Activation of monocytes and early manifestations of cardiovascular diseases in patients with immuneinflammatory rheumatic diseases
https://doi.org/10.47360/1995-4484-2025-46-54
Abstract
Systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) are immunoinflammatory rheumatic diseases (IRDs) associated with a high risk of developing cardiovascular diseases (CVD). Despite advances in diagnostics and therapy, the risk of cardiovascular pathology is 1.8–2.8 times higher than in individuals without autoimmune diseases, is increased at an early stage of the disease, and is associated with high clinical activity, disease duration, need for hospitalization, and mortality. According to modern data, CVD in patients with SLE and RA is considered a consequence of a systemic (subclinical) inflammatory process induced by pathological activation of the main components of innate and acquired immunity, more often developing in patients with low or moderate cardiovascular risk. The main cells of the innate immune system involved in the development and maintenance of inflammation are monocytes and macrophages. There are two main phenotypes of macrophages: M1 (proinflammatory) and M2 (anti-inflammatory). M1 macrophages produce the main proinflammatory cytokines interleukin (IL) 6, IL-23, tumor necrosis factor α, which are involved in maintaining inflammation by engaging new immune cells, while M2 secrete anti-inflammatory mediators and limit inflammation. It is assumed that an imbalance between the two phenotypes may underlie SLE, RA, and the development of early manifestations of CVD.
Currently, various diagnostic non-invasive methods are used to visualize subclinical CVD, the results of which can provide additional values for risk stratification for asymptomatic patients. The importance of monitoring arterial stiffness as one of the markers characterizing vascular remodeling in the development of early signs of atherosclerosis has been confirmed. Several studies have demonstrated the effectiveness of new echocardiographic techniques (tissue Doppler), especially global longitudinal strain using speckle tracking, in assessing subclinical cardiac damage and left ventricular diastolic dysfunction. Thus, clarifying the relationship between proinflammatory monocyte activation and early cardiovascular disorders in patients with SLE and RA will contribute to understanding the common pathogenetic mechanisms in IRDs and CVD.
About the Author
M. V. ShalyginaRussian Federation
Maria V. Shalygina.
115522, Moscow, Kashirskoye Highway, 34A
Competing Interests:
None
References
1. Nasonov EL, Avdeeva AS. Immunoinflammatory rheumatic diseases associated with type I interferon: New evidence. Nauchno-Prakticheskaya Revmatologia = Rheumatology Science and Practice. 2019;57(4):452-461 (In Russ.). doi: 10.14412/1995-4484-2019-452-461
2. Ma WT, Gao F, Gu K, Chen DK. The role of monocytes and macrophages in autoimmune diseases: A comprehensive review. Front Immunol. 24;10:1140. doi: 10.3389/fimmu.2019.01140
3. Conrad N, Verbeke G, Molenberghs G, Goetschalckx L, Callender T, Cambridge G, et al. Autoimmune diseases and cardiovascular risk: A population-based study on 19 autoimmune diseases and 12 cardiovascular diseases in 22 million individuals in the UK. Lancet. 2022; 400(10354):733-743. doi: 10.1016/S0140-6736(22)01349-6
4. Rezuș E, Macovei LA, Burlui AM, Cardoneanu A, Rezuș C. Ischemic heart disease and rheumatoid arthritis-two conditions, the same background. Life (Basel). 2021;11(10):1042. doi: 10.3390/life11101042
5. Gerasimova EV, Popkova TV. Macrophage functional disorders in rheumatoid arthritis and atherosclerosis. Nauchno-Prakticheskaya Revmatologia = Rheumatology Science and Practice. 2018;56(4):486-493 (In Russ.). doi: 10.14412/1995-4484-2018-486-493
6. Sircana MC, Erre GL, Castagna F, Manetti R. Crosstalk between inflammation and atherosclerosis in rheumatoid arthritis and systemic lupus erythematosus: Is there a common basis? Life (Basel). 2024;14(6):716. doi: 10.3390/life14060716
7. Chen S, Saeed AFUH, Liu Q, Jiang Q, Xu H, Xiao GG, et al. Macrophages in immunoregulation and therapeutics. Signal Transduct Target Ther. 2023;8(1):207. doi: 10.1038/s41392-023-01452-1
8. Yang S, Zhao M, Jia S. Macrophage: Key player in the pathogenesis of autoimmune diseases. Front Immunol. 2023;14:1080310. doi: 10.3389/fimmu.2023.1080310
9. Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol. 2005;5(12):953-964. doi: 10.1038/nri1733
10. Sarbaeva NN, Ponomareva JV, Milyakova MN. Macrophages: Diversity of phenotypes and functions, interaction with foreign materials. Genes and Cells. 2016;11(1):9-17. (In Russ.).
11. Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, et al. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 2018;233(9):6425-6440. doi: 10.1002/jcp.26429
12. Vasilyeva EF, Brusov OS. The role of monocytes cellular and molecular mechanisms in the development of systemic immune inflammation. Part 1. Psychiatry (Moscow). 2020;18(3):76-85 (In Russ.). doi: 10.30629/2618-6667-2020-18-3-76-85
13. Huang X, Li Y, Fu M, Xin HB. Polarizing macrophages in vitro. Methods Mol Biol. 2018;1784:119-126. doi: 10.1007/978-1-4939-7837-3_12
14. Spiller KL, Anfang RR, Spiller KJ, Ng J, Nakazawa KR, Daulton JW, et al. The role of macrophage phenotype in vascularization of tissue engineering scaffolds. Biomaterials. 2014;35(15):4477-4488. doi: 10.1016/j.biomaterials.2014.02.012
15. Abdelaziz MH, Abdelwahab SF, Wan J, Cai W, Huixuan W, Jianjun C, et al. Alternatively activated macrophages; a double-edged sword in allergic asthma. J Transl Med. 2020;18(1):58. doi: 10.1186/s12967-020-02251-w
16. Wang LX, Zhang SX, Wu HJ, Rong XL, Guo J. M2b macrophage polarization and its roles in diseases. J Leukoc Biol. 2019;106(2):345-358. doi: 10.1002/JLB.3RU1018-378RR
17. Wang Q, Ni H, Lan L, Wei X, Xiang R, Wang Y. Fra-1 protooncogene regulates IL-6 expression in macrophages and promotes the generation of M2d macrophages. Cell Res. 2010;20(6):701-712. doi: 10.1038/cr.2010.52
18. Funes SC, Rios M, Escobar-Vera J, Kalergis AM. Implications of macrophage polarization in autoimmunity. Immunology. 2018;154(2):186-195. doi: 10.1111/imm.12910
19. Tabas I, Bornfeldt KE. Macrophage phenotype and function in different stages of atherosclerosis. Circ Res. 2016;118(4):653-667. doi: 10.1161/CIRCRESAHA.115.306256
20. Li Y, Lee PY, Reeves WH. Monocyte and macrophage abnormalities in systemic lupus erythematosus. Arch Immunol Ther Exp (Warsz). 2010;58(5):355-364. doi: 10.1007/s00005-010-0093-y
21. Chalmers SA, Chitu V, Herlitz LC, Sahu R, Stanley ER, Putterman C. Macrophage depletion ameliorates nephritis induced by pathogenic antibodies. J Autoimmun. 2015;57:42-52. doi: 10.1016/j.jaut.2014.11.007
22. Kuriakose J, Redecke V, Guy C, Zhou J, Wu R, Ippagunta SK, et al. Patrolling monocytes promote the pathogenesis of early lupus-like glomerulonephritis. J Clin Invest. 2019;129(6):2251-2265. doi: 10.1172/JCI125116
23. Labonte AC, Kegerreis B, Geraci NS, Bachali P, Madamanchi S, Robl R, et al. Identification of alterations in macrophage activation associated with disease activity in systemic lupus erythematosus. PLoS One. 2018;13(12):e0208132. doi: 10.1371/journal.pone.0208132
24. Ma C, Xia Y, Yang Q, Zhao Y. The contribution of macrophages to systemic lupus erythematosus. Clin Immunol. 2019;207:1-9. doi: 10.1016/j.clim.2019.06.009
25. Sung SJ, Ge Y, Dai C, Wang H, Fu SM, Sharma R, et al. Dependence of glomerulonephritis induction on novel intraglomerular alternatively activated bone marrow-derived macrophages and Mac-1 and PD-L1 in lupus-prone NZM2328 mice. J Immunol. 2017;198(7):2589-2601. doi: 10.4049/jimmunol.1601565
26. Katsiari CG, Liossis SN, Sfikakis PP. The pathophysiologic role of monocytes and macrophages in systemic lupus erythematosus: A reappraisal. Semin Arthritis Rheum. 2010;39(6):491-503. doi: 10.1016/j.semarthrit.2008.11.002
27. Niu XL, Feng D, Hao S, KuangXY, Wu Y, Zhu GH, et al. The significance of M1/M2 macrophage-like monocytes in children with systemic lupus erythematosus. Eur J Inflammation. 2019;17. doi: 10.1177/2058739218824463
