Sunker A, Abdwani R, Abrawi SA, Almurshedi F, Alhashmi N, et al. Loss-of-function variant in DNASE1L3 causes a familial form of systemic lupus erythematosus. Nat Genet. 2011;43(12):1186-1188. doi: 10.1038/ng.975

119. Ozçakar ZB, Foster J 2nd, Diaz-Horta O, Kasapcopur O, Fan YS, Yalçınkaya F, et al. DNASE1L3 mutations in hypocomplementemic urticarial vasculitis syndrome. Arthritis Rheum. 2013;65(8):2183-2189. doi: 10.1002/art.38010

120. Han DSC, Lo YMD. The nexus of cfDNA and nuclease biology. Trends Genet. 2021;37(8):758-770. doi: 10.1016/j.tig.2021.04.005

121. Gehrke N, Mertens C, Zillinger T, Wenzel J, Bald T, Zahn Z, et al. Oxidative damage of DNA confers resistance to cytosolic nuclease TREX1 degradation and potentiates STING-dependent immune sensing. Immunity. 2013;39(3):482-495. doi: 10.1016/j.immuni.2013.08.004

122. Chauhan SK, Rai R, Singh VV, Rai M, Rai G. Differential clearance mechanisms, neutrophil extracellular trap degradation and phagocytosis, are operative in systemic lupus erythematosus patients with distinct autoantibody specificities. Immunol Lett. 2015;168(2):254-259. doi: 10.1016/j.imlet.2015.09.016

123. Antiochos B, Trejo-Zambrano D, Fenaroli P, Rosenberg A, Baer A, Garg A, et al. The DNA sensors AIM2 and IFI16 are SLE autoantigens that bind neutrophil extracellular traps. Elife. 2022;11:e72103. doi: 10.7554/eLife.72103

124. Apel F, Andreeva L, Knackstedt LS, Streeck R, Frese CK, Goosmann C, et al. The cytosolic DNA sensor cGAS recognizes neutrophil extracellular traps. Sci Signal. 2021;14(673):eaax7942. doi: 10.1126/scisignal.aax7942

125. Tumurkhuu G, Chen S, Montano EN, Ercan Laguna D, De Los Santos G, Yu M, et al. Oxidative DNA damage accelerates skin inflammation in pristane-induced lupus model. Front Immunol. 2020;11:554725. doi: 10.3389/fimmu.2020.554725

126. Насонов ЕЛ (ред.). Антифосфолипидный синдром. М.:Литтерра;2004.

127. Решетняк ТМ. Антифосфолипидный синдром: диагностика и клинические проявления (лекция). Научно-практическая ревматология. 2014;52(1):56-71. doi: 10.14412/1995-4484-2014-56-71

128. Schreiber K, Sciascia S, de Groot PG, Devreese K, Jacobsen S, Ruiz-Irastorza G, et al. Antiphospholipid syndrome. Nat Rev Dis Primers. 2018;4:18005. doi: 10.1038/nrdp.2018.5

129. Ambati A, Zuo Y, Knight JS. An update on inflammation in antiphospholipid syndrome. Curr Opin Rheumatol. 2023;35(2): 89-97. doi: 10.1097/BOR.0000000000000926

130. Knight JS, Kanthi Y. Mechanisms of immunothrombosis and vasculopathy in antiphospholipid syndrome. Semin Immunopathol. 2022;44(3):347-362. doi: 10.1007/s00281-022-00916-w

131. Knight JS, Meng H, Coit P, Yalavarthi S, Sule G, Gandhi AA, et al. Activated signature of antiphospholipid syndrome neutrophils reveals potential therapeutic target. JCI Insight. 2017;2(18):e93897. doi: 10.1172/jci.insight.93897

132. Massberg S, Grahl L, von Bruehl ML, Manukyan D, Pfeiler S, Goosmann C, et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med. 2010;16(8): 887-896. doi: 10.1038/nm.2184

133. van den Hoogen LL, Fritsch-Stork RD, van Roon JA, Radstake TR. Low-density granulocytes are increased in antiphospholipid syndrome and are associated with anti-β2 –glycoprotein I antibodies. Arthritis Rheumatol. 2016;68(5):1320-1321. doi: 10.1002/art.39576

134. van den Hoogen LL, van der Linden M, Meyaard L, FritschStork RDE, van Roon JA, Radstake TR. Neutrophil extracellular traps and low-density granulocytes are associated with the interferon signature in systemic lupus erythematosus, but not in antiphospholipid syndrome. Ann Rheum Dis. 2020;79(10):e135. doi: 10.1136/annrheumdis-2019-215781

135. Leffler J, Stojanovich L, Shoenfeld Y, Bogdanovic G, Hesselstrand R, Blom AM. Degradation of neutrophil extracellular traps is decreased in patients with antiphospholipid syndrome. Clin Exp Rheumatol. 2014;32(1):66-70.

