Immunophenotypes of systemic lupus erythematosus – features of clinical and laboratory disorders
https://doi.org/10.47360/1995-4484-2024-394-401
Abstract
The aim – to evaluate subpopulations of B lymphocytes and features of interferon (IFN) status in patients with systemic lupus erythematosus (SLE), to clarify the relationship of immunological parameters with clinical manifestations of the disease
Material and methods. 139 patients (123 (88%) women and 16 (12%) men) with a definite diagnosis of SLE were included in the analysis. The disease duration was 3.0 [0.3; 12.0] years, SLEDAI-2K (Systemic Lupus Erythematosus Disease Activity Index 2000) – 7 [4; 11] points, SDI (Systemic Lupus International Collaborating Clinics Damage Index) – 0 [0; 1] points. Immunophenotyping of peripheral blood lymphocytes, including determination of B cells, the general population of memory B cells, non-switched and switched memory B cells, naive, transient B cells, and plasmablasts was carried out using multicolor flow cytometry. IFN status was assessed by the expression of IFN-stimulated genes (MX1, RSAD2, EPSTI1) using real-time polymerase chain reaction
Results. Two immunological “patterns” were identified – the prevailing immunological mechanism of the pathogenesis of the disease – SLE – with predominant activation of type I IFN and with predominant activation of the B cell component of the immune system. The immunological phenotype with activation of type I IFN was associated with high immunological activity, predominant skin damage, leukopenia, and the phenotype with predominant activation of the B cell link was associated with damage to the kidneys and nervous system.
Conclusion. The results of the work suggest a wide variety of immune mechanisms underlying the pathogenesis of SLE. It is possible to identify a number of leading molecular “patterns” of the pathogenesis of the disease, which must be taken into account to select an effective “targeted” drug.
About the Authors
Anastasia S. AvdeevaRussian Federation
115522, Moscow, Kashirskoye Highway, 34A
Andrey P. Aleksankin
Russian Federation
115522, Moscow, Kashirskoye Highway, 34A
117418, Moscow, Tsyuryupy str., 3
Elena V. Tchetina
Russian Federation
115522, Moscow, Kashirskoye Highway, 34A
Yu. N. Gorbunova
Russian Federation
115522, Moscow, Kashirskoye Highway, 34A
Tatiana V. Popkova
Russian Federation
115522, Moscow, Kashirskoye Highway, 34A
Galina A. Markova
Russian Federation
115522, Moscow, Kashirskoye Highway, 34A
Tatiana A. Panafidina
Russian Federation
115522, Moscow, Kashirskoye Highway, 34A
Evgeny L. Nasonov
Russian Federation
115522, Moscow, Kashirskoye Highway, 34A
119991, Moscow, Trubetskaya str., 8, building 2
References
1. Nasonov EL, Soloviev SK, Arshinov AV. Systemic lupus erythematosus: History and modernity. Nauchno-Prakticheskaya Revmatologia = Rheumatology Science and Practice. 2022;60(4):397-412 (In Russ.)]. doi: 10.47360/1995-4484-2022-397-412
2. Tsokos GC. Systemic lupus erythematosus. N Engl J Med. 2011;365:2110-2121. doi: 10.1056/NEJMra1100359
3. Kubo S, Nakayamada S, Yoshikawa M, Miyazaki Y, Sakata K, Nakano K, et al. Peripheral immunophenotyping identifies three subgroups based on T cell heterogeneity in lupus patients. Arthritis Rheumatol. 2017;69(10):2029-2037. doi: 10.1002/art.40180
4. Tipton CM, Fucile CF, Darce J, Chida A, Ichikawa T. Diversity, cellular origin and autoreactivity of antibody-secreting cell population expansions in acute systemic lupus erythematosus. Nat Immunol. 2015;16(7):755-765. doi: 10.1038/ni.3175
5. Iwata S, Tanaka Y. B-cell subsets, signaling and their roles in secretion of autoantibodies. Lupus. 2016;25(8):850-856. doi: 10.1177/0961203316643172
