Preview

Научно-практическая ревматология

Расширенный поиск

Пандемия коронавирусной болезни 2019 (COVID-19) и аутоиммунные ревматические заболевания: итоги и перспективы

https://doi.org/10.47360/1995-4484-2024-32-54

Аннотация

Пандемия коронавирусной болезни 2019 (COVID-19, coronavirus disease 2019), этиологически связанной с вирусом SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2), привлекла внимание к новым клиническим и фундаментальным проблемам иммунопатологии заболеваний человека, связанными с вирусиндуцированным аутоиммунитетом и аутовоспалением. Положение о том, что «опыт, накопленный в ревматологии в процессе изучения патогенетических механизмов и фармакотерапии иммуновоспалительных ревматических заболеваний как наиболее частых и тяжелых форм аутоиммунной и аутовоспалительной патологии человека, будет востребован для расшифровки природы патологических процессов, лежащих в основе COVID-19 и разработки подходов к эффективной фармакотерапии», нашло подтверждение в многочисленных исследованиях, проведенных в течение последующих 3 лет в разгар пандемии COVID-19. Основное внимание будет уделено критическому анализу данных, касающихся роли аутоиммунного воспаления, составляющего основу патогенеза иммуновоспалительных ревматических заболеваний в контексте иммунопатологии COVID-19.

Об авторе

Е. Л. Насонов
ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой»; ФГАОУ ВО «Первый Московский государственный медицинский университет имени И.М. Сеченова» Минздрава России (Сеченовский Университет)
Россия

Насонов Евгений Львович – д.м.н., профессор, академик РАН, научный руководитель;

профессор кафедры внутренних, профессиональных болезней и ревматологии;

115522, Москва, Каширское шоссе, 34а;

119991, Москва, ул. Трубецкая, 8, стр. 2



Список литературы

1. Насонов ЕЛ. Коронавирусная болезнь 2019 (COVID-19): размышления ревматолога. Научно-практическая ревматология. 2020;58(2):123-132. doi: 10.14412/1995-4484-2020-123-132

2. Schett G, Sticherling M, Neurath MF. COVID-19: Risk for cytokine targeting in chronic inflammatory diseases? Nat Rev Immunol. 2020;20(5):271-272. doi: 10.1038/s41577-020-0312-7

3. Schett G, Manger B, Simon D, Caporali R. COVID-19 revisiting inflammatory pathways of arthritis. Nat Rev Rheumatol. 2020;16(8):465-470. doi: 10.1038/s41584-020-0451-z

4. Насонов ЕЛ. Современная концепция аутоиммунитета в ревматологии. Научно-практическая ревматология. 2023;61(4):397-420. doi: 10.47360/1995-4484-2023-397-420

5. Pisetsky DS. Pathogenesis of autoimmune disease. Nat Rev Nephrol. 2023;19(8):509-524. doi: 10.1038/s41581-023-00720-1

6. Sher EK, Ćosović A, Džidić-Krivić A, Farhat EK, Pinjić E, Sher F. COVID-19: A triggering factor of autoimmune and multi-inflammatory diseases. Life Sci. 2023;319:121531. doi: 10.1016/j.lfs.2023.121531

7. Dotan A, Muller S, Kanduc D, David P, Halpert G, Shoenfeld Y. The SARS-CoV-2 as an instrumental trigger of autoimmunity. Autoimmun Rev. 2021;20(4):102792. doi: 10.1016/j.autrev.2021.102792

8. Halpert G, Shoenfeld Y. SARS-CoV-2, the autoimmune virus. Autoimmun Rev. 2020;19(12):102695. doi: 10.1016/j.autrev.2020.102695

9. Liu Y, Sawalha AH, Lu Q. COVID-19 and autoimmune diseases. Curr Opin Rheumatol. 2021;33(2):155-162. doi: 10.1097/BOR.0000000000000776

10. Knight JS, Caricchio R, Casanova JL, Combes AJ, Diamond B, Fox SE, et al. The intersection of COVID-19 and autoimmunity. J Clin Invest. 2021;131(24):e154886. doi: 10.1172/JCI154886

11. Rojas M, Herrán M, Ramírez-Santana C, Leung PSC, Anaya JM, Ridgway WM, et al. Molecular mimicry and autoimmunity in the time of COVID-19. J Autoimmun. 2023;139:103070. doi: 10.1016/j.jaut.2023.103070

12. Vojdani A, Vojdani E, Saidara E, Maes M. Persistent SARSCoV-2 infection, EBV, HHV-6 and other factors may contribute to inflammation and autoimmunity in long COVID. Viruses. 2023;15(2):400. doi: 10.3390/v15020400

13. Насонов ЕЛ, Бекетова ТВ, Решетняк ТМ, Лила АМ, Ананьева ЛП, Лисицина ТА, и др. Коронавирусная болезнь 2019 (COVID-19) и иммуновоспалительные ревматические заболевания: на перекрестке проблем тромбовоспаления и аутоиммунитета. Научно-практическая ревматология. 2020;58(4):353-367. doi: 10.47360/1995-4484-2020-353-367

14. Nasonov EL, Samsonov MY, Lila AM. Coronavirus infection 2019 (COVID-19) and autoimmunity. Her Russ Acad Sci. 2022; 92(4):398-403. doi: 10.1134/S1019331622040062

15. Szekanecz Z, McInnes IB, Schett G, Szamosi S, Benkő S, Szűcs G. Autoinflammation and autoimmunity across rheumatic and musculoskeletal diseases. Nat Rev Rheumatol. 2021;17(10):585-595. doi: 10.1038/s41584-021-00652-9

16. Wang L, Wang FS, Gershwin ME. Human autoimmune diseases: A comprehensive update. J Intern Med. 2015;278(4):369-395. doi: 10.1111/joim.12395

17. Nissen CB, Sciascia S, de Andrade D, Atsumi T, Bruce IN, Cron RQ, et al. The role of antirheumatics in patients with COVID-19. Lancet Rheumatol. 2021;3(6):e447-e459. doi: 10.1016/S2665-9913(21)00062-X

18. van de Veerdonk FL, Giamarellos-Bourboulis E, Pickkers P, Derde L, Leavis H, van Crevel R, et al. A guide to immunotherapy for COVID-19. Nat Med. 2022;28(1):39-50. doi: 10.1038/s41591-021-01643-9

19. Li G, Hilgenfeld R, Whitley R, De Clercq E. Therapeutic strategies for COVID-19: Progress and lessons learned. Nat Rev Drug Discov. 2023;22(6):449-475. doi: 10.1038/s41573-023-00672-y

20. Berlin DA, Gulick RM, Martinez FJ. Severe COVID-19. N Engl J Med. 2020;383(25):2451-2460. doi: 10.1056/NEJMcp2009575

21. Tan EH, Sena AG, Prats-Uribe A, You SC, Ahmed WU, Kostka K, et al. COVID-19 in patients with autoimmune diseases: Characteristics and outcomes in a multinational network of cohorts across three countries. Rheumatology (Oxford). 2021;60(SI):SI37-SI50. doi: 10.1093/rheumatology/keab250

22. Merad M, Blish CA, Sallusto F, Iwasaki A. The immunology and immunopathology of COVID-19. Science. 2022;375(6585):1122-1127. doi: 10.1126/science.abm8108

23. Mohandas S, Jagannathan P, Henrich TJ, Sherif ZA, Bime C, Quinlan E, et al.; RECOVER Mechanistic Pathways Task Force. Immune mechanisms underlying COVID-19 pathology and postacute sequelae of SARS-CoV-2 infection (PASC). Elife. 2023;12:e86014. doi: 10.7554/eLife.86014

24. Dey A, Vaishak K, Deka D, Radhakrishnan AK, Paul S, Shanmugam P, et al. Epigenetic perspectives associated with COVID-19 infection and related cytokine storm: An updated review. Infection. 2023;51(6):1603-1618. doi: 10.1007/s15010-023-02017-8

25. Zhang F, Lau RI, Liu Q, Su Q, Chan FKL, Ng SC. Gut microbiota in COVID-19: Key microbial changes, potential mechanisms and clinical applications. Nat Rev Gastroenterol Hepatol. 2023;20(5):323-337. doi: 10.1038/s41575-022-00698-4

26. Zazzara MB, Bellieni A, Calvani R, Coelho-Junior HJ, Picca A, Marzetti E. Inflammaging at the time of COVID-19. Clin Geriatr Med. 2022;38(3):473-481. doi: 10.1016/j.cger.2022.03.003

27. Netea MG, Ziogas A, Benn CS, Giamarellos-Bourboulis EJ, Joosten LAB, Arditi M, et al. The role of trained immunity in COVID-19: Lessons for the next pandemic. Cell Host Microbe. 2023;31(6):890-901. doi: 10.1016/j.chom.2023.05.004

28. Suárez-Reyes A, Villegas-Valverde CA. Implications of low-grade inflammation in SARS-CoV-2 immunopathology. MEDICC Rev. 2021;23(2):42. doi: 10.37757/MR2021.V23.N2.4

29. Kim JYH, Ragusa M, Tortosa F, Torres A, Gresh L, MéndezRico JA, et al. Viral reactivations and co-infections in COVID-19 patients: A systematic review. BMC Infect Dis. 2023;23(1):259. doi: 10.1186/s12879-023-08117-y

30. Fajgenbaum DC, June CH, Cytokine storm. N Engl J Med. 2020;383:2255-2273. doi: 10.1056/NEJMra2026131

31. Jiang L, Tang K, Levin M, Irfan O, Morris SK, Wilson K, et al. COVID-19 and multisystem inflammatory syndrome in children and adolescents. Lancet Infect Dis. 2020;20(11):e276-e288. doi: 10.1016/S1473-3099(20)30651-4

32. Каледа МИ, Никишина ИП, Федоров ЕС, Насонов ЕЛ. Коронавирусная болезнь 2019 (COVID-19) у детей: уроки педиатрической ревматологии. Научно-практическая ревматология. 2020;58(5):469-479. doi: 10.47360/1995-4484-2020-469-479

33. Davis HE, McCorkell L, Vogel JM, Topol EJ. Long COVID: Major findings, mechanisms and recommendations. Nat Rev Microbiol. 2023;21(3):133-146. doi: 10.1038/s41579-022-00846-2

34. Nalbandian A, Desai AD, Wan EY. Post-COVID-19 condition. Annu Rev Med. 2023;74:55-64. doi: 10.1146/annurevmed-043021-030635

35. Altmann DM, Whettlock EM, Liu S, Arachchillage DJ, Boyton RJ. The immunology of long COVID. Nat Rev Immunol. 2023;23(10):618-634. doi: 10.1038/s41577-023-00904-7

36. Lammi V, Nakanishi T, Jones SE, Andrews SJ, Karjalainen J, Cortés B, et al. Genome-wide association study of long COVID. medRxiv. 2023.06.29.23292056. doi: 10.1101/2023.06.29.23292056

37. Lopez-Leon S, Wegman-Ostrosky T, Perelman C, Sepulveda R, Rebolledo PA, Cuapio A, et al. More than 50 long-term effects of COVID-19: A systematic review and meta-analysis. Sci Rep. 2021;11(1):16144. doi: 10.1038/s41598-021-95565-8

38. Legler F, Meyer-Arndt L, Mödl L, Kedor C, Freitag H, Stein E, et al. Long-term symptom severity and clinical biomarkers in post-COVID-19/chronic fatigue syndrome: Results from a prospective observational cohort. EClinicalMedicine. 2023;63:102146. doi: 10.1016/j.eclinm.2023.102146