136. Yalavarthi S, Gould TJ, Rao AN, Mazza LF, Morris AE, Núñez-Álvarez C, et al. Release of neutrophil extracellular traps by neutrophils stimulated with antiphospholipid antibodies: A newly identified mechanism of thrombosis in the antiphospholipid syndrome. Arthritis Rheumatol. 2015;67(11):2990-3003. doi: 10.1002/art.39247

137. Zha C, Zhang W, Gao F, Xu J, Jia R, Cai J, et al. Anti-β2GPI/β2GPI induces neutrophil extracellular traps formation to promote thrombogenesis via the TLR4/MyD88/MAPKs axis activation. Neuropharmacology. 2018;138:140-150. doi: 10.1016/j.neuropharm.2018.06.001

138. Marder W, Knight JS, Kaplan MJ, Somers EC, Zhang X, O’Dell AA, et al. Placental histology and neutrophil extracellular traps in lupus and pre-eclampsia pregnancies. Lupus Sci Med. 2016;3(1):e000134. doi: 10.1136/lupus-2015-000134

139. Reshetnyak T, Nurbaeva K, Ptashnik I, Kudriaeva A, Belogurov A Jr, Lila A, et al. Markers of NETosis in patients with systemic lupus erythematosus and antiphospholipid syndrome. Int J Mol Sci. 2023;24(11):9210. doi: 10.3390/ijms24119210

140. Stoimenou M, Tzoros G, Skendros P, Chrysanthopoulou A. Methods for the assessment of NET formation: From neutrophil biology to translational research. Int J Mol Sci. 2022;23(24):15823. doi: 10.3390/ijms232415823

141. Hanata N, Ota M, Tsuchida Y, Nagafuchi Y, Okamura T, Shoda H, et al. Serum extracellular traps associate with the activation of myeloid cells in SLE patients with the low level of antiDNA antibodies. Sci Rep. 2022;12(1):18397. doi: 10.1038/s41598-022-23076-1

142. Bruschi M, Bonanni A, Petretto A, Vaglio A, Pratesi F, Santucci L, et al. Neutrophil extracellular traps profiles in patients with incident systemic lupus erythematosus and lupus nephritis. J Rheumatol. 2020;47(3):377-386. doi: 10.3899/jrheum.181232

143. Foret T, Dufrost V, Salomon du Mont L, Costa P, Lakomy C, Lagrange J, et al. A new pro-thrombotic mechanism of neutrophil extracellular traps in antiphospholipid syndrome: Impact on activated protein C resistance. Rheumatology (Oxford). 2022;61(7):2993-2998. doi: 10.1093/rheumatology/keab853

144. Mazetto BM, Hounkpe BW, da Silva Saraiva S, Vieira-Damiani G, Dos Santos APR, Jacinto BC, et al. Association between neutrophil extracellular traps (NETs) and thrombosis in antiphospholipid syndrome. Thromb Res. 2022;214:132-137. doi: 10.1016/j.thromres.2022.05.001

145. Liu H, Li C, Shi H, Guo Y, Tang Y, Chen C, et al. Soluble LILRA3 is aberrantly expressed in antiphospholipid syndrome (APS) and is a potential marker of thrombotic APS. Rheumatology (Oxford). 2022;61(12):4962-4974. doi: 10.1093/rheumatology/keac192

146. Zuo Y, Yalavarthi S, Gockman K, Madison JA, Gudjonsson JE, Kahlenberg JM, et al. Anti-neutrophil extracellular trap antibodies and impaired neutrophil extracellular trap degradation in antiphospholipid syndrome. Arthritis Rheumatol. 2020;72(12):2130-2135. doi: 10.1002/art.41460

147. Zuo Y, Navaz S, Tsodikov A, Kmetova K, Kluge L, Ambati A, et al.; Antiphospholipid Syndrome Alliance for Clinical Trials and InternatiOnal Networking. Anti-neutrophil extracellular trap antibodies in antiphospholipid antibody-positive patients: Results from the Antiphospholipid Syndrome Alliance for Clinical Trials and InternatiOnal Networking clinical database and repository. Arthritis Rheumatol. 2023;75(8):1407-1414. doi: 10.1002/art.42489

148. Pisetsky DS. Antibodies to neutrophil extracellular traps: Novel markers for the antiphospholipid syndrome. Arthritis Rheumatol. 2023;75(8):1331-1333. doi: 10.1002/art.42548

149. Nakazawa D, Masuda S, Tomaru U, Ishizu A. Pathogenesis and therapeutic interventions for ANCA-associated vasculitis. Nat Rev Rheumatol. 2019;15(2):91-101. doi: 10.1038/s41584-018-0145-y

150. Guchelaar NAD, Waling MM, Adhin AA, van Daele PLA, Schreurs MWJ, Rombach SM. The value of anti-neutrophil cytoplasmic antibodies (ANCA) testing for the diagnosis of ANCAassociated vasculitis, a systematic review and meta-analysis. Autoimmun Rev. 2021;20(1):102716. doi: 10.1016/j.autrev.2020.102716

151. Nakazawa D, Tomaru U, Yamamoto C, Jodo S, Ishizu A. Abundant neutrophil extracellular traps in thrombus of patient with microscopic polyangiitis. Front Immunol. 2012;3:333. doi: 10.3389/fimmu.2012.00333

152. Yoshida M, Yamada M, Sudo Y, Kojima T, Tomiyasu T, Yoshikawa N, et al. Myeloperoxidase anti-neutrophil cytoplasmic antibody affinity is associated with the formation of neutrophil extracellular traps in the kidney and vasculitis activity in myeloperoxidase anti-neutrophil cytoplasmic antibody-associated microscopic polyangiitis. Nephrology (Carlton). 2016;21(7):624-629. doi: 10.1111/nep.12736

153. Hashimoto T, Ueki S, Kamide Y, Miyabe Y, Fukuchi M, Yokoyama Y, et al. Increased circulating cell-free DNA in eosinophilic granulomatosis with polyangiitis: implications for eosinophil extracellular traps and immunothrombosis. Front Immunol. 2022;12:801897. doi: 10.3389/fimmu.2021.801897