6. Tanaka Y, Kubo S, Iwata S, Yoshikawa M, Nakayamada S. B cell phenotypes, signaling and their roles in secretion of antibodies in systemic lupus erythematosus. Clin Immunol. 2018:186:21-25. doi: 10.1016/j.clim.2017.07.010
7. Longhi MP, Trumpfheller C, Idoyaga J, Caskey M, Matos I, Kluger C, et al. Dendritic cells require a systemic type I interferon response to mature and induce CD4+ Th1 immunity with poly IC as adjuvant. J Exp Med. 2009;206(7):1589-602. doi: 10.1084/jem.20090247
8. Le Bon A, Thompson C, Kamphuis E, Durand V, Rossmann C, Kalinke U, et al. Cutting edge: Enhancement of antibody responses through direct stimulation of B and T cells by type I IFN. J Immunol. 2006;176(4):2074-2078. doi: 10.4049/jimmunol.176.4.2074
9. Baechler EC, Batliwalla FM, Karypis G, Gaffney PM, Ortmann WA, Espe KJ, et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci U S A. 2003;100(5):2610-2615. doi: 10.1073/pnas.0337679100
10. Nasonov EL, Avdeeva AS. Immunoinflammatory rheumatic diseases associated with type I interferon: New evidence. Nauchno-Prakticheskaya Revmatologia = Rheumatology Science and Practice. 2019;57(4):452-461 (In Russ.)]. doi: 10.14412/1995-4484-2019-452-461
11. Suponitskaya EV, Aleksankin AP, Mesnyankina AA, Alexandrova EN, Panafidina TA, Soloviev SK. The characteristic of sub-populations of B-lymphocytes of peripheral blood in patients with systemic lupus erythematosus. Russian Clinical Laboratory Diagnostics. 2017;62(7):418-422 (In Russ.). doi: 10.18821/0869-2084-2017-62-7-418-422
12. Suponitskaya EV, Aleksankin AP, Mesnyankina AA, Panafidina TA, Soloviev SK, Aleksandrova EN, et al. Association of increased friquencies of peripheral blood double-negative (IgD-CD27-) В-cell subset with disease activity in systemic lupus erythematosus. Medical Alphabet. 2016;19:27-28 (In Russ.)].
13. Mesnyankina AA, Solovyev SK, Aleksandrova EN, Aleksankin AP, Suponitskaya EV, Elonakov AV, et al. The time course of changes in B lymphocyte subpopulations in patients with systemic lupus erythematosus during therapy with biological agents. Nauchno-Prakticheskaya Revmatologia = Rheumatology Science and Practice. 2017;55(3):252-260 (In Russ.)]. doi: 10.14412/1995-4484-2017-252-260
14. Rodríguez-Bayona B, Ramos-Amaya A, Pérez-Venegas JJ, Rodríguez C, Brieva JA, Decreased frequency and activated phenotype of blood CD27 IgD IgM B lymphocytes is a permanent abnormality in systemic lupus erythematosus patients. Arthritis Res Ther. 2010;12(3):108. doi: 10.1186/ar3042
15. Ma K, Li J, Wang X, Lin X, Du W. TLR4+CXCR4+ plasma cells drive nephritis development in systemic lupus erythematosus. Ann Rheum Dis. 2018;77(10):1498-1506. doi: 10.1136/annrheumdis-2018-213615
16. Jacobi AM, Mei H, Hoyer BF, Mumtaz IM, Thiele K. HLADRhigh/CD27high plasmablasts indicate active disease in patients with systemic lupus erythematosus. Ann Rheum Dis. 2010;69(1):305-308. doi: 10.1136/ard.2008.096495
17. Toro -Domínguez D, Martorell-Marugán J, Goldman D, Petri M, Carmona-Sáez P, Alarcón-Riquelme ME. Stratification of systemic lupus erythematosus patients into three groups of disease activity progression according to longitudinal gene expression. Arthritis Rheumatol. 2018;70(12):2025-2035. doi: 10.1002/art.40653
18. Petri M, Orbai AM, Alarcón GS, Gordon C, Merrill JT, Fortin PR, et al. Derivation and validation of the systemic lupus international collaborating clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum. 2012;64(8):2677-2686. doi: 10.1002/art.34473
19. Miyakis S, Lockshin MD, Atsumi T, Branch DW, Brey RL, Cervera R, et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J Thromb Haemost. 2006;4(2):295-306. doi: 10.1111/j.1538-7836.2006.01753.x