39. Каратеев АЕ, Амирджанова ВН, Насонов ЕЛ, Лила АМ, Алексеева ЛИ, Погожева ЕЮ, и др. «Постковидный синдром»: в центре внимания скелетно-мышечная боль. Научнопрактическая ревматология. 2021;59(3):255-262. doi: 10.47360/1995-4484-2021-255-262

40. Grainger R, Kim AHJ, Conway R, Yazdany J, Robinson PC. COVID-19 in people with rheumatic diseases: Risks, outcomes, treatment considerations. Nat Rev Rheumatol. 2022;18(4):191-204. doi: 10.1038/s41584-022-00755-x

41. Zacharias H, Dubey S, Koduri G, D’Cruz D. Rheumatological complications of COVID-19. Autoimmun Rev. 2021;20(9):102883. doi: 10.1016/j.autrev.2021.102883

42. Gracia-Ramos AE, Martin-Nares E, Hernández-Molina G. New onset of autoimmune diseases following COVID-19 diagnosis. Cells. 2021;10(12):3592. doi: 10.3390/cells10123592

43. Ramos-Casals M, Brito-Zerón P, Mariette X. Systemic and organspecific immune-related manifestations of COVID-19. Nat Rev Rheumatol. 2021;17(6):315-332. doi:10.1038/s41584-021-00608-z

44. Ciaffi J, Vanni E, Mancarella L, Brusi V, Lisi L, Pignatti F, et al. Post-acute COVID-19 joint pain and new onset of rheumatic musculoskeletal diseases: A systematic review. Diagnostics (Basel). 2023;13(11):1850. doi: 10.3390/diagnostics13111850

45. Guo M, Liu X, Chen X, Li Q. Insights into new-onset autoimmune diseases after COVID-19 vaccination. Autoimmun Rev. 2023;22(7):103340. doi: 10.1016/j.autrev.2023.103340

46. Kouranloo K, Dey M, Elwell H, Nune A. A systematic review of the incidence, management and prognosis of new-onset autoimmune connective tissue diseases after COVID-19. Rheumatol Int. 2023;43(7):1221-1243. doi: 10.1007/s00296-023-05283-9

47. Fedorchenko Y, Zimba O. Long COVID in autoimmune rheumatic diseases. Rheumatol Int. 2023;43(7):1197-1207. doi: 10.1007/s00296-023-05319-0

48. Marks M, Marks JL. Viral arthritis. Clin Med (Lond). 2016;16(2):129-134. doi: 10.7861/clinmedicine.16-2-129

49. Copley M, Kozminski B, Gentile N, Geyer R, Friedly J. Postacute sequelae of SARS-CoV-2: Musculoskeletal conditions and pain. Phys Med Rehabil Clin N Am. 2023;34(3):585-605. doi: 10.1016/j.pmr.2023.04.008

50. Баймухамедов ЧТ, Ботабекова АК, Досыбаева ГН, Махмудов ША. Ревматоидный артрит и постковидный синдром. Научно-практическая ревматология. 2022;60(3):276-279. doi: 10.47360/1995-4484-2022-276-279

51. Farisogullari B, Pinto AS, Machado PM. COVID-19-associated arthritis: An emerging new entity? RMD Open. 2022;8(2):e002026. doi: 10.1136/rmdopen-2021-002026

52. Kocyigit BF, Akyol A. The relationship between COVID-19 and fibromyalgia syndrome: Prevalence, pandemic effects, symptom mechanisms, and COVID-19 vaccines. Clin Rheumatol. 2022; 41(10):3245-3252. doi: 10.1007/s10067-022-06279-9

53. Boekel L, Atiqi S, Leeuw M, Hooijberg F, Besten YR, Wartena R, et al. Post-COVID condition in patients with inflammatory rheumatic diseases: A prospective cohort study in the Netherlands. Lancet Rheumatol. 2023;5(7):e375-e385. doi: 10.1016/S2665-9913(23)00127-3

54. Calabrese LH. Long COVID in inflammatory rheumatic diseases – What’s in a name? Lancet Rheumatol. 2023;5(7):e364-e365. doi: 10.1016/S2665-9913(23)00134-0

55. Sen P, Ravichandran N, Nune A, Lilleker JB, Agarwal V, Kardes S, et al.; COVAD Study Group. COVID-19 vaccinationrelated adverse events among autoimmune disease patients: Results from the COVAD study. Rheumatology (Oxford). 2022;62(1):65-76. doi: 10.1093/rheumatology/keac305

56. Chang R, Yen-Ting Chen T, Wang SI, Hung YM, Chen HY, Wei CJ. Risk of autoimmune diseases in patients with COVID-19: A retrospective cohort study. EClinicalMedicine. 2023;56:101783. doi: 10.1016/j.eclinm.2022.101783

57. Tesch F, Ehm F, Vivirito A, Wende D, Batram M, Loser F, et al. Incident autoimmune diseases in association with SARSCoV-2 infection: A matched cohort study. Clin Rheumatol. 2023;42(10):2905-2914. doi: 10.1007/s10067-023-06670-0

58. Syed U, Subramanian A, Wraith DC, Lord JM, McGee K, Ghokale K, et al. Incidence of immune-mediated inflammatory diseases following COVID-19: A matched cohort study in UK primary care. BMC Med. 2023;21(1):363. doi: 10.1186/s12916-023-03049-5

59. Peng K, Li X, Yang D, Chan SCW, Zhou J, Wan EYF, et al. Risk of autoimmune diseases following COVID-19 and the potential protective effect from vaccination: A population-based cohort study. EClinicalMedicine. 2023;63:102154. doi: 10.1016/j.eclinm.2023.102154

60. Lim SH, Ju HJ, Han JH, Lee JH, Lee WS, Bae JM, et al. Autoimmune and autoinflammatory connective tissue disorders following COVID-19. JAMA Netw Open. 2023;6(10):e2336120. doi: 10.1001/jamanetworkopen.2023.36120

61. Vojdani A, Kharrazian D. Potential antigenic cross-reactivity between SARS-CoV-2 and human tissue with a possible link to an increase in autoimmune diseases. Clin Immunol. 2020;217:108480. doi: 10.1016/j.clim.2020.108480

62. Насонов ЕЛ, Белов БС, Лила АМ, Аронова ЕС, Гриднева ГИ, Кудрявцева АВ, и др. Течение и исходы COVID-19 у пациентов с иммуновоспалительными ревматическими заболеваниями: предварительные данные регистра НИИР/АРР-COVID-19 и обзор литературы. Научно-практическая ревматология. 2021;59(6):666-675. doi: 10.47360/1995-4484-2021-666-675

63. Gauckler P, Kesenheimer JS, Geetha D, Odler B, Eller K, Laboux T, et al. COVID-19 outcomes in patients with a history of immune-mediated glomerular diseases. Front Immunol. 2023;14:1228457. doi: 10.3389/fimmu.2023.1228457

64. Conway R, Grimshaw AA, Konig MF, Putman M, Duarte-García A, Tseng LY, et al.; COVID-19 Global Rheumatology Alliance. SARS-CoV-2 infection and COVID-19 outcomes in rheumatic diseases: A systematic literature review and meta-analysis. Arthritis Rheumatol. 2022;74(5):766-775. doi: 10.1002/art.42030

65. Мазуров ВИ, Беляева ИБ, Саранцева ЛЕ, Чудинов АЛ, Башкинов РА, Трофимов ЕА, и др. Особенности клинического течения ревматических заболеваний у пациентов, перенесших новую коронавирусную инфекцию. Терапия. 2021;7(10):42-54. doi: 10.18565/therapy.2021.10.42-54

66. Figueroa-Parra G, Gilbert EL, Valenzuela-Almada MO, Vallejo S, Neville MR, Patel NJ, et al. Risk of severe COVID-19 outcomes associated with rheumatoid arthritis and phenotypic subgroups: A retrospective, comparative, multicentre cohort study. Lancet Rheumatol. 2022;4(11):e765-e774. doi: 10.1016/S2665-9913(22)00227-2

67. Zaccardelli A, Wallace ZS, Sparks JA. Acute and postacute COVID-19 outcomes for patients with rheumatoid arthritis: Lessons learned and emerging directions 3 years into the pandemic. Curr Opin Rheumatol. 2023;35(3):175-184. doi: 10.1097/BOR.0000000000000930

68. Di Iorio M, Cook CE, Vanni KMM, Patel NJ, D’Silva KM, Fu X, et al. DMARD disruption, rheumatic disease flare, and prolonged COVID-19 symptom duration after acute COVID-19 among patients with rheumatic disease: A prospective study. Semin Arthritis Rheum. 2022;55:152025. doi: 10.1016/j.semarthrit.2022.152025

69. DiIorio M, Kennedy K, Liew JW, Putman MS, Sirotich E, Sattui SE, et al. Prolonged COVID-19 symptom duration in people with systemic autoimmune rheumatic diseases: Results from the COVID-19 Global Rheumatology Alliance Vaccine Survey. RMD Open. 2022;8(2):e002587. doi: 10.1136/rmdopen-2022-002587

70. Куликов АН, Муравьева НВ, Белов БС. Частота и течение COVID-19 у больных ревматическими заболеваниями (по данным ФГБНУ НИИР им. В.А. Насоновой). Научно-практическая ревматология. 2023;61(5):537-544. doi: 10.47360/1995-4484-2023-537-544

71. D’Silva KM, Serling-Boyd N, Wallwork R, Hsu T, Fu X, Gravallese EM, et al. Clinical characteristics and outcomes of patients with coronavirus disease 2019 (COVID-19) and rheumatic disease: A comparative cohort study from a US ‘hot spot’. Ann Rheum Dis. 2020;79(9):1156-1162. doi: 10.1136/annrheumdis-2020-217888

72. Patel NJ, D’Silva KM, Li MD, Hsu TYT, DiIorio M, Fu X, et al. Assessing the severity of COVID-19 lung injury in rheumatic diseases versus the general population using deep learning-derived chest radiograph scores. Arthritis Care Res (Hoboken). 2023;75(3):657-666. doi: 10.1002/acr.24883

73. D’Silva KM, Jorge A, Cohen A, McCormick N, Zhang Y, Wallace ZS, et al. COVID-19 outcomes in patients with systemic autoimmune rheumatic diseases compared to the general population: A US multicenter, comparative cohort study. Arthritis Rheumatol. 2021;73(6):914-920. doi: 10.1002/art.41619

74. Jorge A, D’Silva KM, Cohen A, Wallace ZS, McCormick N, Zhang Y, et al. Temporal trends in severe COVID-19 outcomes in patients with rheumatic disease: A cohort study. Lancet Rheumatol. 2021;3(2):e131-e137. doi: 10.1016/S2665-9913(20)30422-7

75. Strangfeld A, Schäfer M, Gianfrancesco MA, Lawson-Tovey S, Liew JW, Ljung L, et al.; COVID-19 Global Rheumatology Alliance. Factors associated with COVID-19-related death in people with rheumatic diseases: Results from the COVID-19 Global Rheumatology Alliance physician-reported registry. Ann Rheum Dis. 2021;80(7):930-942. doi: 10.1136/annrheumdis-2020-219498

76. Ge E, Li Y, Wu S, Candido E, Wei X. Association of pre-existing comorbidities with mortality and disease severity among 167,500 individuals with COVID-19 in Canada: A populationbased cohort study. PLoS One. 2021;16(10):e0258154. doi: 10.1371/journal.pone.0258154

77. England BR, Roul P, Yang Y, Kalil AC, Michaud K, Thiele GM, et al. Risk of COVID-19 in rheumatoid arthritis: A National Veterans Affairs matched cohort study in at-risk individuals. Arthritis Rheumatol. 2021;73(12):2179-2188. doi: 10.1002/art.41800