154. Grayson PC, Carmona-Rivera C, Xu L, Lim N, Gao Z, Asare AL, et al.; Rituximab in ANCA-Associated VasculitisImmune Tolerance Network Research Group. Neutrophil-related gene expression and low-density granulocytes associated with disease activity and response to treatment in antineutrophil cytoplasmic antibody-associated vasculitis. Arthritis Rheumatol. 2015;67(7):1922-1932. doi: 10.1002/art.39153

155. Hattanda F, Nakazawa D, Watanabe-Kusunoki K, Kusunoki Y, Shida H, Masuda S, et al. The presence of anti-neutrophil extracellular trap antibody in patients with microscopic polyangiitis. Rheumatology (Oxford). 2019;58(7):1293-1298. doi: 10.1093/rheumatology/kez089

156. Matsumoto K, Yasuoka H, Yoshimoto K, Suzuki K, Takeuchi T. Platelet CXCL4 mediates neutrophil extracellular traps formation in ANCA-associated vasculitis. Sci Rep. 2021;11(1):222. doi: 10.1038/s41598-020-80685-4

157. Lelliott PM, Nishide M, Pavillon N, Okita Y, Shibahara T, Mizuno Y, et al. Cellular adhesion is a controlling factor in neutrophil extracellular trap formation induced by anti-neutrophil cytoplasmic antibodies. Immunohorizons. 2022;6(2):170-183. doi: 10.4049/immunohorizons.2200012

158. Aendekerk JP, Ysermans R, Busch MH, Theunissen ROMFIH, Bijnens N, Potjewijd J, et al. Assessment of longitudinal serum neutrophil extracellular trap-inducing activity in anti-neutrophil cytoplasmic antibody-associated vasculitis and glomerulonephritis in a prospective cohort using a novel bio-impedance technique. Kidney Int. 2023;104(1):151-162. doi: 10.1016/j.kint.2023.03.029

159. Tao M, He Y, Li L, Li Y, Liao W, Nie H, et al. Identification and validation of immune-associated NETosis subtypes and biomarkers in anti-neutrophil cytoplasmic antibody associated glomerulonephritis. Front Immunol. 2023;14:1177968. doi: 10.3389/fimmu.2023.1177968

160. Smolen JS, Aletaha D, Barton A, Burmester GR, Emery P, Firestein GS, et al. Rheumatoid arthritis. Nat Rev Dis Primers. 2018;4:18001. doi: 10.1038/nrdp.2018.1

161. Gravallese EM, Firestein GS. Rheumatoid arthritis – Common origins, divergent mechanisms. N Engl J Med. 2023;388(6):529-542. doi: 10.1056/NEJMra2103726

162. Насонов ЕЛ, Авдеева АС, Дибров ДА. Ревматоидный артрит как клинико-иммунологический синдром: фокус на серонегативный субтип заболевания. Научно-практическая ревматология. 2023;61(3):276-291. doi: 10.47360/1995-4484-2023-276-291

163. Насонов ЕЛ. Проблемы иммунопатологии ревматоидного артрита: эволюция болезни. Научно-практическая ревматология. 2017;55(3):277-294. doi: 10.14412/1995-4484-2017-277-294

164. Catrina A, Krishnamurthy A, Rethi B. Current view on the pathogenic role of anti-citrullinated protein antibodies in rheumatoid arthritis. RMD Open. 20217(1):e001228. doi: 10.1136/rmdopen-2020-001228

165. Wang W, Peng W, Ning X. Increased levels of neutrophil extracellular trap remnants in the serum of patients with rheumatoid arthritis. Int J Rheum Dis. 2018;21(2):415-421. doi: 10.1111/1756-185X.13226

166. Demoruelle MK, Bowers E, Lahey LJ, Sokolove J, Purmalek M, Seto NL, et al. Antibody responses to citrullinated and noncitrullinated antigens in the sputum of subjects with rheumatoid arthritis and subjects at risk for development of rheumatoid arthritis. Arthritis Rheumatol. 2018;70(4):516-527. doi: 10.1002/art.40401

167. Foulquier C, Sebbag M, Clavel C, Chapuy-Regaud S, Al Badine R, Méchin MC, et al. Peptidyl arginine deiminase type 2 (PAD-2) and PAD-4 but not PAD-1, PAD-3, and PAD-6 are expressed in rheumatoid arthritis synovium in close association with tissue inflammation. Arthritis Rheum. 2007;56(11):3541-3553. doi: 10.1002/art.22983

168. Romero V, Fert-Bober J, Nigrovic PA, Darrah E, Haque UJ, Lee DM, et al. Immune-mediated pore-forming pathways induce cellular hypercitrullination and generate citrullinated autoantigens in rheumatoid arthritis. Sci Transl Med. 2013;5(209):209ra150. doi: 10.1126/scitranslmed.3006869

169. Carmona-Rivera C, Carlucci PM, Moore E, Lingampalli N, Uchtenhagen H, James E, et al. Synovial fibroblast-neutrophil interactions promote pathogenic adaptive immunity in rheumatoid arthritis. Sci Immunol. 2017;2(10):eaag3358. doi: 10.1126/sciimmunol.aag3358

170. Nakabo S, Ohmura K, Akizuki S, Murakami K, Nakashima R, Hashimoto M, et al. Activated neutrophil carbamylates albumin via the release of myeloperoxidase and reactive oxygen species regardless of NETosis. Mod Rheumatol. 2020;30(2):345-349. doi: 10.1080/14397595.2019.1583819

171. Wright HL, Makki FA, Moots RJ, Edwards SW. Low-density granulocytes: Functionally distinct, immature neutrophils in rheumatoid arthritis with altered properties and defective TNF signalling. J Leukoc Biol. 2017;101(2):599-611. doi: 10.1189/jlb.5A0116-022R