20. Nasonov EL (ed.). Russian clinical guidelines. Rheumatology. Moscow:GEOTARMedia;2017 (In Russ.)].
21. Gladman DD, Ibanez D, Urowitz MB. Systemic lupus erythematosus disease activity index 2000. J Rheumatol. 2002;29:288-291.
22. Gladman D, Ginzler E, Goldsmith C, Fortin P, Liang M, Urowitz M, et al. The development and initial validation of the Systemic Lupus International Collaborating Clinics/American College of Rheumatology damage index for systemic lupus erythematosus. Arthritis Rheum. 1996;39(3):363-369. doi: 10.1002/art.1780390303
23. Banchereau R, Hong S, Cantarel B, Baldwin N, Baisch J, Edens M, et al. Personalized immunomonitoring uncovers molecular networks that stratify lupus patients. Cell. 2016;165(3):551-565. doi: 10.1016/j.cell.2016.03.008
24. Guthridge JM, Wagner CA, James JA. The promise of precision medicine in rheumatology. Nat Med. 2022;28(7):1363-1371. doi: 10.1038/s41591-022-01880-6
25. Bengtsson AA, Rönnblom L. Role of interferons in SLE. Best Pract Res Clin Rheumatol. 2017;31(3):415-428. doi: 10.1016/j.berh.2017.10.0
26. Eloranta ML, Rönnblom L. Cause and consequences of the activated type I interferon system in SLE. J Mol Med (Berl). 2016;94(10):1103-1110. doi: 10.1007/s00109-016-1421-4
27. Weckerle CE, Franek BS, Kelly JA, Kumabe M, Mikolaitis RA, Green SL, et al. Network analysis of associations between serum interferon-α activity, autoantibodies, and clinical features in systemic lupus erythematosus. Arthritis Rheum. 2011;63(4):1044-1053. doi: 10.1002/art.30187
28. Nakayamada S, Tanaka Y. Immune phenotype as a biomarker for systemic lupus erythematosus. Biomolecules. 2023;13(6):960. doi: 10.3390/biom13060960
29. Kosalka J, Jakiela B, Musial J. Changes of memory B- and T-cell subsets in lupus nephritis patients. Folia Histochem Cytobiol. 2016;54(1):32-41. doi: 10.5603/FHC.a2016.0005
30. Nakayamada S, Iwata S, Tanaka Y. Relevance of lymphocyte subsets to B cell targeted therapy in systemic lupus erythematosus. Int J Rheum Dis. 2015;18(2):208-218. doi: 10.1111/1756-185X.12534.18
31. Zhu L, Yin Z, Ju B, Zhang J, Wang Y, Lv X, et al. Altered frequencies of memory B cells in new-onset systemic lupus erythematosus patients. Clin Rheumatol. 2018;37(1):205-212. doi: 10.1007/s10067-017-3877-1
Review
For citations:
Avdeeva A.S., Aleksankin A.P., Tchetina E.V., Gorbunova Yu.N., Popkova T.V., Markova G.A., Panafidina T.A., Nasonov E.L. Immunophenotypes of systemic lupus erythematosus – features of clinical and laboratory disorders. Rheumatology Science and Practice. 2024;62(4):394–401. (In Russ.) https://doi.org/10.47360/1995-4484-2024-394-401