78. Curtis JR, Zhou X, Rubin DT, Reinisch W, Yazdany J, Robinson PC, et al. Characteristics, comorbidities, and outcomes of SARS-CoV-2 infection in patients with autoimmune conditions treated with systemic therapies: A population-based study. J Rheumatol. 2022;49(3):320-329. doi: 10.3899/jrheum.210888

79. Raiker R, DeYoung C, Pakhchanian H, Ahmed S, Kavadichanda C, Gupta L, et al. Outcomes of COVID-19 in patients with rheumatoid arthritis: A multicenter research network study in the United States. Semin Arthritis Rheum. 2021;51(5):1057-1066. doi: 10.1016/j.semarthrit.2021.08.010

80. Li H, Wallace ZS, Sparks JA, Lu N, Wei J, Xie D, et al. Risk of COVID-19 among unvaccinated and vaccinated patients with rheumatoid arthritis: A general population study. Arthritis Care Res (Hoboken). 2023;75(5):956-966. doi: 10.1002/acr.25028

81. Williamson EJ, Walker AJ, Bhaskaran K, Bacon S, Bates C, Morton CE, et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature. 2020;584(7821):430-436. doi: 10.1038/s41586-020-2521-4

82. Williamson J, Black L, Black A, Koduri G, Kelly C. There are similarities between rheumatic disease with lung involvement and COVID-19 pneumonia. Ir J Med Sci. 2022;191(1):1-5. doi: 10.1007/s11845-021-02545-y

83. Fonseca M, Summer R, Roman J. Acute exacerbation of interstitial lung disease as a sequela of COVID-19 pneumonia. Am J Med Sci. 2021;361(1):126-129. doi: 10.1016/j.amjms.2020.08.017

84. Torun S, Karaman I. Acute exacerbation of rheumatoid arthritis misdiagnosed as COVID-19: A case report. Front Med (Lausanne). 2022;9:844609. doi: 10.3389/fmed.2022.844609

85. Lee AR, Woo JS, Lee SY, Lee YS, Jung J, Lee CR, et al. SARSCoV-2 spike protein promotes inflammatory cytokine activation and aggravates rheumatoid arthritis. Cell Commun Signal. 2023;21(1):44. doi: 10.1186/s12964-023-01044-0

86. Isaacs JD, Burmester GR. Smart battles: Immunosuppression versus immunomodulation in the inflammatory RMDs. Ann Rheum Dis. 2020;79(8):991-993. doi: 10.1136/annrheumdis-2020-218019

87. Venkat R, Wallace ZS, Sparks JA. Considerations for pharmacologic management of rheumatoid arthritis in the COVID-19 era: A narrative review. Curr Rheumatol Rep. 2023;25(11):236-245. doi: 10.1007/s11926-023-01111-y

88. Lee DSW, Rojas OL, Gommerman JL. B cell depletion therapies in autoimmune disease: Advances and mechanistic insights. Nat Rev Drug Discov. 2021;20(3):179-199. doi: 10.1038/s41573-020-00092-2

89. Насонов ЕЛ, Бекетова ТВ, Ананьева ЛП, Васильев ВИ, Соловьев СК, Авдеева АС. Перспективы анти-В-клеточной терапии при иммуновоспалительных ревматических заболеваниях. Научно-практическая ревматология. 2019;57:1-40. doi: 10.14412/1995-4484-2019-3-40

90. Насонов ЕЛ (ред.). Анти-В-клеточная терапия в ревматологии: Фокус на ритуксимаб. М.:ИМА-ПРЕСС;2012.

91. Насонов ЕЛ, Авдеева АС. Деплеция В-клеток при иммуновоспалительных ревматических заболеваниях и коронавирусная болезнь 2019 (COVID-19). Научно-практическая ревматология. 2021;59(4):384-393. doi: 10.47360/1995-4484-2021-384-393

92. Sparks JA, Wallace ZS, Seet AM, Gianfrancesco MA, Izadi Z, Hyrich KL, et al.; COVID-19 Global Rheumatology Alliance. Associations of baseline use of biologic or targeted synthetic DMARDs with COVID-19 severity in rheumatoid arthritis: Results from the COVID-19 Global Rheumatology Alliance physician registry. Ann Rheum Dis. 2021;80(9):1137-1146. doi: 10.1136/annrheumdis-2021-220418

93. Singh N, Madhira V, Hu C, Olex AL, Bergquist T, Fitzgerald KC, et al. Rituximab is associated with worse COVID-19 outcomes in patients with rheumatoid arthritis: A retrospective, nationally sampled cohort study from the U.S. National COVID Cohort Collaborative (N3C). Semin Arthritis Rheum. 2023;58:152149. doi: 10.1016/j.semarthrit.2022.152149

94. Gianfrancesco M, Hyrich KL, Al-Adely S, Carmona L, Danila MI, Gossec L, et al.; COVID-19 Global Rheumatology Alliance. Characteristics associated with hospitalisation for COVID-19 in people with rheumatic disease: Data from the COVID-19 Global Rheumatology Alliance physicianreported registry. Ann Rheum Dis. 2020;79(7):859-866. doi: 10.1136/annrheumdis-2020-217871

95. Hasseli R, Mueller-Ladner U, Hoyer BF, Krause A, Lorenz HM, Pfeil A, et al. Older age, comorbidity, glucocorticoid use and disease activity are risk factors for COVID-19 hospitalisation in patients with inflammatory rheumatic and musculoskeletal diseases. RMD Open. 2021;7(1):e001464. doi: 10.1136/rmdopen-2020-001464

96. Tsai JJ, Liu LT, Chen CH, Chen LJ, Wang SI, Wei JC. COVID-19 outcomes in patients with rheumatoid arthritis with biologic or targeted synthetic DMARDs. RMD Open. 2023;9(3):e003038. doi: 10.1136/rmdopen-2023-003038

97. Rutter M, Lanyon PC, Grainge MJ, Hubbard R, Bythell M, Stilwell P, et al. COVID-19 infection, admission and death and the impact of corticosteroids among people with rare autoimmune rheumatic disease during the second wave of COVID-19 in England: Results from the RECORDER Project. Rheumatology (Oxford). 2023;62(12):3828-3837. doi: 10.1093/rheumatology/kead150

98. Deepak P, Kim W, Paley MA, Yang M, Carvidi AB, Demissie EG, et al. Effect of immunosuppression on the immunogenicity of mRNA vaccines to SARS-CoV-2: A prospective cohort study. Ann Intern Med. 2021;174(11):1572-1585. doi: 10.7326/M21-1757

99. Jyssum I, Kared H, Tran TT, Tveter AT, Provan SA, Sexton J, et al. Humoral and cellular immune responses to two and three doses of SARS-CoV-2 vaccines in rituximab-treated patients with rheumatoid arthritis: A prospective, cohort study. Lancet Rheumatol. 2022;4(3):e177-e187. doi: 10.1016/S2665-9913(21)00394-5

100. Johnson D, Jiang W. Infectious diseases, autoantibodies, and autoimmunity. J Autoimmun. 2023;137:102962. doi: 10.1016/j.jaut.2022.102962

101. Sundaresan B, Shirafkan F, Ripperger K, Rattay K. The role of viral infections in the onset of autoimmune diseases. Viruses. 2023;15(3):782. doi: 10.3390/v15030782

102. Jackson SP, Darbousset R, Schoenwaelder SM. Thromboinflammation: Challenges of therapeutically targeting coagulation and other host defense mechanisms. Blood. 2019;133(9):906-918. doi: 10.1182/blood-2018-11-882993

103. Wagner DD, Heger LA. Thromboinflammation: From atherosclerosis to COVID-19. Arterioscler Thromb Vasc Biol. 2022;42(9):1103-1112. doi: 10.1161/ATVBAHA.122.317162

104. Jenks SA, Cashman KS, Woodruff MC, Lee FE, Sanz I. Extrafollicular responses in humans and SLE. Immunol Rev. 2019;288(1):136-148. doi: 10.1111/imr.12741

105. Chung MKY, Gong L, Kwong DL, Lee VH, Lee AW, Guan XY, et al. Functions of double-negative B cells in autoimmune diseases, infections, and cancers. EMBO Mol Med. 2023;15(9):e17341. doi: 10.15252/emmm.202217341

106. Woodruff MC, Ramonell RP, Nguyen DC, Cashman KS, Saini AS, Haddad NS, et al. Extrafollicular B cell responses correlate with neutralizing antibodies and morbidity in COVID-19. Nat Immunol. 2020;21(12):1506-1516. doi: 10.1038/s41590-020-00814-z

107. Bortolotti D, Gentili V, Rizzo S, Schiuma G, Beltrami S, Strazzabosco G, et al. TLR3 and TLR7 RNA sensor activation during SARS-CoV-2 infection. Microorganisms. 2021;9(9):1820. doi: 10.3390/microorganisms9091820

108. Fillatreau S, Manfroi B, Dörner T. Toll-like receptor signalling in B cells during systemic lupus erythematosus. Nat Rev Rheumatol. 2021;17(2):98-108. doi: 10.1038/s41584-020-00544-4

109. Burbelo PD, Iadarola MJ, Keller JM, Warner BM. Autoantibodies targeting intracellular and extracellular proteins in autoimmunity. Front Immunol. 2021;12:548469. doi: 10.3389/fimmu.2021.548469

110. Ludwig RJ, Vanhoorelbeke K, Leypoldt F, Kaya Z, Bieber K, McLachlan SM, et al. Mechanisms of autoantibody-induced pathology. Front Immunol. 2017;8:603. doi: 10.3389/fimmu.2017.00603

111. Puel A, Bastard P, Bustamante J, Casanova JL. Human autoantibodies underlying infectious diseases. J Exp Med. 2022;219(4):e20211387. doi: 10.1084/jem.20211387

112. Moritz CP, Paul S, Stoevesandt O, Tholance Y, Camdessanché JP, Antoine JC. Autoantigenomics: Holistic characterization of autoantigen repertoires for a better understanding of autoimmune diseases. Autoimmun Rev. 2020;19(2):102450. doi: 10.1016/j.autrev.2019.102450

113. Damoiseaux J, Dotan A, Fritzler MJ, Bogdanos DP, Meroni PL, Roggenbuck D, et al. Autoantibodies and SARS-CoV2 infection: The spectrum from association to clinical implication: Report of the 15th Dresden Symposium on Autoantibodies. Autoimmun Rev. 2022;21(3):103012. doi: 10.1016/j.autrev.2021.103012

114. Насонов ЕЛ. Коронавирусная болезнь 2019 (COVID-19) и аутоиммунитет. Научно-практическая ревматология. 2021;59(1):5-30. doi: 10.47360/1995-4484-2021-5-30

115. Dobrowolska K, Zarębska-Michaluk D, Poniedziałek B, Jaroszewicz J, Flisiak R, Rzymski P. Overview of autoantibodies in COVID-19 convalescents. J Med Virol. 2023;95(6):e28864. doi: 10.1002/jmv.28864

116. Rojas M, Rodríguez Y, Acosta-Ampudia Y, Monsalve DM, Zhu C, Li QZ, et al. Autoimmunity is a hallmark of post-COVID syndrome. J Transl Med. 2022;20(1):129. doi: 10.1186/s12967-022-03328-4

117. Chang SE, Feng A, Meng W, Apostolidis SA, Mack E, Artandi M, et al. New-onset IgG autoantibodies in hospitalized patients with COVID-19. Nat Commun. 2021 ;12(1):5417. doi: 10.1038/s41467-021-25509-3