172. Ramanathan K, Glaser A, Lythgoe H, Ong J, Beresford MW, Midgley A, et al. Neutrophil activation signature in juvenile idiopathic arthritis indicates the presence of low-density granulocytes. Rheumatology (Oxford). 2018;57(3):488-498. doi: 10.1093/rheumatology/kex441

173. Dalakas MC. Inflammatory muscle diseases. N Engl J Med. 2015;372(18):1734-1747. doi: 10.1056/NEJMra1402225

174. Lundberg IE, Fujimoto M, Vencovsky J, Aggarwal R, Holmqvist M, Christopher-Stine L, et al. Idiopathic inflammatory myopathies. Nat Rev Dis Primers. 2021;7(1):86. doi: 10.1038/s41572-021-00321-x

175. Damoiseaux J, Vulsteke JB, Tseng CW, Platteel ACM, Piette Y, Shovman O, et al. Autoantibodies in idiopathic inflammatory myopathies: Clinical associations and laboratory evaluation by mono- and multispecific immunoassays. Autoimmun Rev. 2019;18(3):293-305. doi: 10.1016/j.autrev.2018.10.004

176. Gao S, Zuo X, Liu D, Xiao Y, Zhu H, Zhang H, et al. The roles of neutrophil serine proteinases in idiopathic inflammatory myopathies. Arthritis Res Ther. 2018;20(1):134. doi: 10.1186/s13075-018-1632-x

177. Wu S, Peng W, Zhang Y, Guo J, Fu J, Wang W. Correlation of PMN elastase and PMN elastase-to-neutrophil ratio with disease activity in patients with myositis. J Transl Med. 20196;17(1): 420. doi: 10.1186/s12967-019-02176-z

178. Zhang S, Shen H, Shu X, Peng Q, Wang G. Abnormally increased low-density granulocytes in peripheral blood mononuclear cells are associated with interstitial lung disease in dermatomyositis. Mod Rheumatol. 2017;27(1):122-129. doi: 10.1080/14397595.2016.1179861

179. Seto N, Torres-Ruiz JJ, Carmona-Rivera C, Pinal-Fernandez I, Pak K, Purmalek MM, et al. Neutrophil dysregulation is pathogenic in idiopathic inflammatory myopathies. JCI Insight. 2020;5(3):e134189. doi: 10.1172/jci.insight.134189

180. Zhang S, Shu X, Tian X, Chen F, Lu X, Wang G. Enhanced formation and impaired degradation of neutrophil extracellular traps in dermatomyositis and polymyositis: A potential contributor to interstitial lung disease complications. Clin Exp Immunol. 2014;177(1):134-141. doi: 10.1111/cei.12319

181. Peng Y, Zhang S, Zhao Y, Liu Y, Yan B. Neutrophil extracellular traps may contribute to interstitial lung disease associated with anti-MDA5 autoantibody positive dermatomyositis. Clin Rheumatol. 2018;37(1):107-115. doi: 10.1007/s10067-017-3799-y

182. Sieper J, Braun J, Dougados M, Baeten D. Axial spondyloarthritis. Nat Rev Dis Primers. 2015;1:15013. doi: 10.1038/nrdp.2015.13

183. FitzGerald O, Ogdie A, Chandran V, Coates LC, Kavanaugh A, Tillett W, et al. Psoriatic arthritis. Nat Rev Dis Primers. 2021;7(1):59. doi: 10.1038/s41572-021-00293-y

184. Smith JA, Colbert RA. Review: The interleukin-23/interleukin-17 axis in spondyloarthritis pathogenesis: Th17 and beyond. Arthritis Rheumatol. 2014;66(2):231-241. doi: 10.1002/art.38291

185. Macleod T, Bridgewood C, McGanagle D. Role of neutrophil interleukin-23 spondyloarthropathy spectrum disorders. Lancet Rheumatol. 2023;5:e47-e57.

186. van Duivenvoorde LM, Dorris ML, Satumtira N, van Tok MN, Redlich K, Tak PP, et al. Relationship between inflammation, bone destruction, and osteoproliferation in the HLA-B27/human β2-microglobulin-transgenic rat model of spondylarthritis. Arthritis Rheum. 2012;64(10):3210-3219. doi: 10.1002/art.34600

187. Gong Y, Zheng N, Chen SB, Xiao ZY, Wu MY, Liu Y, et al. Ten years’ experience with needle biopsy in the early diagnosis of sacroiliitis. Arthritis Rheum. 2012;64(5):1399-1406. doi: 10.1002/art.33453

188. Sen R, Kim E, Napier RJ, Cheng E, Fernandez A, Manning ES, et al. Neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio as biomarkers in axial spondyloarthritis: Observational studies from the program to understand the longterm outcomes in spondyloarthritis registry. Arthritis Rheumatol. 2023;75(2):232-241. doi: 10.1002/art.42333

189. Schön MP, Erpenbeck L. The interleukin-23/interleukin-17 axis links adaptive and innate immunity in psoriasis. Front Immunol. 2018;9:1323. doi: 10.3389/fimmu.2018.01323

190. Fossiez F, Djossou O, Chomarat P, Flores-Romo L, Ait-Yahia S, Maat C, et al. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J Exp Med. 1996;183(6):2593-2603. doi: 10.1084/jem.183.6.2593

191. Wilson AS, Randall KL, Pettitt JA, Ellyard JI, Blumenthal A, Enders A, et al. Neutrophil extracellular traps and their histones promote Th17 cell differentiation directly via TLR2. Nat Commun. 2022;13(1):528. doi: 10.1038/s41467-022-28172-4

