Appendicular lean mass in women with rheumatoid arthritis: Focus on immunological markers
https://doi.org/10.47360/1995-4484-2024-529-534
Abstract
Aim – to evaluate the association among appendicular lean mass and immunological markers of blood serum in women with rheumatoid arthritis (RA).
Material and methods. 200 women with RA (median age – 60.0 [52.5; 65.5] years) were enrolled in the study. Using dual-energy X-ray absorptiometry appendicular lean mass (ALM) was measured to determine the sarcopenic phenotype of body composition. The assessment of C-reactive protein (CRP), rheumatoid factor, and antibodies to cyclic citrullinated peptide was also performed. The levels of serum myostatin, follistatin, interleukin 6 (IL-6), IL-6 receptors, insulin-like growth factor 1 (IGF-1), adiponectin, leptin, fibroblast growth factor 23 (FGF23), tumor necrosis factor SF12 (superfamily member 12) were studied in 87 patients.
Results. According to the presence of the sarcopenic phenotype the patients differed in the levels of CRP (8.6 [1.3; 22.2] and 5.6 [1.2; 17.4] mg/l, respectively; p=0.041) and leptin (3.8 [2.4; 5.7] and 5.4 [3.8; 6.9] ng/ml, respectively; p=0.030). ALM correlated with the levels of CRP, follistatin and leptin. Linear multivariate regression analysis revealed the association between ALM index and follistatin (β=–0.35; p=0.007), IGF1 (β=–0.38; p=0.002), leptin (β=0.36; p=0.004) and FGF23 (β=0.33; p=0.008).
Conclusion. The study showed that there is an association between the lean mass and the level of follistatin, IGF-1, leptin and FGF23 in patients with RA.
About the Authors
O. V. DobrovolskayaRussian Federation
Olga Dobrovolskaya
115522, Russian Federation, Moscow, Kashirskoye Highway, 34A
N. V. Demin
Russian Federation
115522, Russian Federation, Moscow, Kashirskoye Highway, 34A
A. Yu. Feklistov
Russian Federation
115522, Russian Federation, Moscow, Kashirskoye Highway, 34A
M. E. Diatroptov
Russian Federation
115522, Russian Federation, Moscow, Kashirskoye Highway, 34A
E. Yu. Samarkina
Russian Federation
115522, Russian Federation, Moscow, Kashirskoye Highway, 34A
N. V. Toroptsova
Russian Federation
115522, Russian Federation, Moscow, Kashirskoye Highway, 34A
References
1. Rosenberg I. Summary comments. Am J Clin Nutr. 1989;50:1231-1233. doi: 10.1093/ajcn/50.5.1231
2. Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: Preferred definitions and conceptual frame-work. Clin Pharmacol Ther. 2001;69:89-95. doi: 10.1067/mcp.2001.113989
3. Ladang A, Beaudart C, Reginster JY, Al-Daghri N, Bruyère O, Burlet N, et al. Biochemical markers of musculoskeletal health and aging to be assessed in clinical trials of drugs aiming at the treatment of sarcopenia: Consensus paper from an Expert Group Meeting organized by the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO) and the Centre Académique de Recherche et d’Expérimentation en Santé (CARES SPRL), under the Auspices of the World Health Organization Collaborating Center for the Epidemiology of Musculoskeletal Conditions and Aging. Calcif Tissue Int. 2023;112:197-217. doi: 10.1007/s00223-022-01054-z
4. Ko DS, Kim YH, Goh TS, Lee JS. Altered physiology of mesenchymal stem cells in the pathogenesis of adolescent idiopathic scoliosis. World J Clin Cases. 2020;8(11):2102-2110. doi: 10.12998/wjcc.v8.i11.2102
5. Baker JF, England BR, George MD, Wysham K, Johnson T, Kunkel G, et al. Elevations in adipocytokines and mortality in rheumatoid arthritis. Rheumatology (Oxford). 2022;61(12):4924-4934. doi: 10.1093/rheumatology/keac191
6. Ngeuleu A, Allali F, Medrare L, Madhi A, Rkain H, Hajjaj-Hassouni N. Sarcopenia in rheumatoid arthritis: Prevalence, influence of disease activity and associated factors. Rheumatol Int. 2017;37(6):1015-1020. doi: 10.1007/s00296-017-3665-x
7. Müller R, Kull M, Põlluste K, Valner A, Lember M, Kallikorm R. Factors associated with low lean mass in early rheumatoid arthritis: A cross-sectional study. Medicina (Kaunas). 2019;55(11):730. doi: 10.3390/medicina55110730
8. Dietzel R, Wiegmann S, Borucki D, Detzer C, Zeiner KN, Schaumburg D, et al. Prevalence of sarcopenia in patients with rheumatoid arthritis using the revised EWGSOP2 and the FNIH definition. RMD Open. 2022;8(2):e002600. doi: 10.1136/rmdopen-2022-002600
9. Navarro-Ibarra MJ, Saucedo-Tamayo MDS, Alemán-Mateo H, Parra-Sánchez H, Othón-Ontiveros P, Hernández J, et al. Association between interleukin 6 and C-reactive protein serum levels and body composition compartments and components in breast cancer survivors. Biol Res Nurs. 2024;26(2):231-239. doi: 10.1177/10998004231207022