118. Moody R, Sonda S, Johnston FH, Smith KJ, Stephens N, McPherson M, et al. Antibodies against Spike protein correlate with broad autoantigen recognition 8 months post SARS-CoV-2 exposure, and anti-calprotectin autoantibodies associated with better clinical outcomes. Front Immunol. 2022;13:945021. doi: 10.3389/fimmu.2022.945021

119. Vojdani A, Vojdani E, Kharrazian D. Reaction of human monoclonal antibodies to SARS-CoV-2 proteins with tissue antigens: Implications for autoimmune diseases. Front Immunol. 2021;11:617089. doi: 10.3389/fimmu.2020.617089

120. McGill JR, Lagassé HAD, Hernandez N, Hopkins L, Jankowski W, McCormick Q, et al. A structural homology approach to identify potential cross-reactive antibody responses following SARS-CoV-2 infection. Sci Rep. 2022;12(1):11388. doi: 10.1038/s41598-022-15225-3

121. Bastard P, Rosen LB, Zhang Q, Michailidis E, Hoffmann HH, Zhang Y, et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science. 2020;370(6515):eabd4585. doi: 10.1126/science.abd4585

122. Bastard P, Zhang Q, Zhang SY, Jouanguy E, Casanova JL. Type I interferons and SARS-CoV-2: From cells to organisms. Curr Opin Immunol. 2022;74:172-182. doi: 10.1016/j.coi.2022.01.003

123. Su HC, Jing H, Zhang Y, Casanova JL. Interfering with interferons: A critical mechanism for critical COVID-19 pneumonia. Annu Rev Immunol. 2023;41:561-585. doi: 10.1146/annurevimmunol-101921-050835

124. Zhang Q, Bastard P; COVID Human Genetic Effort; Cobat A, Casanova JL. Human genetic and immunological determinants of critical COVID-19 pneumonia. Nature. 2022;603(7902):587-598. doi: 10.1038/s41586-022-04447-0

125. Bastard P, Vazquez SE, Liu J, Laurie MT, Wang CY, Gervais A, et al. Vaccine breakthrough hypoxemic COVID-19 pneumonia in patients with auto-Abs neutralizing type I IFNs. Sci Immunol. 2023;8(90):eabp8966. doi: 10.1126/sciimmunol.abp8966

126. Gupta S, Nakabo S, Chu J, Hasni S, Kaplan MJ. Association between anti-interferon-alpha autoantibodies and COVID-19 in systemic lupus erythematosus. medRxiv. 2020:2020.10.29.20222000. doi: 10.1101/2020.10.29.20222000

127. Beydon M, Nicaise-Roland P, Mageau A, Farkh C, Daugas E, Descamps V, et al. Autoantibodies against IFNα in patients with systemic lupus erythematosus and susceptibility for infection: A retrospective case-control study. Sci Rep. 2022;12(1):11244. doi: 10.1038/s41598-022-15508-9

128. Peluso MJ, Mitchell A, Wang CY, Takahashi S, Hoh R, Tai V, et al. Low prevalence of interferon α autoantibodies in people experiencing symptoms of post-coronavirus disease 2019 (COVID-19) conditions, or long COVID. J Infect Dis. 2023;227(2):246-250. doi: 10.1093/infdis/jiac372

129. Wang EY, Mao T, Klein J, Dai Y, Huck JD, Jaycox JR, et al. Diverse functional autoantibodies in patients with COVID-19. Nature. 2021;595(7866):283-288. doi: 10.1038/s41586-021-03631-y

130. Wang EY, Dai Y, Rosen CE, Schmitt MM, Dong MX, Ferré EMN, et al. High-throughput identification of autoantibodies that target the human exoproteome. Cell Rep Methods. 2022;2(2):100172. doi: 10.1016/j.crmeth.2022.100172

131. Lichtenstein B, Zheng Y, Gjertson D, Ferbas KG, Rimoin AW, Yang OO, et al. Vascular and non-HLA autoantibody profiles in hospitalized patients with COVID-19. Front Immunol. 2023;14:1197326. doi: 10.3389/fimmu.2023.1197326

132. Насонов ЕЛ (ред.). Антифосфолипидный синдром. М.:Литтерра;2004.

133. Garcia D, Erkan D. Diagnosis and management of the antiphospholipid syndrome. N Engl J Med. 2018;378(21):2010-2021. doi: 10.1056/NEJMra1705454

134. Pignatelli P, Ettorre E, Menichelli D, Pani A, Violi F, Pastori D. Seronegative antiphospholipid syndrome: Refining the value of “non-criteria” antibodies for diagnosis and clinical management. Haematologica. 2020;105(3):562-572. doi: 10.3324/haematol.2019.221945

135. Liu X, Zhu L, Liu H, Cai Q, Yun Z, Sun F, et al. Non-criteria antiphospholipid antibodies in antiphospholipid syndrome: Diagnostic value added. Front Immunol. 2022;13:972012. doi: 10.3389/fimmu.2022.972012

136. Shi H, Zuo Y, Navaz S, Harbaugh A, Hoy CK, Gandhi AA, et al. Endothelial cell-activating antibodies in COVID-19. Arthritis Rheumatol. 2022;74(7):1132-1138. doi: 10.1002/art.42094

137. Zuo Y, Estes SK, Ali RA, Gandhi AA, Yalavarthi S, Shi H, et al. Prothrombotic autoantibodies in serum from patients hospitalized with COVID-19. Sci Transl Med. 2020;12(570):eabd3876. doi: 10.1126/scitranslmed.abd3876

138. Favaloro EJ, Pasalic L, Lippi G. Antibodies against platelet factor 4 and their associated pathologies: From HIT/HITT to spontaneous HIT-like syndrome, to COVID-19, to VITT/ TTS. Antibodies (Basel). 2022;11(1):7. doi: 10.3390/antib11010007.

139. Hollerbach A, Müller-Calleja N, Pedrosa D, Canisius A, Sprinzl MF, Falter T, et al. Pathogenic lipid-binding antiphospholipid antibodies are associated with severity of COVID-19. J Thromb Haemost. 2021;19(9):2335-2347. doi: 10.1111/jth.15455

140. Zuniga M, Gomes C, Carsons SE, Bender MT, Cotzia P, Miao QR, et al. Autoimmunity to annexin A2 predicts mortality among hospitalised COVID-19 patients. Eur Respir J. 2021;58(4):2100918. doi: 10.1183/13993003.00918-2021

141. Taha M, Samavati L. Antiphospholipid antibodies in COVID-19: A meta-analysis and systematic review. RMD Open. 2021;7(2):e001580. doi: 10.1136/rmdopen-2021-001580

142. Butt A, Erkan D, Lee AI. COVID-19 and antiphospholipid antibodies. Best Pract Res Clin Haematol. 2022;35(3):101402. doi: 10.1016/j.beha.2022.101402

143. Meroni PL, Borghi MO. Antiphospholipid antibodies and COVID-19 thrombotic vasculopathy: One swallow does not make a summer. Ann Rheum Dis. 2021;80(9):1105-1107. doi: 10.1136/annrheumdis-2021-220520

144. Favaloro EJ, Henry BM, Lippi G. COVID-19 and antiphospholipid antibodies: Time for a reality check? Semin Thromb Hemost. 2022;48(1):72-92. doi: 10.1055/s-0041-1728832

145. Serrano M, Espinosa G, Serrano A, Cervera R. COVID-19 and the antiphospholipid syndrome. Autoimmun Rev. 2022;21(12):103206. doi: 10.1016/j.autrev.2022.103206

146. Mendel A, Fritzler MJ, St-Pierre Y, Rauch J, Bernatsky S, Vinet É. Outcomes associated with antiphospholipid antibodies in COVID-19: A prospective cohort study. Res Pract Thromb Haemost. 2023;7(1):100041. doi: 10.1016/j.rpth.2023.100041

147. Weiss R, Bushi D, Mindel E, Bitton A, Diesendruck Y, Gera O, et al. Autoantibodies to annexin A2 and cerebral thrombosis: Insights from a mouse model. Lupus. 2021;30(5):775-784. doi: 10.1177/0961203321992117

148. Benjamin LA, Paterson RW, Moll R, Pericleous C, Brown R, Mehta PR, et al.; UCLH Queen Square COVID-19 Biomarker Study group. Antiphospholipid antibodies and neurological manifestations in acute COVID-19: A single-centre cross-sectional study. EClinicalMedicine. 2021;39:101070. doi: 10.1016/j.eclinm.2021.101070

149. Alijotas-Reig J, Anunciación-Llunell A, Morales-Pérez S, Trapé J, Esteve-Valverde E, Miro-Mur F. Thrombosis and hyperinflammation in COVID-19 acute phase are related to anti-phosphatidylserine and anti-phosphatidylinositol antibody positivity. Biomedicines. 2023;11(8):2301. doi: 10.3390/biomedicines11082301

150. Doevelaar AAN, Bachmann M, Hölzer B, Seibert FS, Rohn BJ, Witzke O, et al. Generation of inhibitory autoantibodies to ADAMTS13 in coronavirus disease 2019. medRxiv. 2021.03.18.21253869. doi: 10.1101/2021.03.18.21253869

151. Yun J, Gu J, Kim HK. Double positivity of anti-β2-glycoprotein I domain I and anti-phosphatidylserine/prothrombin antibodies enhances both thrombosis and positivity of antiADAMTS13 antibody. J Thromb Thrombolysis. 2021;52(4):1133-1136. doi: 10.1007/s11239-021-02406-6

152. Brodard J, Kremer Hovinga JA, Fontana P, Studt JD, Gruel Y, Greinacher A. COVID-19 patients often show high-titer nonplatelet-activating anti-PF4/heparin IgG antibodies. J Thromb Haemost. 2021;19(5):1294-1298. doi: 10.1111/jth.15262

153. Greinacher A, Thiele T, Warkentin TE, Weisser K, Kyrle PA, Eichinger S. Thrombotic thrombocytopenia after ChAdOx1 nCov-19 vaccination. N Engl J Med. 2021;384(22):2092-2101. doi: 10.1056/NEJMoa2104840

154. Woodruff MC, Ramonell RP, Haddad NS, Anam FA, Rudolph ME, Walker TA, et al. Dysregulated naive B cells and de novo autoreactivity in severe COVID-19. Nature. 2022;611(7934):139-147. doi: 10.1038/s41586-022-05273-0

155. Gomes C, Zuniga M, Crotty KA, Qian K, Lin LH, Argyropoulos KV, et al. Autoimmune anti-DNA antibodies predict disease severity in COVID-19 patients. medRxiv. 2021.01.04.20249054. doi: 10.1101/2021.01.04.20249054

156. Cheng AP, Cheng MP, Gu W, Sesing Lenz J, Hsu E, Schurr E, et al. Cell-free DNA tissues of origin by methylation profiling reveals significant cell, tissue, and organ-specific injury related to COVID-19 severity. Med. 2021;2(4):411-422.e5. doi: 10.1016/j.medj.2021.01.001

157. Etter MM, Martins TA, Kulsvehagen L, Pössnecker E, Duchemin W, Hogan S, et al. Severe neuro-COVID is associated with peripheral immune signatures, autoimmunity and neurodegeneration: A prospective cross-sectional study. Nat Commun. 2022;13(1):6777. doi: 10.1038/s41467-022-34068-0

158. Basic-Jukic N, Pavlisa G, Sremec NT, Juric I, Ledenko R, Rogic D, et al. Autoantibodies in COVID-19, a possible role in the pathogenesis of the disease. Ther Apher Dial. 2023;27(5):882-889. doi: 10.1111/1744-9987.14004