192. Zhang Y, Chandra V, Riquelme Sanchez E, Dutta P, Quesada PR, Rakoski A, et al. Interleukin-17-induced neutrophil extracellular traps mediate resistance to checkpoint blockade in pancreatic cancer. J Exp Med. 2020;217(12):e20190354. doi: 10.1084/jem.20190354

193. Lande R, Botti E, Jandus C, Dojcinovic D, Fanelli G, Conrad C, et al. The antimicrobial peptide LL37 is a T-cell autoantigen in psoriasis. Nat Commun. 2014;5:5621. doi: 10.1038/ncomms6621

194. Minns D, Smith KJ, Alessandrini V, Hardisty G, Melrose L, Jackson-Jones L, et al. The neutrophil antimicrobial peptide cathelicidin promotes Th17 differentiation. Nat Commun. 2021;12(1):1285. doi: 10.1038/s41467-021-21533-5

195. Hu SC, Yu HS, Yen FL, Lin CL, Chen GS, Lan CC. Neutrophil extracellular trap formation is increased in psoriasis and induces human β-defensin-2 production in epidermal keratinocytes. Sci Rep. 2016;6:31119. doi: 10.1038/srep31119

196. Frasca L, Palazzo R, Chimenti MS, Alivernini S, Tolusso B, Bui L, et al. Anti-LL37 Antibodies are present in psoriatic arthritis (PsA) patients: New biomarkers in PsA. Front Immunol. 2018;9:1936. doi: 10.3389/fimmu.2018.01936

197. Papagoras C, Chrysanthopoulou A, Mitsios A, Ntinopoulou M, Tsironidou V, Batsali AK, et al. IL-17A expressed on neutrophil extracellular traps promotes mesenchymal stem cell differentiation toward bone-forming cells in ankylosing spondylitis. Eur J Immunol. 2021;51(4):930-942. doi: 10.1002/eji.202048878

198. Yazici H, Seyahi E, Hatemi G, Yazici Y. Behçet syndrome: A contemporary view. Nat Rev Rheumatol. 2018;14(2):119. doi: 10.1038/nrrheum.2018.3

199. Gül A. Pathogenesis of Behçet’s disease: autoinflammatory features and beyond. Semin Immunopathol. 2015;37(4):413-418. doi: 10.1007/s00281-015-0502-8

200. Le Joncour A, Cacoub P, Boulaftali Y, Saadoun D. Neutrophil, NETs and Behçet’s disease: A review. Clin Immunol. 2023;250:109318. doi: 10.1016/j.clim.2023.109318

201. Takeno M, Kariyone A, Yamashita N, Takiguchi M, Mizushima Y, Kaneoka H, et al. Excessive function of peripheral blood neutrophils from patients with Behçet’s disease and from HLAB51 transgenic mice. Arthritis Rheum. 1995;38(3):426-433. doi: 10.1002/art.1780380321

202. Le Joncour A, Martos R, Loyau S, Lelay N, Dossier A, Cazes A, et al. Critical role of neutrophil extracellular traps (NETs) in patients with Behcet’s disease. Ann Rheum Dis. 2019;78(9): 1274-1282. doi: 10.1136/annrheumdis-2018-214335

203. Safi R, Kallas R, Bardawil T, Mehanna CJ, Abbas O, Hamam R, et al. Neutrophils contribute to vasculitis by increased release of neutrophil extracellular traps in Behçet’s disease. J Dermatol Sci. 2018;92(2):143-150. doi: 10.1016/j.jdermsci.2018.08.010

204. Li L, Yu X, Liu J, Wang Z, Li C, Shi J, et al. Neutrophil extracellular traps promote aberrant macrophages activation in Behçet’s disease. Front Immunol. 2021;11:590622. doi: 10.3389/fimmu.2020.590622

205. Murad M, Low L, Davidson M, Murray PI, Rauz S, Wallace GR. Low density neutrophils are increased in patients with Behçet’s disease but do not explain differences in neutrophil function. J Inflamm (Lond). 2022;19(1):5. doi: 10.1186/s12950-022-00302-1

206. Smith EJ, Allantaz F, Bennett L, Zhang D, Gao X, Wood G, et al. Clinical, molecular, and genetic characteristics of PAPA syndrome: A review. Curr Genomics. 2010;11(7):519-527. doi: 10.2174/138920210793175921

207. Mistry P, Carmona-Rivera C, Ombrello AK, Hoffmann P, Seto NL, Jones A, et al. Dysregulated neutrophil responses and neutrophil extracellular trap formation and degradation in PAPA syndrome. Ann Rheum Dis. 2018;77(12):1825-1833. doi: 10.1136/annrheumdis-2018-213746

208. Navon Elkan P, Pierce SB, Segel R, Walsh T, Barash J, Padeh S, et al. Mutant adenosine deaminase 2 in a polyarteritis nodosa vasculopathy. N Engl J Med. 2014;370(10):921-931. doi: 10.1056/NEJMoa1307362

209. Carmona-Rivera C, Khaznadar SS, Shwin KW, Irizarry-Caro JA, O’Neil LJ, Liu Y, et al. Deficiency of adenosine deaminase 2 triggers adenosine-mediated NETosis and TNF production in patients with DADA2. Blood. 2019;134(4):395-406. doi: 10.1182/blood.2018892752

210. Beck DB, Ferrada MA, Sikora KA, Ombrello AK, Collins JC, Pei W, et al. Somatic mutations in UBA1 and severe adult-onset autoinflammatory disease. N Engl J Med. 2020;383(27):2628-2638. doi: 10.1056/NEJMoa2026834