28. Hannemann N, Apparailly F, Courties G. New insights into macrophage heterogeneity in rheumatoid arthritis. Joint Bone Spine. 2021;88(1):105091. doi: 10.1016/j.jbspin.2020.105091
29. Maruotti N, Cantatore FP, Crivellato E, Vacca A, Ribatti D. Macrophages in rheumatoid arthritis. Histol Histopathol. 2007;22:581-586. doi: 10.14670/HH-22.581
30. Gent YY, Ahmadi N, Voskuyl AE, Hoetjes N, van Kuijk C, Britsemmer K, et al. Detection of subclinical synovitis with macrophage targeting and positron emission tomography in patients with rheumatoid arthritis without clinical arthritis. J Rheumatol. 2014;41(11):2145-2152. doi: 10.3899/jrheum.140059
31. Corvaisier M, Delneste Y, Jeanvoine H, Preisser L, Blanchard S, Garo E, et al. IL-26 is overexpressed in rheumatoid arthritis and induces proinflammatory cytokine production and Th17 cell generation. PLoS Biol. 2012;10(9):e1001395. doi: 10.1371/journal.pbio.1001395
32. Novikov AA, Aleksandrova EN, Diatroptova MA, Nasonov EL. Role of cytokines in the pathogenesis of rheumatoid arthritis. Nauchno-Prakticheskaya Revmatologia = Rheumatology Science and Practice. 2010;48(2):71-82 (In Russ.). doi: 14412/1995-4484-2010-1420
33. Soler Palacios B, Estrada-Capetillo L, Izquierdo E, Criado G, Nieto C, Municio C, et al. Macrophages from the synovium of active rheumatoid arthritis exhibit an activin A-dependent proinflammatory profile. J Pathol. 2015;235(3):515-526. doi: 10.1002/path.4466
34. Dongsheng Z, Zhiguang F, Junfeng J, Zifan L, Li W. Cyclophilin A aggravates collagen-induced arthritis via promoting classically activated macrophages. Inflammation. 2017;40(5):1761-1772. doi: 10.1007/s10753-017-0619-0
35. Wu J, He S, Song Z, Chen S, Lin X, Sun H, et al. Macrophage polarization states in atherosclerosis. Front Immunol. 2023;14:1185587. doi: 10.3389/fimmu.2023.1185587
36. Zhang H, Dhalla NS. The role of pro-inflammatory cytokines in the pathogenesis of cardiovascular disease. Int J Mol Sci. 2024;25(2):1082. doi: 10.3390/ijms25021082
37. Ait-Oufella H, Libby P, Tedgui A. Anticytokine immune therapy and atherothrombotic cardiovascular risk. Arterioscler Thromb Vasc Biol. 2019;39(8):1510-1519. doi: 10.1161/ATVBAHA.119.311998
38. Guzmán-Martínez G, Marañón C, CYTED RIBLES Network. Immune mechanisms associated with cardiovascular disease in systemic lupus erythematosus: A path to potential biomarkers. Front Immunol. 2022;13:974826. doi: 10.3389/fimmu.2022.974826
39. Porsch F, Binder CJ. Autoimmune diseases and atherosclerotic cardiovascular disease. Nat Rev Cardiol. 2024;21(11):780-807. doi: 10.1038/s41569-024-01045-7
40. Hanna A, Frangogiannis NG. Inflammatory cytokines and chemokines as therapeutic targets in heart failure. Cardiovasc Drugs Ther. 2020;34(6):849-863. doi: 10.1007/s10557-020-07071-0
41. Sansonetti M, Al Soodi B, Thum T, Jung M. Macrophage-based therapeutic approaches for cardiovascular diseases. Basic Res Cardiol. 2024;119(1):1-33. doi: 10.1007/s00395-023-01027-9
42. Semalulu T, Tago A, Zhao K, Tselios K. Managing cardiovascular risk in systemic lupus erythematosus: Considerations for the clinician. Immunotargets Ther. 2023;12:175-186. doi:10.2147/ITT.S377076
43. Townsend RR, Wilkinson IB, Schiffrin EL, Avolio AP, Chirinos JA, Cockcroft JR, et al.; American Heart Association Council on Hypertension. Recommendations for improving and standardizing vascular research on arterial stiffness: A scientific statement from the American Heart Association. Hypertension. 2015;66(3):698-722. doi: 10.1161/HYP.0000000000000033