159. Park SH, Suh JW, Yang KS, Kim JY, Kim SB, Sohn JW, et al. Clinical significance of antinuclear antibody positivity in patients with severe coronavirus disease 2019. Korean J Intern Med. 2023;38(3):417-426. doi: 10.3904/kjim.2022.352

160. García-Abellán J, Fernández M, Padilla S, García JA, Agulló V, Lozano V, et al. Immunologic phenotype of patients with long-COVID syndrome of 1-year duration. Front Immunol. 2022;13:920627. doi: 10.3389/fimmu.2022.920627

161. Richter AG, Shields AM, Karim A, Birch D, Faustini SE, Steadman L, et al. Establishing the prevalence of common tissue-specific autoantibodies following severe acute respiratory syndrome coronavirus 2 infection. Clin Exp Immunol. 2021;205(2):99-105. doi: 10.1111/cei.13623

162. Sacchi MC, Pelazza C, Bertolotti M, Agatea L, De Gaspari P, Tamiazzo S, et al. The onset of de novo autoantibodies in healthcare workers after mRNA based anti-SARS-CoV-2 vaccines: A single centre prospective follow-up study. Autoimmunity. 2023;56(1):2229072. doi: 10.1080/08916934.2023.2229072

163. Zhang W, Tao Y, Zhu Y, Zheng Q, Hu F, Zhu W, et al. Effect of serum autoantibodies on the COVID-19 patient’s prognosis. Front Microbiol. 2023;14:1259960. doi: 10.3389/fmicb.2023.1259960

164. Giannini M, Ohana M, Nespola B, Zanframundo G, Geny B, Meyer A. Similarities between COVID-19 and anti-MDA5 syndrome: What can we learn for better care? Eur Respir J. 2020;56(3):2001618. doi: 10.1183/13993003.01618-2020

165. Dias Junior AG, Sampaio NG, Rehwinkel J. A balancing act: MDA5 in antiviral immunity and autoinflammation. Trends Microbiol. 2019;27(1):75-85. doi: 10.1016/j.tim.2018.08.007

166. Wang G, Wang Q, Wang Y, Liu C, Wang L, Chen H, et al. Presence of anti-MDA5 antibody and its value for the clinical assessment in patients with COVID-19: A retrospective cohort study. Front Immunol. 2021;12:791348. doi: 10.3389/fimmu.2021.791348

167. Gonzalez D, Gupta L, Murthy V, Gonzalez EB, Williamson KA, Makol A, et al. Anti-MDA5 dermatomyositis after COVID-19 vaccination: A case-based review. Rheumatol Int. 2022;42(9):1629-1641. doi: 10.1007/s00296-022-05149-6

168. Woodruff MC, Bonham KS, Anam FA, Walker TA, Faliti CE, Ishii Y, et al. Chronic inflammation, neutrophil activity, and autoreactivity splits long COVID. Nat Commun. 2023;14(1):4201. doi: 10.1038/s41467-023-40012-7

169. Lingel H, Meltendorf S, Billing U, Thurm C, Vogel K, Majer C, et al. Unique autoantibody prevalence in long-term recovered SARS-CoV-2-infected individuals. J Autoimmun. 2021;122:102682. doi: 10.1016/j.jaut.2021.102682

170. Su Y, Yuan D, Chen DG, Ng RH, Wang K, Choi J, et al. Multiple early factors anticipate post-acute COVID-19 sequelae. Cell. 2022;185(5):881-895.e20. doi: 10.1016/j.cell.2022.01.014

171. Насонов ЕЛ, Попкова ТВ, Панафидина ТА. Проблемы ранней системной красной волчанки в период пандемии COVID-19. Научно-практическая ревматология. 2021;59(2):119-128. doi: 10.47360/1995-4484-2021-119-128

172. Son K, Jamil R, Chowdhury A, Mukherjee M, Venegas C, Miyasaki K, et al. Circulating anti-nuclear autoantibodies in COVID-19 survivors predict long COVID symptoms. Eur Respir J. 2023;61(1):2200970. doi: 10.1183/13993003.00970-2022

173. Fonseca DLM, Filgueiras IS, Marques AHC, Vojdani E, Halpert G, Ostrinski Y, et al. Severe COVID-19 patients exhibit elevated levels of autoantibodies targeting cardiolipin and platelet glycoprotein with age: A systems biology approach. NPJ Aging. 2023;9(1):21. doi: 10.1038/s41514-023-00118-0

174. Baiocchi GC, Vojdani A, Rosenberg AZ, Vojdani E, Halpert G, Ostrinski Y, et al. Autoantibodies linked to autoimmune diseases associate with COVID-19 outcomes. medRxiv. 2022.02.17.22271057. doi: 10.1101/2022.02.17.22271057

175. COVID-19 Forecasting Team. Variation in the COVID-19 infection-fatality ratio by age, time, and geography during the pre-vaccine era: A systematic analysis. Lancet. 2022;399(10334):1469-1488. doi: 10.1016/S0140-6736(21)02867-1

176. Müller L, Di Benedetto S. From aging to long COVID: exploring the convergence of immunosenescence, inflammaging, and autoimmunity. Front Immunol. 2023;14:1298004. doi: 10.3389/fimmu.2023.1298004

177. Arvey A, Rowe M, Legutki JB, An G, Gollapudi A, Lei A, et al. Age-associated changes in the circulating human antibody repertoire are upregulated in autoimmunity. Immun Ageing. 2020;17:28. doi: 10.1186/s12979-020-00193-x

178. Baiocchi GC, Vojdani A, Rosenberg AZ, Vojdani E, Halpert G, Ostrinski Y, et al. Cross-sectional analysis reveals autoantibody signatures associated with COVID-19 severity. J Med Virol. 2023;95(2):e28538. doi: 10.1002/jmv.28538

179. Henry BM, Vikse J, Benoit S, Favaloro EJ, Lippi G. Hyperinflammation and derangement of renin-angiotensin-aldosterone system in COVID-19: A novel hypothesis for clinically suspected hypercoagulopathy and microvascular immunothrombosis. Clin Chim Acta. 2020;507:167-173. doi: 10.1016/j.cca.2020.04.027

180. Rodriguez-Perez AI, Labandeira CM, Pedrosa MA, Valenzuela R, Suarez-Quintanilla JA, Cortes-Ayaso M, et al. Autoantibodies against ACE2 and angiotensin type-1 receptors increase severity of COVID-19. J Autoimmun. 2021;122:102683. doi: 10.1016/j.jaut.2021.102683

181. Casciola-Rosen L, Thiemann DR, Andrade F, Trejo-Zambrano MI, Leonard EK, Spangler JB, et al. IgM anti-ACE2 autoantibodies in severe COVID-19 activate complement and perturb vascular endothelial function. JCI Insight. 2022;7(9):e158362. doi: 10.1172/jci.insight.158362

182. Miedema J, Schreurs M, van der Sar-van der Brugge S, Paats M, Baart S, Bakker M, et al. Antibodies against angiotensin II receptor type 1 and endothelin a receptor are associated with an unfavorable COVID19 disease course. Front Immunol. 2021;12:684142. doi: 10.3389/fimmu.2021.684142

183. Briquez PS, Rouhani SJ, Yu J, Pyzer AR, Trujillo J, Dugan HL, et al. Severe COVID-19 induces autoantibodies against angiotensin II that correlate with blood pressure dysregulation and disease severity. Sci Adv. 2022;8(40):eabn3777. doi: 10.1126/sciadv.abn3777

184. Cabral-Marques O, Halpert G, Schimke LF, Ostrinski Y, Vojdani A, Baiocchi GC, et al. Autoantibodies targeting GPCRs and RAS-related molecules associate with COVID-19 severity. Nat Commun. 2022;13(1):1220. doi: 10.1038/s41467-022-28905-5

185. Sinnberg T, Lichtensteiger C, Ali OH, Pop OT, Jochum AK, Risch L, et al. Pulmonary surfactant proteins are inhibited by immunoglobulin a autoantibodies in severe COVID-19. Am J Respir Crit Care Med. 2023;207(1):38-49. doi: 10.1164/rccm.202201-0011OC

186. Muri J, Cecchinato V, Cavalli A, Shanbhag AA, Matkovic M, Biggiogero M, et al. Autoantibodies against chemokines postSARS-CoV-2 infection correlate with disease course. Nat Immunol. 2023;24(4):604-611. doi: 10.1038/s41590-023-01445-w

187. Thurner L, Fadle N, Bewarder M, Kos I, Regitz E, Cetin O, et al. Autoantibodies against progranulin and IL-1 receptor antagonist due to immunogenic posttranslational isoforms contribute to hyperinflammation in critically ill COVID-19. bioRxiv. 2021.04.23.441188. doi: 10.1101/2021.04.23.441188

188. Pfeifer J, Thurner B, Kessel C, Fadle N, Kheiroddin P. Autoantibodies against interleukin-1 receptor antagonist in multisystem inflammatory syndrome in children: A multicentre, retrospective, cohort study. Lancet Rheumatol. 2022;4(5):e329-e337. doi: 10.1016/S2665-9913(22)00064-9

189. Potere N, Garrad E, Kanthi Y, Di Nisio M, Kaplanski G, Bonaventura A, et al. NLRP3 inflammasome and interleukin-1 contributions to COVID-19-associated coagulopathy and immunothrombosis. Cardiovasc Res. 2023;119(11):2046-2060. doi: 10.1093/cvr/cvad084

190. Jian J, Li G, Hettinghouse A, Liu C. Progranulin: A key player in autoimmune diseases. Cytokine. 2018;101:48-55. doi: 10.1016/j.cyto.2016.08.007

191. Klemm P, Assmann G, Preuss KD, Fadle N, Regitz E, Martin T, et al. Progranulin autoantibodies in systemic sclerosis and autoimmune connective tissue disorders: A preliminary study. Immun Inflamm Dis. 2019;7(4):271-275. doi: 10.1002/iid3.270

192. Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol. 2013;13(3):159-175. doi: 10.1038/nri3399

193. Li J, Zhang K, Zhang Y, Gu Z, Huang C. Neutrophils in COVID-19: Recent insights and advances. Virol J. 2023;20(1):169. doi: 10.1186/s12985-023-02116-w

194. Wigerblad G, Kaplan MJ. Neutrophil extracellular traps in systemic autoimmune and autoinflammatory diseases. Nat Rev Immunol. 2023;23(5):274-288. doi: 10.1038/s41577-022-00787-0

195. Насонов ЕЛ, Авдеева АС, Решетняк ТМ, Алексанкин АП, Рубцов ЮП. Роль нетоза в патогенезе иммуновоспалительных ревматических заболеваний. Научно-практическая ревматология. 2023;61(5):513-530. doi: 10.47360/1995-4484-2023-513-530

196. Zuo Y, Yalavarthi S, Shi H, Gockman K, Zuo M, Madison JA, et al. Neutrophil extracellular traps in COVID-19. JCI Insight. 2020;5(11):e138999. doi: 10.1172/jci.insight.138999

197. Skendros P, Mitsios A, Chrysanthopoulou A, Mastellos DC, Metallidis S, Rafailidis P, et al. Complement and tissue factorenriched neutrophil extracellular traps are key drivers in COVID-19 immunothrombosis. J Clin Invest. 2020;130(11):6151-6157. doi: 10.1172/JCI141374

198. Krinsky N, Sizikov S, Nissim S, Dror A, Sas A, Prinz H, et al. NETosis induction reflects COVID-19 severity and long COVID: Insights from a 2-center patient cohort study in Israel. J Thromb Haemost. 2023;21(9):2569-2584. doi: 10.1016/j.jtha.2023.02.033