211. Бекетова ТВ, Бекетова МФ, Насонов ЕЛ. Моногенные аутовоспалительные синдромы с чертами системных васкулитов: новая область ревматологии. Научно-практическая ревматология. 2023;61(4):458-465. doi: 10.47360/1995-4484-2023-458-465

212. Patel BA, Ferrada MA, Grayson PC, Beck DB. VEXAS syndrome: An inflammatory and hematologic disease. Semin Hematol. 2021;58(4):201-203. doi: 10.1053/j.seminhematol.2021.10.005

213. Grayson PC, Patel BA, Young NS. VEXAS syndrome. Blood. 2021;137(26):3591-3594. doi: 10.1182/blood.2021011455

214. Bruno A, Gurnari C, Alexander T, Snowden JA, Greco R; Autoimmune Diseases Working Party of the European Society for Blood and Marrow Transplantation. Autoimmune manifestations in VEXAS: Opportunities for integration and pitfalls to interpretation. J Allergy Clin Immunol. 2023;151(5):1204-1214. doi: 10.1016/j.jaci.2023.02.017

215. Knight JS, Caricchio R, Casanova JL, Combes AJ, Diamond B, Fox SE, et al. The intersection of COVID-19 and autoimmunity. J Clin Invest. 2021;131(24):e154886. doi: 10.1172/JCI154886

216. Насонов ЕЛ, Бекетова ТВ, Решетняк ТМ, Лила АМ, Ананьева ЛП, Лисицина ТА, и др. Коронавирусная болезнь 2019 (COVID-19) и иммуновоспалительные ревматические заболевания: на перекрестке проблем тромбовоспаления и аутоиммунитета. Научно-практическая ревматология. 2020;58(4):353-367. doi: 10.47360/1995-4484-2020-353-367

217. Nasonov EL, Samsonov MY, Lila AM. Coronavirus infection 2019 (COVID-19) and Autoimmunity. Her Russ Acad Sci. 2022;92(4):398-403. doi: 10.1134/S1019331622040062

218. Cesta MC, Zippoli M, Marsiglia C, Gavioli EM, Cremonesi G, Khan A, et al. Neutrophil activation and neutrophil extracellular traps (NETs) in COVID-19 ARDS and immunothrombosis. Eur J Immunol. 2023;53(1):e2250010. doi: 10.1002/eji.202250010

219. Voiriot G, Dorgham K, Bachelot G, Fajac A, Morand-Joubert L, Parizot C, et al.. Identification of bronchoalveolar and blood immune-inflammatory biomarker signature associated with poor 28-day outcome in critically ill COVID-19 patients. Sci Rep. 2022;12(1):9502. doi: 10.1038/s41598-022-13179-0

220. Dentone C, Vena A, Loconte M, Grillo F, Brunetti I, Barisione E, et al. Bronchoalveolar lavage fluid characteristics and outcomes of invasively mechanically ventilated patients with COVID-19 pneumonia in Genoa, Italy. BMC Infect Dis. 2021;21(1):353. doi: 10.1186/s12879-021-06015-9

221. Zhu Y, Chen X, Liu X. NETosis and neutrophil extracellular traps in COVID-19: immunothrombosis and beyond. Front Immunol. 2022;13:838011. doi: 10.3389/fimmu.2022.838011

222. Zuo Y, Yalavarthi S, Shi H, Gockman K, Zuo M, Madison JA, et al. Neutrophil extracellular traps in COVID-19. JCI Insight. 2020;5(11):e138999. doi: 10.1172/jci.insight.138999

223. Skendros P, Mitsios A, Chrysanthopoulou A, Mastellos DC, Metallidis S, Rafailidis P, et al. Complement and tissue factor-enriched neutrophil extracellular traps are key drivers in COVID-19 immunothrombosis. J Clin Invest. 2020;130(11):6151-6157. doi: 10.1172/JCI141374

224. Zuo Y, Yalavarthi S, Navaz SA, Hoy CK, Harbaugh A, Gockman K, et al. Autoantibodies stabilize neutrophil extracellular traps in COVID-19. JCI Insight. 2021;6(15):e150111. doi: 10.1172/jci.insight.150111

225. Pisareva E, Badiou S, Mihalovičová L, Mirandola A, Pastor B, Kudriavtsev A, et al. Persistence of neutrophil extracellular traps and anticardiolipin auto-antibodies in post-acute phase COVID-19 patients. J Med Virol. 2023;95(1):e28209. doi: 10.1002/jmv.28209

226. Bertin D, Brodovitch A, Lopez A, Arcani R, Thomas GM, Beziane A, et al. Anti-cardiolipin IgG autoantibodies associate with circulating extracellular DNA in severe COVID-19. Sci Rep. 2022;12(1):12523. doi: 10.1038/s41598-022-15969-y

227. Насонов ЕЛ. Коронавирусная болезнь 2019 (COVID-19) и аутоиммунитет. Научно-практическая ревматология. 2021;59(1):5-30. doi: 10.47360/1995-4484-2021-5-30

228. Garcia RJ, Francis L, Dawood M, Lai ZW, Faraone SV, Perl A. Attention deficit and hyperactivity disorder scores are elevated and respond to N-acetylcysteine treatment in patients with systemic lupus erythematosus. Arthritis Rheum. 2013;65(5):1313-1318. doi: 10.1002/art.37893

229. Lai ZW, Hanczko R, Bonilla E, Caza TN, Clair B, Bartos A, et al. N-acetylcysteine reduces disease activity by blocking mammalian target of rapamycin in T cells from systemic lupus erythematosus patients: A randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 2012;64(9):2937-2946. doi: 10.1002/art.34502