44. Arida A, Protogerou AD, Kitas GD, Sfikakis PP. Systemic inflammatory response and atherosclerosis: The paradigm of chronic inflammatory rheumatic diseases. Int J Mol Sci. 2018;19(7):1890. doi: 10.3390/ijms19071890
45. Jain S, Khera R, Corrales-Medina VF, Townsend RR, Chirinos JA. Inflammation and arterial stiffness in humans. Atherosclerosis. 2014;237(2):381-390. doi: 10.1016/j.atherosclerosis.2014.09.011
46. Vasyuk YuA, Ivanova SV, Shkolnik EL, Kotovskaya YuV, Milyagin VA, Oleynikov VE, et al. Consensus of Russian experts on the evaluation of arterial stiffness in clinical practice. Cardiovascular Therapy and Prevention. 2016;15(2):4-19 (In Russ.). doi: 10.15829/1728-8800-2016-2-4-19
47. Lacolley P, Regnault V, Laurent S. Mechanisms of arterial stiffening: From mechanotransduction to epigenetics. Arterioscler Thromb Vasc Biol. 2020;40(5):1055-1062. doi: 10.1161/ATVBAHA.119.313129
48. Novikova DS, Popkova TV, Mach ES, Nasonov EL. Arteries rigidity – integral index of cardiovascular risk in patients with rheumatoid arthritis. Nauchno-Prakticheskaya Revmatologia = Rheumatology Science and Practice. 2009;47(5):38-47 (In Russ.). doi: 10.14412/1995-4484-2009-587
49. Ikdahl E, Rollefstad S, Wibetoe G, Olsen IC, Berg IJ, Hisdal J, et al. Predictive value of arterial stiffness and subclinical carotid atherosclerosis for cardiovascular disease in patients with rheumatoid arthritis. J Rheumatol. 2016;43(9):1622-1630. doi: 10.3899/jrheum.160053
50. Cioffi G, Viapiana O, Ognibeni F, Dalbeni A, Orsolini G, Adami S, et al. Clinical profile and outcome of patients with rheumatoid arthritis and abnormally high aortic stiffness. Eur J Prev Cardiol. 2016;23(17):1848-1859. doi: 10.1177/2047487316649762
51. Youssef G, Allam NT, Gaber W, Afifi A, Hesham D. Increased arterial stiffness in rheumatoid arthritis and its relation to disease activity: A cross sectional study. Egypt Heart J. 2018;70(1):35-40. doi: 10.1016/j.ehj.2017.11.002
52. Botta E, Meroño T, Saucedo C, Martín M, Tetzlaff W, Sorroche P, et al. Associations between disease activity, markers of HDL functionality and arterial stiffness in patients with rheumatoid arthritis. Atherosclerosis. 2016;251:438-444. doi: 10.1016/j.atherosclerosis.2016.06.009
53. Vázquez-Del Mercado M, Gomez-Bañuelos E, Chavarria-Avila E, Cardona-Muñoz E, Ramos-Becerra C, Alanis-Sanchez A, et al. Disease duration of rheumatoid arthritis is a predictor of vascular stiffness: A cross-sectional study in patients without known cardiovascular comorbidities: A STROBE-compliant article. Medicine (Baltimore). 2017;96(33):e7862. doi: 10.1097/MD.0000000000007862
54. Mäki-Petäjä KM, Elkhawad M, Cheriyan J, Joshi FR, Ostör AJ, Hall FC, et al. Anti-tumor necrosis factor-α therapy reduces aortic inflammation and stiffness in patients with rheumatoid arthritis. Circulation. 2012;126(21):2473-2480. doi: 10.1161/CIRCULATIONAHA.112.120410
55. Mathieu S, Pereira B, Dubost JJ, Lusson JR, Soubrier M. No significant change in arterial stiffness in RA after 6 months and 1 year of rituximab treatment. Rheumatology (Oxford). 2012;51(6):1107-1111. doi: 10.1093/rheumatology/kes006
56. Novikova DS, Popkova TV, Lukina GV, Luchikhina EL, Karateev DE, Volkov AV, et al. The effects of rituximab on lipids, arterial stiffness and carotid intima-media thickness in rheumatoid arthritis. J Korean Med Sci. 2016;31(2):202-207. doi: 10.3346/jkms.2016.31.2.202