199. Zuo Y, Yalavarthi S, Navaz SA, Hoy CK, Harbaugh A, Gockman K, et al. Autoantibodies stabilize neutrophil extracellular traps in COVID-19. JCI Insight. 2021;6(15):e150111. doi: 10.1172/jci.insight.150111

200. Zuo Y, Navaz S, Tsodikov A, Kmetova K, Kluge L, Ambati A, et al.; Antiphospholipid Syndrome Alliance for Clinical Trials and InternatiOnal Networking. Anti-neutrophil extracellular trap antibodies in antiphospholipid antibody-positive patients: Results from the Antiphospholipid Syndrome Alliance for clinical trials and InternatiOnal Networking Clinical Database and Repository. Arthritis Rheumatol. 2023;75(8):1407-1414. doi: 10.1002/art.42489

201. Zuo Y, Yalavarthi S, Gockman K, Madison JA, Gudjonsson JE, Kahlenberg JM, et al. Anti-neutrophil extracellular trap antibodies and impaired neutrophil extracellular trap degradation in antiphospholipid syndrome. Arthritis Rheumatol. 2020;72(12):2130-2135. doi: 10.1002/art.41460

202. Yalavarthi S, Gould TJ, Rao AN, Mazza LF, Morris AE, NúñezÁlvarez C, et al. Release of neutrophil extracellular traps by neutrophils stimulated with antiphospholipid antibodies: A newly identified mechanism of thrombosis in the antiphospholipid syndrome. Arthritis Rheumatol. 2015;67(11):2990-3003. doi: 10.1002/art.39247

203. Bertin D, Brodovitch A, Lopez A, Arcani R, Thomas GM, Beziane A, et al. Anti-cardiolipin IgG autoantibodies associate with circulating extracellular DNA in severe COVID-19. Sci Rep. 2022;12(1):12523. doi: 10.1038/s41598-022-15969-y

204. Pisareva E, Badiou S, Mihalovičová L, Mirandola A, Pastor B, Kudriavtsev A, et al. Persistence of neutrophil extracellular traps and anticardiolipin auto-antibodies in post-acute phase COVID-19 patients. J Med Virol. 2023;95(1):e28209. doi: 10.1002/jmv.28209

205. Zha C, Zhang W, Gao F, Xu J, Jia R, Cai J, et al. Anti-β2 GPI/β2 GPI induces neutrophil extracellular traps formation to promote thrombogenesis via the TLR4/MyD88/MAPKs axis activation. Neuropharmacology. 2018;138:140-150. doi: 10.1016/j.neuropharm.2018.06.001

206. Pisetsky DS. Antibodies to neutrophil extracellular traps: Novel markers for the antiphospholipid syndrome. Arthritis Rheumatol. 2023;75(8):1331-1333. doi: 10.1002/art.42548

207. Zelek WM, Harrison RA. Complement and COVID-19: Three years on, what we know, what we don’t know, and what we ought to know. Immunobiology. 2023;228(3):152393. doi: 10.1016/j.imbio.2023.152393

208. Trouw LA, Pickering MC, Blom AM. The complement system as a potential therapeutic target in rheumatic disease. Nat Rev Rheumatol. 2017;13(9):538-547. doi: 10.1038/nrrheum.2017.125

209. Rawish E, Sauter M, Sauter R, Nording H, Langer HF. Complement, inflammation and thrombosis. Br J Pharmacol. 2021;178(14):2892-2904. doi: 10.1111/bph.15476

210. Baines AC, Brodsky RA. Complementopathies. Blood Rev. 2017;31(4):213-223. doi: 10.1016/j.blre.2017.02.003

211. Holter JC, Pischke SE, de Boer E, Lind A, Jenum S, Holten AR, et al. Systemic complement activation is associated with respiratory failure in COVID-19 hospitalized patients. Proc Natl Acad Sci U S A. 2020;117(40):25018-25025. doi: 10.1073/pnas.2010540117

212. Cugno M, Meroni PL, Gualtierotti R, Griffini S, Grovetti E, Torri A, et al. Complement activation and endothelial perturbation parallel COVID-19 severity and activity. J Autoimmun. 2021;116:102560. doi: 10.1016/j.jaut.2020.102560

213. Lo MW, Kemper C, Woodruff TM. COVID-19: Complement, coagulation, and collateral damage. J Immunol. 2020;205(6):1488-1495. doi: 10.4049/jimmunol.2000644

214. Perez-Diez A, Liu X, Calderon S, Bennett A, Kisco A, et al. Prevalence and complement activation of anti-lymphocyte IgM antibodies in hospitalized COVID-19 patients. J Immunol. 2023;210(Suppl 1):75.26. doi: 10.4049/jimmunol.210.Suppl.7526

215. Chaturvedi S, Braunstein EM, Yuan X, Yu J, Alexander A, Chen H, et al. Complement activity and complement regulatory gene mutations are associated with thrombosis in APS and CAPS. Blood. 2020;135(4):239-251. doi: 10.1182/blood.2019003863

216. Ghanbari EP, Jakobs K, Puccini M, Reinshagen L, Friebel J, Haghikia A, et al. The role of NETosis and complement activation in COVID-19-associated coagulopathies. Biomedicines. 2023;11(5):1371. doi: 10.3390/biomedicines11051371

217. Kolb P, Giese S, Voll RE, Hengel H, Falcone V. Immune complexes as culprits of immunopathology in severe COVID-19. Med Microbiol Immunol. 2023;212(2):185-191. doi: 10.1007/s00430-022-00743-8

218. Perdomo J, Leung HHL. Immune thrombosis: Exploring the significance of immune complexes and NETosis. Biology. 2023;12(10):1332. doi: 10.3390/biology12101332

219. Ankerhold J, Giese S, Kolb P, Maul-Pavicic A, Voll RE, Göppert N, et al. Circulating multimeric immune complexes contribute to immunopathology in COVID-19. Nat Commun. 2022;13(1):5654. doi: 10.1038/s41467-022-32867-z

220. Petrović T, Vijay A, Vučković F, Trbojević-Akmačić I, Ollivere BJ, Marjanović D, et al. IgG N-glycome changes during the course of severe COVID-19: An observational study. EBioMedicine. 2022;81:104101. doi: 10.1016/j.ebiom.2022.104101

221. Vučković F, Krištić J, Gudelj I, Teruel M, Keser T, Pezer M, et al. Association of systemic lupus erythematosus with decreased immunosuppressive potential of the IgG glycome. Arthritis Rheumatol. 2015;67(11):2978-2989. doi: 10.1002/art.39273

222. Ramos-Martínez I, Ramos-Martínez E, Cerbón M, Pérez-Torres A, Pérez-Campos Mayoral L, Hernández-Huerta MT, et al. The role of B cell and T cell glycosylation in systemic lupus erythematosus. Int J Mol Sci. 2023;24(1):863. doi: 10.3390/ijms24010863

223. Baker KF, Isaacs JD. Novel therapies for immune-mediated inflammatory diseases: What can we learn from their use in rheumatoid arthritis, spondyloarthritis, systemic lupus erythematosus, psoriasis, Crohn’s disease and ulcerative colitis? Ann Rheum Dis. 2018;77(2):175-187. doi: 10.1136/annrheumdis-2017-211555

224. Насонов ЕЛ. Фармакотерапия ревматоидного артрита: новая стратегия, новые мишени. Научно-практическая ревматология. 2017;55(4):409-419. doi: 10.14412/1995-4484-2017-409-419

225. Насонов ЕЛ, Соловьев СК, Аршинов АВ. Системная красная волчанка: история и современность. Научно-практическая ревматология. 2022;60(4):397-412. doi: 10.47360/1995-4484-2022-397-412

226. Murakami N, Hayden R, Hills T, Al-Samkari H, Casey J, Del Sorbo L, et al. Therapeutic advances in COVID-19. Nat Rev Nephrol. 2023;19(1):38-52. doi: 10.1038/s41581-022-00642-4

227. Zhang W, Qin C, Fei Y, Shen M, Zhou Y, Zhang Y, et al. Antiinflammatory and immune therapy in severe coronavirus disease 2019 (COVID-19) patients: An update. Clin Immunol. 2022;239:109022. doi: 10.1016/j.clim.2022.109022

228. Chee YJ, Fan BE, Young BE, Dalan R, Lye DC. Clinical trials on the pharmacological treatment of long COVID: A systematic review. J Med Virol. 2023;95(1):e28289. doi: 10.1002/jmv.28289

229. Lopes LA, Agrawal DK. Thromboembolism in the complications of long COVID-19. Cardiol Cardiovasc Med. 2023;7(2):123-128. doi: 10.26502/fccm.92920317

230. Nicolai L, Kaiser R, Stark K. Thromboinflammation in long COVID – The elusive key to postinfection sequelae? J Thromb Haemost. 2023;21(8):2020-2031. doi: 10.1016/j.jtha.2023.04.039

231. Wang C, Yu C, Jing H, Wu X, Novakovic VA, Xie R, et al. Long COVID: The nature of thrombotic sequelae determines the necessity of early anticoagulation. Front Cell Infect Microbiol. 2022;12:861703. doi: 10.3389/fcimb.2022.861703

232. Xiang M, Jing H, Wang C, Novakovic VA, Shi J. Persistent lung injury and prothrombotic state in long COVID. Front Immunol. 2022;13:862522. doi: 10.3389/fimmu.2022.862522

233. Gyöngyösi M, Alcaide P, Asselbergs FW, Brundel BJJM, Camici GG, Martins PDC, et al. Long COVID and the cardiovascular system-elucidating causes and cellular mechanisms in order to develop targeted diagnostic and therapeutic strategies: A joint Scientific Statement of the ESC Working Groups on Cellular Biology of the Heart and Myocardial and Pericardial Diseases. Cardiovasc Res. 2023;119(2):336-356. doi: 10.1093/cvr/cvac115

234. Eberhardt N, Noval MG, Kaur R, Amadori L, Gildea M, Sajja S, et al. SARS-CoV-2 infection triggers pro-atherogenic inflammatory responses in human coronary vessels. Nat Cardiovasc Res. 2023;2(10):899-916. doi: 10.1038/s44161-023-00336-5

235. Xiang M, Wu X, Jing H, Novakovic VA, Shi J. The intersection of obesity and (long) COVID-19: Hypoxia, thrombotic inflammation, and vascular endothelial injury. Front Cardiovasc Med. 2023;10:1062491. doi: 10.3389/fcvm.2023.1062491

236. Baimukhamedov C, Botabekova A, Lessova Z, Abshenov B, Kurmanali N. Osteonecrosis amid the COVID-19 pandemic. Rheumatol Int. 2023;43(7):1377-1378. doi: 10.1007/s00296-023-05332-3

237. Schrezenmeier E, Dörner T. Mechanisms of action of hydroxychloroquine and chloroquine: Implications for rheumatology. Nat Rev Rheumatol. 2020;16(3):155-66. doi: 10.1038/s41584-020-0372-x

238. Dima A, Jurcut C, Chasset F, Felten R, Arnaud L. Hydroxychloroquine in systemic lupus erythematosus: Overview of current knowledge. Ther Adv Musculoskelet Dis. 2022;14:1759720X211073001. doi: 10.1177/1759720X211073001

239. Tripathy S, Dassarma B, Roy S, Chabalala H, Matsabisa MG. A review on possible modes of action of chloroquine/hydroxychloroquine: Repurposing against SAR-CoV-2 (COVID-19) pandemic. Int J Antimicrob Agents. 2020;56(2):106028. doi: 10.1016/j.ijantimicag.2020.106028

240. Knight JS, Branch DW, Ortel TL. Antiphospholipid syndrome: advances in diagnosis, pathogenesis, and management. BMJ. 2023;380:e069717. doi: 10.1136/bmj-2021-069717