230. Zheng W, Warner R, Ruggeri R, Su C, Cortes C, Skoura A, et al. PF-1355, a mechanism-based myeloperoxidase inhibitor, prevents immune complex vasculitis and anti-glomerular basement membrane glomerulonephritis. J Pharmacol Exp Ther. 2015;353(2):288-298. doi: 10.1124/jpet.114.221788

231. Knight JS, Subramanian V, O’Dell AA, Yalavarthi S, Zhao W, Smith CK, et al. Peptidylarginine deiminase inhibition disrupts NET formation and protects against kidney, skin and vascular disease in lupus-prone MRL/lpr mice. Ann Rheum Dis. 2015;74(12):2199-2206. doi: 10.1136/annrheumdis-2014-205365

232. Knight JS, Zhao W, Luo W, Subramanian V, O’Dell AA, Yalavarthi S, et al. Peptidylarginine deiminase inhibition is immunomodulatory and vasculoprotective in murine lupus. J Clin Invest. 2013;123(7):2981-2993. doi: 10.1172/JCI67390

233. Willis VC, Gizinski AM, Banda NK, Causey CP, Knuckley B, Cordova KN, et al. N-α-benzoyl-N5-(2-chloro-1-iminoethyl)-Lornithine amide, a protein arginine deiminase inhibitor, reduces the severity of murine collagen-induced arthritis. J Immunol. 2011;186(7):4396-4404. doi: 10.4049/jimmunol.1001620

234. Martinod K, Fuchs TA, Zitomersky NL, Wong SL, Demers M, Gallant M, et al. PAD4-deficiency does not affect bacteremia in polymicrobial sepsis and ameliorates endotoxemic shock. Blood. 2015;125(12):1948-1956. doi: 10.1182/blood-2014-07-587709

235. Li P, Li M, Lindberg MR, Kennett MJ, Xiong N, Wang Y. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J Exp Med. 2010;207(9): 1853-1862. doi: 10.1084/jem.20100239

236. Sulem P, Helgason H, Oddson A, Stefansson H, Gudjonsson SA, Zink F, et al. Identification of a large set of rare complete human knockouts. Nat Genet. 2015;47(5):448-452. doi: 10.1038/ng.3243

237. Sørensen OE, Clemmensen SN, Dahl SL, Østergaard O, Heegaard NH, Glenthøj A, et al. Papillon-Lefèvre syndrome patient reveals species-dependent requirements for neutrophil defenses. J Clin Invest. 2014;124(10):4539-4548. doi: 10.1172/JCI76009

238. Gupta AK, Giaglis S, Hasler P, Hahn S. Efficient neutrophil extracellular trap induction requires mobilization of both intracellular and extracellular calcium pools and is modulated by cyclosporine A. PLoS One. 2014;9(5):e97088. doi: 10.1371/journal.pone.0097088

239. Macanovic M, Sinicropi D, Shak S, Baughman S, Thiru S, Lachmann PJ. The treatment of systemic lupus erythematosus (SLE) in NZB/W F1 hybrid mice; studies with recombinant murine DNase and with dexamethasone. Clin Exp Immunol. 1996;106(2):243-252. doi: 10.1046/j.1365-2249.1996.d01-839.x

240. Davis JC Jr, Manzi S, Yarboro C, Rairie J, Mcinnes I, Averthelyi D, et al. Recombinant human Dnase I (rhDNase) in patients with lupus nephritis. Lupus. 1999;8(1):68-76. doi: 10.1191/096120399678847380

241. Mutua V, Gershwin LJ. A review of neutrophil extracellular traps (NETs) in disease: Potential anti-NETs therapeutics. Clin Rev Allergy Immunol. 2021;61(2):194-211. doi: 10.1007/s12016-020-08804-7

242. Ngo ATP, Gollomp K. Building a better NET: Neutrophil extracellular trap targeted therapeutics in the treatment of infectious and inflammatory disorders. Res Pract Thromb Haemost. 2022;6:e12808. doi: 10.1002/rth2.12808

243. Huang J, Hong W, Wan M, Zheng L. Molecular mechanisms and therapeutic target of NETosis in diseases. MedComm. 2022;3(3):e162. doi: 10.1002/mco2.162

244. Baker KF, Isaacs JD. Novel therapies for immune-mediated inflammatory diseases: What can we learn from their use in rheumatoid arthritis, spondyloarthritis, systemic lupus erythematosus, psoriasis, Crohn’s disease and ulcerative colitis? Ann Rheum Dis. 2018;77(2):175-187. doi: 10.1136/annrheumdis-2017-211555

245. Насонов ЕЛ. Фармакотерапия ревматоидного артрита: новая стратегия, новые мишени. Научно-практическая ревматология. 2017;55(4):409-419. doi: 10.14412/1995-4484-2017-409-419

246. Zhang S, Zhang Q, Wang F, Guo X, Liu T, Zhao Y, et al. Hydroxychloroquine inhibiting neutrophil extracellular trap formation alleviates hepatic ischemia/reperfusion injury by blocking TLR9 in mice. Clin Immunol. 2020;216:108461. doi: 10.1016/j.clim.2020.108461

247. Smith CK, Vivekanandan-Giri A, Tang C, Knight JS, Mathew A, Padilla RL, et al. Neutrophil extracellular trap-derived enzymes oxidize high-density lipoprotein: an additional proatherogenic mechanism in systemic lupus erythematosus. Arthritis Rheumatol. 2014;66(9):2532-2544. doi: 10.1002/art.38703

248. Ali RA, Gandhi AA, Meng H, Yalavarthi S, Vreede AP, Estes SK, et al. Adenosine receptor agonism protects against NETosis and thrombosis in antiphospholipid syndrome. Nat Commun. 2019;10(1):1916. doi: 10.1038/s41467-019-09801-x