10. Wu X, Li X, Xu M, Zhang Z, He L, Li Y. Sarcopenia prevalence and associated factors among older Chinese population: Findings from the China Health and Retirement Longitudinal Study. PLoS One. 2021;16(3):e0247617. doi: 10.1371/journal.pone.0247617
11. Morawin B, Tylutka A, Bielewicz F, Zembron-Lacny A. Diagnostics of inflammaging in relation to sarcopenia. Front Public Health. 2023;11:1162385. doi: 10.3389/fpubh.2023.1162385
12. Safonova YuA. Serological markers of sarcopenia in ages 65 and over. The Clinician. 2023;17(4):19-26 (In Russ.). doi: 10.17650/1818-8338-2023-17-4-K687
13. Lee SJ, Lee YS, Zimmers TA, Soleimani A, Matzuk MM, Tsuchida K, et al. Regulation of muscle mass by follistatin and activins. Mol Endocrinol. 2010;24(10):1998-2008. doi: 10.1210/me.2010-0127
14. Bergen HR 3rd, Farr JN, Vanderboom PM, Atkinson EJ, White TA, Singh RJ, et al. Myostatin as a mediator of sarcopenia versus homeostatic regulator of muscle mass: Insights using a new mass spectrometry-based assay. Skelet Muscle. 2015;5:21. doi: 10.1186/s13395-015-0047-5
15. Maïmoun L, Mura T, Attalin V, Dupuy AM, Cristol JP, Avignon A, et al. Modification of muscle-related hormones in women with obesity: Potential impact on bone metabolism. J Clin Med. 2020;9(4):1150. doi: 10.3390/jcm9041150
16. White TA, LeBrasseur NK. Myostatin and sarcopenia: Opportunities and challenges – A mini-review. Gerontology. 2014;60(4):289-293. doi: 10.1159/000356740
17. Nakashima M, Toyono T, Akamine A, Joyner A. Expression of growth/differentiation factor 11, a new member of the BMP/TGFbeta superfamily during mouse embryogenesis. Mech Dev. 1999;80(2):185-189. doi: 10.1016/s0925-4773(98)00205-6
18. Baker JF, Von Feldt JM, Mostoufi-Moab S, Kim W, Taratuta E, Leonard MB. Insulin-like growth factor 1 and adiponectin and associations with muscle deficits, disease characteristics, and treatments in rheumatoid arthritis. J Rheumatol. 2015;42(11):2038-2045. doi: 10.3899/jrheum.150280
19. Jiang JJ, Chen SM, Chen J, Wu L, Ye JT, Zhang Q. Serum IGF-1 levels are associated with sarcopenia in elderly men but not in elderly women. Aging Clin Exp Res. 2022;34(10):2465-2471. doi: 10.1007/s40520-022-02180-2
20. Chen HT, Chung YC, Chen YJ, Ho SY, Wu HJ. Effects of different types of exercise on body composition, muscle strength, and IGF-1 in the elderly with sarcopenic obesity. J Am Geriatr Soc. 2017;65(4):827-832. doi: 10.1111/jgs.14722
21. Tabara Y, Okada Y, Ochi M, Ohyagi Y, Igase M. Associations between adiponectin and leptin levels and skeletal muscle mass and myosteatosis in older adults: The Shimanami Health Promoting Program Study. Geriatr Gerontol Int. 2023;(23):444-449. doi: 10.1111/ggi.14582
22. Memelink RG, Njemini R, de Bos Kuil MJJ, Wopereis S, de Vogel-van den Bosch J, Schoufour JD, et al. The effect of a combined lifestyle intervention with and without protein drink on inflammation in older adults with obesity and type 2 diabetes. Exp Gerontol. 2024;(190):112410. doi: 10.1016/j.exger.2024.112410
23. Teixeira LAC, Dos Santos JM, Parentoni AN, Lima LP, Duarte TC, Brant FP, et al. Adiponectin is a contributing factor of low appendicular lean mass in older community-dwelling women: A cross-sectional study. J Clin Med. 2022;11(23):7175. doi: 10.3390/jcm11237175
24. Baker JF, Katz P, Weber DR, Gould P, George MD, Long J, et al. Adipocytokines and associations with abnormal body composition in rheumatoid arthritis. Arthritis Care Res (Hoboken). 2023;75(3):616-624. doi: 10.1002/acr.24790
25. Si Y, Kazamel M, Benatar M, Wuu J, Kwon Y, Kwan T, et al. FGF23, a novel muscle biomarker detected in the early stages of ALS. Sci Rep. 2021;11(1):12062. doi: 10.1038/s41598-021-91496-6
26. Fukasawa H, Ishigaki S, Kinoshita-Katahashi N, Niwa H, Yasuda H, Kumagai H, et al. Plasma levels of fibroblast growth factor-23 are associated with muscle mass in haemodialysis patients. Nephrology (Carlton). 2014;19(12):784-790. doi: 10.1111/nep.12333
27. Avin KG, Vallejo JA, Chen NX, Wang K, Touchberry CD, Brotto M, et al. Fibroblast growth factor 23 does not directly influence skeletal muscle cell proliferation and differentiation or ex vivo muscle contractility. Am J Physiol Endocrinol Metab. 2018;315(4): E594-E604. doi: 10.1152/ajpendo.00343.2017
Review
For citations:
Dobrovolskaya O.V., Demin N.V., Feklistov A.Yu., Diatroptov M.E., Samarkina E.Yu., Toroptsova N.V. Appendicular lean mass in women with rheumatoid arthritis: Focus on immunological markers. Rheumatology Science and Practice. 2024;62(5):529-534. (In Russ.) https://doi.org/10.47360/1995-4484-2024-529-534