241. Fanouriakis A, Kostopoulou M, Alunno A, Aringer M, Bajema I, Boletis JN, et al. 2019 update of the EULAR recommendations for the management of systemic lupus erythematosus. Ann Rheum Dis. 2019;78(6):736-745. doi: 10.1136/annrheumdis-2019-215089

242. Schmidt-Tanguy A, Voswinkel J, Henrion D, Subra JF, Loufrani L, Rohmer V, et al. Antithrombotic effects of hydroxychloroquine in primary antiphospholipid syndrome patients. J Thromb Haemost. 2013;11(10):1927-1929. doi: 10.1111/jth.12363. PMID: 23902281

243. Schreiber K, Breen K, Parmar K, Rand JH, Wu X-X, Hunt BJ. The effect of hydroxychloroquine on haemostasis, complement, inflammation and angiogenesis in patients with antiphospholipid antibodies. Rheumatology (Oxford). 2018;57(1):120-124. doi: 10.1093/rheumatology/kex378

244. Nuri E, Taraborelli M, Andreoli L, Tonello M, Gerosa M, Calligaro A, et al. Long-term use of hydroxychloroquine reduces antiphospholipid antibodies levels in patients with primary antiphospholipid syndrome. Immunol Res. 2017;65(1):17-24. doi: 10.1007/s12026-016-8812-z

245. Kravvariti E, Koutsogianni A, Samoli E, Sfikakis PP, Tektonidou MG. The effect of hydroxychloroquine on thrombosis prevention and antiphospholipid antibody levels in primary antiphospholipid syndrome: A pilot open label randomized prospective study. Autoimmun Rev. 2020;19(4):102491. doi: 10.1016/j.autrev.2020.102491

246. Erkan D, Unlu O, Sciascia S, Belmont HM, Branch DW, Cuadrado MJ, et al.; APS ACTION. Hydroxychloroquine in the primary thrombosis prophylaxis of antiphospholipid antibody positive patients without systemic autoimmune disease. Lupus. 2018;27(3):399-406. doi: 10.1177/0961203317724219

247. Chighizola CB, Willis R, Maioli G, Sciascia S, Andreoli L, Amengual O, et al. Deciphering the clinical significance of longitudinal antiphospholipid antibody titers. Autoimmun Rev. 2024;23(3):103510. doi: 10.1016/j.autrev.2023.103510

248. Infante M, Ricordi C, Fabbri A. Antihyperglycemic properties of hydroxychloroquine in patients with diabetes: Risks and benefits at the time of COVID-19 pandemic. J Diabetes. 2020;12(9):659-667. doi: 10.1111/1753-0407.13053

249. Wondafrash DZ, Desalegn TZ, Yimer EM, Tsige AG, Adamu BA, Zewdie KA. Potential effect of hydroxychloroquine in diabetes mellitus: A systematic review on preclinical and clinical trial studies. J Diabetes Res. 2020;2020:5214751. doi: 10.1155/2020/5214751

250. Алекберова ЗС, Насонов ЕЛ. Перспективы применения колхицина в медицине: новые данные. Научно-практическая ревматология. 2020;58(2):183-190. doi: 10.14412/1995-4484-2020-183-190

251. Casey A, Quinn S, McAdam B, Kennedy M, Sheahan R. Colchicine-regeneration of an old drug. Ir J Med Sci. 2023;192(1):115-123. doi: 10.1007/s11845-022-02938-7

252. Bonaventura A, Vecchié A, Dagna L, Tangianu F, Abbate A, Dentali F. Colchicine for COVID-19: targeting NLRP3 inflammasome to blunt hyperinflammation. Inflamm Res. 2022;71(3):293-307. doi: 10.1007/s00011-022-01540-y

253. Drosos AA, Pelechas E, Drossou V, Voulgari PV. Colchicine against SARS-CoV-2 infection: What is the evidence? Rheumatol Ther. 2022;9(2):379-389. doi: 10.1007/s40744-022-00425-0

254. Nelson K, Fuster V, Ridker PM. Low-dose colchicine for secondary prevention of coronary artery disease: JACC review topic of the week. J Am Coll Cardiol. 2023;82(7):648-660. doi: 10.1016/j.jacc.2023.05.055

255. Ebrahimi F, Hirt J, Schönenberger C, Ewald H, Briel M, Janiaud P, et al. Colchicine for the secondary prevention of cardiovascular events. Cochrane Database Syst Rev. 2023;2023(8):CD014808. doi: 10.1002/14651858.CD014808

256. Li W, Lin A, Hutton M, Dhaliwal H, Nadel J, Rodor J. Colchicine promotes atherosclerotic plaque stability independently of inflammation. bioRxiv. 2023.10.03.560632. doi: 10.1101/2023.10.03.560632

257. Deftereos SG, Beerkens FJ, Shah B, Giannopoulos G, Vrachatis DA, Giotaki SG, et al. Colchicine in cardiovascular disease: In-depth review. Circulation. 2022;145(1):61-78. doi: 10.1161/CIRCULATIONAHA.121.056171

258. Furqan MM, Verma BR, Cremer PC, Imazio M, Klein AL. Pericardial diseases in COVID19: a contemporary review. Curr Cardiol Rep. 2021;23(7):90. doi: 10.1007/s11886-021-01519-x

259. Насонов ЕЛ, Сукмарова ЗН, Попкова ТВ, Белов БС. Проблемы иммунопатологии и перспективы фармакотерапии идиопатического рецидивирующего перикардита: применение ингибитора интерлейкина 1 (Анакинра). Научно-практическая ревматология. 2023;61(1):47-61. doi: 10.47360/1995-4484-2023-47-61

260. Dini FL, Baldini U, Bytyçi I, Pugliese NR, Bajraktari G, Henein MY. Acute pericarditis as a major clinical manifestation of long COVID-19 syndrome. Int J Cardiol. 2023;374:129-134. doi: 10.1016/j.ijcard.2022.12.019

261. Di Dedda EA, Barison A, Aquaro GD, Ismail TF, Hua A, Mantini C, et al. Cardiac magnetic resonance imaging of myocarditis and pericarditis following COVID-19 vaccination: A multicenter collection of 27 cases. Eur Radiol. 2022;32(7):4352-4360. doi: 10.1007/s00330-022-08566-0

262. Buckley BJR, Harrison SL, Fazio-Eynullayeva E, Underhill P, Lane DA, Lip GYH. Prevalence and clinical outcomes of myocarditis and pericarditis in 718,365 COVID-19 patients. Eur J Clin Invest. 2021;51(11):e13679. doi: 10.1111/eci.13679

263. Gao J, Feng L, Li Y, Lowe S, Guo Z, Bentley R, et al. A systematic review and meta-analysis of the association between SARSCoV-2 vaccination and myocarditis or pericarditis. Am J Prev Med. 2023;64(2):275-284. doi: 10.1016/j.amepre.2022.09.002

264. Li P, Shi A, Lu X, Li C, Cai P, Teng C, et al. Incidence and impact of acute pericarditis in hospitalized patients with COVID-19. J Am Heart Assoc. 2023;12(20):e028970. doi: 10.1161/JAHA.122.028970

265. Shi S, Qin M, Shen B, Cai Y, Liu T, Yang F, et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol. 2020;5(7):802-810. doi: 10.1001/jamacardio.2020.0950

266. Imazio M, Nidorf M. Colchicine and the heart. Eur Heart J. 2021;42(28):2745-2760. doi: 10.1093/eurheartj/ehab221

267. Yeh JJ, Hung TW, Lin CL, Chen TT, Liw PX, Yu YL, et al. Colchicine is a weapon for managing the heart disease among interstitial lung disease with viral infection: Have we found the Holy Grail? Front Cardiovasc Med. 2022;9:925211. doi: 10.3389/fcvm.2022.925211

268. Avci AB, Feist E, Burmester GR. Targeting IL-6 or IL-6 receptor in rheumatoid arthritis: What have we learned? BioDrugs. 2024;38:61-71. doi: 10.1007/s40259-023-00634-1

269. Kishimoto T, Kang S. IL-6 revisited: From rheumatoid arthritis to CAR T cell therapy and COVID-19. Annu Rev Immunol. 2022;40:323-348. doi: 10.1146/annurev-immunol-101220-023458

270. Feist E, Nasonov E. Interleukin 6 inhibition in rheumatoid arthritis: Highlight on olokizumab. Rheumatology. 2023;2(1):17-27. doi: 10.17925/RMD.2023.2.1.17

271. Насонов ЕЛ. Иммунопатология и иммунофармакотерапия коронавирусной болезни 2019 (COVID-19): Фокус на интерлейкин 6. Научно-практическая ревматология. 2020;58(3):245-261. doi: 10.14412/1995-4484-2020-245-261

272. Nasonov E, Samsonov M. The role of interleukin 6 inhibitors in therapy of severe COVID-19. Biomed Pharmacother. 2020;131:110698. doi: 10.1016/j.biopha.2020.110698

273. Leisman DE, Ronner L, Pinotti R, Taylor MD, Sinha P, Calfee CS, et al. Cytokine elevation in severe and critical COVID-19: A rapid systematic review, meta-analysis, and comparison with other inflammatory syndromes. Lancet Respir Med. 2020;8(12):1233-1244. doi: 10.1016/S2213-2600(20)30404-5

274. Yin JX, Agbana YL, Sun ZS, Fei SW, Zhao HQ, Zhou XN, et al. Increased interleukin-6 is associated with long COVID-19: A systematic review and meta-analysis. Infect Dis Poverty. 2023;12(1):43. doi: 10.1186/s40249-023-01086-z

275. Espín E, Yang C, Shannon CP, Assadian S, He D, Tebbutt SJ. Cellular and molecular biomarkers of long COVID: A scoping review. EBioMedicine. 2023;91:104552. doi: 10.1016/j.ebiom.2023.104552

276. Schultheiß C, Willscher E, Paschold L, Gottschick C, Klee B, Henkes SS, et al. The IL-1β, IL-6, and TNF cytokine triad is associated with post-acute sequelae of COVID-19. Cell Rep Med. 2022;3(6):100663. doi: 10.1016/j.xcrm.2022.100663

277. Phetsouphanh C, Darley DR, Wilson DB, Howe A, Munier CML, Patel SK, et al. Immunological dysfunction persists for 8 months following initial mild-to-moderate SARSCoV-2 infection. Nat Immunol. 2022;23(2):210-216. doi: 10.1038/s41590-021-01113-x

278. Sunzini F, Schrepf A, Clauw DJ, Basu N. The biology of pain: Through the rheumatology lens. Arthritis Rheumatol. 2023;75(5):650-660. doi: 10.1002/art.42429.