249. Wan T, Zhao Y, Fan F, Hu R, Jin X. Dexamethasone inhibits S. aureus-induced neutrophil extracellular pathogen-killing mechanism, possibly through Toll-like receptor regulation. Front Immunol. 2017;8:60. doi: 10.3389/fimmu.2017.00060

250. Li YW, Chen SX, Yang Y, Zhang ZH, Zhou WB, Huang YN, et al. Colchicine inhibits NETs and alleviates cardiac remodeling after acute myocardial infarction. Cardiovasc Drugs Ther. 2022 Jul 28. doi: 10.1007/s10557-022-07326-y

251. Vaidya K, Tucker B, Kurup R, Khandkar C, Pandzic E, Barraclough J, et al. Colchicine inhibits neutrophil extracellular trap formation in patients with acute coronary syndrome after percutaneous coronary intervention. J Am Heart Assoc. 2021;10(1):e018993. doi: 10.1161/JAHA.120.018993

252. Kraaij T, Kamerling SWA, de Rooij ENM, van Daele PLA, Bredewold OW, Bakker JA, et al. The NET-effect of combining rituximab with belimumab in severe systemic lupus erythematosus. J Autoimmun. 2018;91:45-54. doi: 10.1016/j.jaut.2018.03.003

253. Ruiz-Limón P, Ortega R, Arias de la Rosa I, Abalos-Aguilera MDC, Perez-Sanchez C, et al. Tocilizumab improves the proatherothrombotic profile of rheumatoid arthritis patients modulating endothelial dysfunction, NETosis, and inflammation. Transl Res. 2017;183:87-103. doi: 10.1016/j.trsl.2016.12.003

254. Ohyama A, Osada A, Kawaguchi H, Kurata I, Nishiyama T, Iwai T, et al. Specific increase in joint neutrophil extracellular traps and its relation to interleukin 6 in autoimmune arthritis. Int J Mol Sci. 2021;22(14):7633. doi: 10.3390/ijms22147633

255. Pérez-Sánchez C, Ruiz-Limón P, Aguirre MA, Jiménez-Gómez Y, Arias-de la Rosa I, Ábalos-Aguilera MC, et al. Diagnostic potential of NETosis-derived products for disease activity, atherosclerosis and therapeutic effectiveness in rheumatoid arthritis patients. J Autoimmun. 2017;82:31-40. doi: 10.1016/j.jaut.2017.04.007

256. Ruiz-Limon P, Ladehesa-Pineda ML, Castro-Villegas MDC, Abalos-Aguilera MDC, Lopez-Medina C, Lopez-Pedrera C, et al. Enhanced NETosis generation in radiographic axial spondyloarthritis: Utility as biomarker for disease activity and antiTNF-α therapy effectiveness. J Biomed Sci. 2020;27(1):54. doi: 10.1186/s12929-020-00634-1

257. Gomes T, Várady CBS, Lourenço AL, Mizurini DM, Rondon AMR, Leal AC, et al. IL-1β blockade attenuates thrombosis in a neutrophil extracellular trap-dependent breast cancer model. Front Immunol. 2019;10:2088. doi: 10.3389/fimmu.2019.02088

258. Liberale L, Holy EW, Akhmedov A, Bonetti NR, Nietlispach F, Matter CM, et al. Interleukin-1β mediates arterial thrombus formation via NET-associated tissue factor. J Clin Med. 2019;8(12):2072. doi: 10.3390/jcm8122072

259. van Bijnen ST, Wouters D, van Mierlo GJ, Muus P, Zeerleder S. Neutrophil activation and nucleosomes as markers of systemic inflammation in paroxysmal nocturnal hemoglobinuria: Effects of eculizumab. J Thromb Haemost. 2015;13(11):2004-2011. doi: 10.1111/jth.13125

260. Chokesuwattanaskul S, Fresneda Alarcon M, Mangalakumaran S, Grosman R, Cross AL, Chapman EA, et al. Metabolic profiling of rheumatoid arthritis neutrophils reveals altered energy metabolism that is not affected by JAK inhibition. Metabolites. 2022;12:650. doi: 10.3390/metabo12070650

261. Wolach O, Sellar RS, Martinod K, Cherpokova D, McConkey M, Chappell RJ, et al. Increased neutrophil extracellular trap formation promotes thrombosis in myeloproliferative neoplasms. Sci Transl Med. 2018;10(436):eaan8292. doi: 10.1126/scitranslmed.aan8292

262. Gupta S, Kaplan MJ. The role of neutrophils and NETosis in autoimmune and renal diseases. Nat Rev Nephrol. 2016;12(7):402-13. doi: 10.1038/nrneph.2016.71


Рецензия

Для цитирования:


Насонов Е.Л., Авдеева А.С., Решетняк Т.М., Алексанкин А.П., Рубцов Ю.П. Роль нетоза в патогенезе иммуновоспалительных ревматических заболеваний. Научно-практическая ревматология. 2023;61(5):513-530. https://doi.org/10.47360/1995-4484-2023-513-530

For citation:


Nasonov E.L., Avdeeva A.S., Reshetnyak T.M., Aleksankin A.P., Rubtsov Yu.P. The role of NETosis in the pathogenesis of immunoinflammatory rheumatic diseases. Rheumatology Science and Practice. 2023;61(5):513-530. (In Russ.) https://doi.org/10.47360/1995-4484-2023-513-530

Просмотров: 895


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1995-4484 (Print)
ISSN 1995-4492 (Online)