57. Ammar W, Taha M, Baligh E, Osama D. Assessment of vascular stiffness using different modalities in patients with systemic lupus erythematosus: A case control study. Egypt Heart J. 2020;72(1):24. doi: 10.1186/s43044-020-00062-4
58. Ding FM, Li M, Yang X, Ye Y, Kang L, Pang H, et al. Accelerated age-related arterial stiffness in systemic lupus erythematosus patients. J Clin Rheumatol. 2016;22(8):426-433. doi: 10.1097/RHU.0000000000000432
59. Du T, Pang H, Ding F, Ye Y, Li M, Yang X, et al. Reduction in SLEDAI is associated with improved arterial stiffness in systemic lupus erythematosus. Medicine (Baltimore). 2020;99(47):e23184. doi: 10.1097/MD.0000000000023184
60. Tziomalos K, Gkougkourelas I, Sarantopoulos A, Bekiari E, Makri E, Raptis N, et al. Arterial stiffness and peripheral arterial disease in patients with systemic lupus erythematosus. Rheumatol Int. 2017;37(2):293-298. doi: 10.1007/s00296-016-3610-4
61. Parra S, Lopez-Dupla M, Ibarretxe D, de Las Heras M, Amigó N, Català A, et al. Patients with systemic lupus erythematosus show an increased arterial stiffness that is predicted by IgM anti-β2-glycoprotein I and small dense high-density lipoprotein particles. Arthritis Care Res (Hoboken). 2019;71(1):116-125. doi: 10.1002/acr.23594
62. Nikiforov VS, Nikishchenkova IV. Modern possibilities of speckle tracking echocardiography in clinical practice. Rational Pharmacotherapy in Cardiology. 2017;13(2):248-255 (In Russ.). doi: 10.20996/1819-6446-2017-13-2-248-255
63. Lo Gullo A, Rodríguez-Carrio J, Gallizzi R, Imbalzano E, Squadrito G, Mandraffino G. Speckle tracking echocardiography as a new diagnostic tool for an assessment of cardiovascular disease in rheumatic patients. Prog Cardiovasc Dis. 2020;63(3):327-340. doi: 10.1016/j.pcad.2020.03.005
64. Brahem M, Amor HH, Sarraj R, Touil I, Kraiem S, Rouabhia R, et al. Echocardiography coupled with strain method in the screening for cardiac involvement in rheumatoid arthritis. Curr Rheumatol Rev. 2024;20(1):72-81. doi: 10.2174/1573397119666230727111601
65. Løgstrup BB, Masic D, Laurbjerg TB, Blegvad J, Herly M, Kristensen LD, et al. Left ventricular function at two-year follow-up in treatment-naive rheumatoid arthritis patients is associated with anti-cyclic citrullinated peptide antibody status: A cohort study. Scand J Rheumatol. 2017;46(6):432-440. doi: 10.1080/03009742.2016.1249941
66. Naseem M, Samir S, Ibrahim IK, Khedr L, Shahba AAE. 2-D speckle-tracking assessment of left and right ventricular function in rheumatoid arthritis patients with and without disease activity. J Saudi Heart Assoc. 2019;31(1):41-49. doi: 10.1016/j.jsha.2018.10.001
67. Gorbunova YN, Kirillova IG, Popkova TV, Diatroptov ME, Nevretdinov TI, Lila AM. Dynamics of global longitudinal strain of the left ventricular myocardium and blood biomarker levels in patients with rheumatoid arthritis treated with biologic disease-modifying antirheumatic drugs or Janus kinase inhibitors. Modern Rheumatology Journal. 2023;17(5):36-42 (In Russ.). doi: 10.14412/1996-7012-2023-5-36-42
68. Di Minno MND, Forte F, Tufano A, Buonauro A, Rossi FW, De Paulis A, et al. Speckle tracking echocardiography in patients with systemic lupus erythematosus: A meta-analysis. Eur J Intern Med. 2020;73:16-22. doi: 10.1016/j.ejim.2019.12.033
Review
For citations:
Shalygina M.V. Activation of monocytes and early manifestations of cardiovascular diseases in patients with immuneinflammatory rheumatic diseases. Rheumatology Science and Practice. 2025;63(1):46-54. (In Russ.) https://doi.org/10.47360/1995-4484-2025-46-54