279. Лисицына ТА, Вельтищев ДЮ, Лила АМ, Насонов ЕЛ. Интерлейкин 6 как патогенетический фактор, опосредующий формирование клинических проявлений, и мишень для терапии ревматических заболеваний и депрессивных расстройств. Научно-практическая ревматология. 2019;57(3):318-327. doi: 10.14412/1995-4484-2019-318-327

280. Atzeni F, Nucera V, Masala IF, Sarzi-Puttini P, Bonitta G. Il-6 Involvement in pain, fatigue and mood disorders in rheumatoid arthritis and the effects of Il-6 inhibitor sarilumab. Pharmacol Res. 2019;149:104402. doi: 10.1016/j.phrs.2019.104402

281. Zhou YQ, Liu Z, Liu ZH, Chen SP, Li M, Shahveranov A, et al. Interleukin-6: An emerging regulator of pathological pain. J Neuroinflammation. 2016;13(1):141. doi: 10.1186/s12974-016-0607-6

282. Kappelmann N, Dantzer R, Khandaker GM. Interleukin-6 as potential mediator of long-term neuropsychiatric symptoms of COVID-19. Psychoneuroendocrinology. 2021;131:105295. doi: 10.1016/j.psyneuen.2021.105295

283. PHOSP-COVID Collaborative Group. Clinical characteristics with inflammation profiling of long COVID and association with 1-year recovery following hospitalisation in the UK: A prospective observational study. Lancet Respir Med. 2022;10(8):761-775. doi: 10.1016/S2213-2600(22)00127-8

284. Visvabharathy L, Orban ZS, Koralnik IJ. Case report: Treatment of long COVID with a SARS-CoV-2 antiviral and IL-6 blockade in a patient with rheumatoid arthritis and SARS-CoV-2 antigen persistence. Front Med (Lausanne). 2022;9:1003103. doi: 10.3389/fmed.2022.1003103

285. Tyrrell DJ, Goldstein DR. Ageing and atherosclerosis: vascular intrinsic and extrinsic factors and potential role of IL-6. Nat Rev Cardiol. 2021;18(1):58-68. doi: 10.1038/s41569-020-0431-7

286. Su JH, Luo MY, Liang N, Gong SX, Chen W, Huang WQ, et al. Interleukin-6: A novel target for cardio-cerebrovascular diseases. Front Pharmacol. 2021;12:745061. doi: 10.3389/fphar.2021.745061

287. Libby P. Targeting inflammatory pathways in cardiovascular disease: The inflammasome, interleukin-1, interleukin-6 and beyond. Cells. 2021;10(4):951. doi: 10.3390/cells10040951

288. Ridker PM, Rane M. Interleukin-6 signaling and anti-interleukin-6 therapeutics in cardiovascular disease. Circ Res. 2021;128(11):1728-1746. doi: 10.1161/CIRCRESAHA.121.319077

289. Ridker PM, Devalaraja M, Baeres FMM, Engelmann MDM, Hovingh GK, Ivkovic M, et al.; RESCUE Investigators. IL-6 inhibition with ziltivekimab in patients at high atherosclerotic risk (RESCUE): a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet. 2021;397(10289):2060-2069. doi: 10.1016/S0140-6736(21)00520-1

290. Wada Y, Jensen C, Meyer ASP, Zonoozi AAM, Honda H. Efficacy and safety of interleukin-6 inhibition with ziltivekimab in patients at high risk of atherosclerotic events in Japan (RESCUE-2): A randomized, double-blind, placebo-controlled, phase 2 trial. J Cardiol. 2023;82(4):279-285. doi: 10.1016/j.jjcc.2023.05.006

291. Toraldo DM, Satriano F, Rollo R, Verdastro G, Imbriani G, Rizzo E, et al. COVID-19 IgG/IgM patterns, early IL-6 elevation and long-term radiological sequelae in 75 patients hospitalized due to interstitial pneumonia followed up from 3 to 12 months. PLoS One. 2022;17(2):e0262911. doi: 10.1371/journal.pone.0262911

292. Lee JH, Jang JH, Park JH, Jang HJ, Park CS, Lee S, et al. The role of interleukin-6 as a prognostic biomarker for predicting acute exacerbation in interstitial lung diseases. PLoS One. 2021;16(7):e0255365. doi: 10.1371/journal.pone.0255365

293. Ma C, Meng K, Shi S, Zhao T, Chen S, Zhou X, et al. Clinical significance of interleukin-6, total bilirubin, CD3+CD4+T cells counts in the acute exacerbation of connective tissue diseaseassociated interstitial lung disease: A cross-sectional study. Eur J Med Res. 2023;28(1):393. doi: 10.1186/s40001-023-01384-0

294. Насонов ЕЛ, Ананьева ЛП, Авдеев СН. Интерстициальные заболевания легких при ревматоидном артрите: мультидисциплинарная проблема ревматологии и пульмонологии. Научно-практическая ревматология. 2022;60(6):517-534. doi: 10.47360/1995-4484-2022-1

295. Khanna D, Lin CJF, Furst DE, Wagner B, Zucchetto M,Raghu G, et al. Long-term safety and efficacy of tocilizumab in early systemic sclerosis-interstitial lung disease: Open-label extension of a phase 3 randomized controlled trial. Am J Respir Crit Care Med. 2022;205(6):674-684. doi: 10.1164/rccm.202103-0714OC

296. Cutolo M, Smith V, Paolino S, Gotelli E. Involvement of the secosteroid vitamin D in autoimmune rheumatic diseases and COVID-19. Nat Rev Rheumatol. 2023;19(5):265-287. doi: 10.1038/s41584-023-00944-2

297. Dissanayake HA, de Silva NL, Sumanatilleke M, de Silva SDN, Gamage KKK, Dematapitiya C, et al. Prognostic and therapeutic role of vitamin D in COVID-19: Systematic review and metaanalysis. J Clin Endocrinol Metab. 2022;107(5):1484-1502. doi: 10.1210/clinem/dgab892

298. Oristrell J, Oliva JC, Subirana I, Casado E, Domínguez D, Toloba A, et al. Association of calcitriol supplementation with reduced COVID-19 mortality in patients with chronic kidney disease: A population-based study. Biomedicines. 2021;9(5):509. doi: 10.3390/biomedicines9050509

299. Villasis-Keever MA, López-Alarcón MG, Miranda-Novales G, Zurita-Cruz JN, Barrada-Vázquez AS, González-Ibarra J, et al. Efficacy and safety of vitamin D supplementation to prevent COVID-19 in frontline healthcare workers. A randomized clinical trial. Arch Med Res. 2022;53(4):423-430. doi: 10.1016/j.arcmed.2022.04.003

300. Hahn J, Cook NR, Alexander EK, Friedman S, Walter J, Bubes V, et al. Vitamin D and marine omega 3 fatty acid supplementation and incident autoimmune disease: VITAL randomized controlled trial. BMJ. 2022;376:e066452. doi: 10.1136/bmj-2021-066452

301. Achleitner M, Steenblock C, Dänhardt J, Jarzebska N, Kardashi R, Kanczkowski W, et al. Clinical improvement of Long-COVID is associated with reduction in autoantibodies, lipids, and inflammation following therapeutic apheresis. Mol Psychiatry. 2023;28(7):2872-2877. doi: 10.1038/s41380-023-02084-1

302. Curtis JR, Johnson SR, Anthony DD, Arasaratnam RJ, Baden LR, Bass AR, et al. American College of Rheumatology guidance for COVID-19 vaccination in patients with rheumatic and musculoskeletal diseases: Version 5. Arthritis Rheumatol. 2023;75(1):E1-E16. doi: 10.1002/art.42372

303. Насонов ЕЛ, Лила АМ, Мазуров ВИ, Белов БС, Каратеев АЕ, Дубинина ТВ, и др. Коронавирусная болезнь 2019 (COVID-19) и иммуновоспалительные ревматические заболевания. Рекомендации Общероссийской общественной организации «Ассоциация ревматологов России». Научно-практическая ревматология. 2021;59(3):239-254. doi: 10.47360/1995-4484-2021-239-254

304. van Sleen Y, van der Geest KSM, Huckriede ALW, van Baarle D, Brouwer E. Effect of DMARDs on the immunogenicity of vaccines. Nat Rev Rheumatol. 2023;19(9):560-575. doi: 10.1038/s41584-023-00992-8

305. Hansen N. Psychiatric symptoms in acute and persisting forms of COVID-19 associated with neural autoantibodies. Antibodies (Basel). 2023;12(3):49. doi: 10.3390/antib12030049

306. Seibert FS, Stervbo U, Wiemers L, Skrzypczyk S, Hogeweg M, Bertram S, et al. Severity of neurological long-COVID symptoms correlates with increased level of autoantibodies targeting vasoregulatory and autonomic nervous system receptors. Autoimmun Rev. 2023;22(11):103445. doi: 10.1016/j.autrev.2023.103445

307. Feng A, Yang EY, Moore AR, Dhingra S, Chang SE, Yin X, et al. Autoantibodies are highly prevalent in non-SARS-CoV-2 respiratory infections and critical illness. JCI Insight. 2023;8(3):e163150. doi: 10.1172/jci.insight.163150

308. Bodansky A, Wang CY, Saxena A, Mitchell A, Kung AF, Takahashi S, et al. Autoantigen profiling reveals a shared post-COVID signature in fully recovered and long COVID patients. JCI Insight. 2023;8(11):e169515. doi: 10.1172/jci.insight.169515

309. Jiang W, Johnson D, Adekunle R, Heather H, Xu W, Cong X, et al. COVID-19 is associated with bystander polyclonal autoreactive B cell activation as reflected by a broad autoantibody production, but none is linked to disease severity. J Med Virol. 2023;95(1):e28134. doi: 10.1002/jmv.28134

310. Lebedin M, García CV, Spatt L, Ratswohl C, Thibeault C, Ostendorf L, et al. Discriminating promiscuous from target-specific autoantibodies in COVID-19. Eur J Immunol. 2023;53(5):e2250210. doi: 10.1002/eji.202250210

311. Skevaki C, Wesemann DR. Antibody repertoire and autoimmunity. J Allergy Clin Immunol. 2023;151(4):898-900. doi: 10.1016/j.jaci.2023.0

312. Carlton LH, McGregor R, Moreland NJ. Human antibody profiling technologies for autoimmune disease. Immunol Res. 2023;71(4):516-527. doi: 10.1007/s12026-023-09362-8

313. Bordeaux J, Welsh A, Agarwal S, Killiam E, Baquero M, Hanna J, et al. Antibody validation. Biotechniques. 2010;48(3):197-209. doi: 10.2144/000113382

314. Sack U, Bossuyt X, Andreeva H, Antal-Szalmás P, Bizzaro N, Bogdanos D, et al.; European Autoimmunity Standardisation Initiative. Quality and best practice in medical laboratories: Specific requests for autoimmunity testing. Auto Immun Highlights. 2020;11(1):12. doi: 10.1186/s13317-020-00134-0

315. Fritzler MJ, Choi MY, Satoh M, Mahler M. Autoantibody discovery, assay development and adoption: Death valley, the sea of survival and beyond. Front Immunol. 2021;12:679613. doi: 10.3389/fimmu.2021.679613

316. Treger RS, Fink SL. Beyond titer: Expanding the scope of clinical autoantibody testing. J Appl Lab Med. 2022;7(1):99-113. doi: 10.1093/jalm/jfab123

317. Seeling M, Brückner C, Nimmerjahn F. Differential antibody glycosylation in autoimmunity: Sweet biomarker or modulator of disease activity? Nat Rev Rheumatol. 2017;13(10):621-630. doi: 10.1038/nrrheum.2017.146

318. Simpson S, Kaufmann MC, Glozman V, Chakrabarti A. Disease X: Accelerating the development of medical countermeasures for the next pandemic. Lancet Infect Dis. 2020;20(5):e108-e115. doi: 10.1016/S1473-3099(20)30123-7


Рецензия

Для цитирования:


Насонов Е.Л. Пандемия коронавирусной болезни 2019 (COVID-19) и аутоиммунные ревматические заболевания: итоги и перспективы. Научно-практическая ревматология. 2024;62(1):32-54. https://doi.org/10.47360/1995-4484-2024-32-54

For citation:


Nasonov E.L. Coronavirus disease 2019 (COVID-19) pandemic and autoimmune rheumatic diseases: Outcomes and prospects. Rheumatology Science and Practice. 2024;62(1):32-54. (In Russ.) https://doi.org/10.47360/1995-4484-2024-32-54

Просмотров: 989


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1995-4484 (Print)
ISSN 1995-4492 (Online)