Cytological taxonomy of chronic pain in rheumatoid arthritis: A brief descriptive review
https://doi.org/10.47360/1995-4484-2025-138-145
Abstract
Chronic pain is the main manifestation of rheumatoid arthritis (RA), determining the severity of suffering and functional impairment. Although pain in RA is primarily associated with autoimmune inflammation, it can persist against the background of low activity and even remission of the disease. This makes it necessary to search for the causes and peculiarities of the development of chronic pain in RA. It seems that the classification of pain types in RA can help in personalizing approaches to its medication control. In this regard, the evaluation of the relationship between pain and the cellular composition (pathotype) of synovitis in RA is of great interest. Three main pathotypes are known: lymphoid (with predominance of T and B lymphocytes, plasmocytes), myeloid or diffuse-myeloid (with predominance of macrophages, monocytes, granulocytes) and pauci-immune (mainly consisting of fibroblast-like synoviocytes (FLS)). The lymphoid pathotype is characterised by high positivity for rheumatoid factor and anti-citrullinated protein antibodies, severe RA activity and intense pain, including that associated with polyneuropathy and dysfunctional disorders; the myeloid pathotype is characterized by less severe activity and local nociceptive pain; the pauci-immune pathotype is characterized by moderately severe pain and peripheral hyperalgesia against a background of moderate/low disease activity. The last pathotype can determine chronic pain in seronegative RA and at late stages of the disease, in which marked structural changes are noted. Currently, there is no clear view on drug approaches for the different pathotypes of synovitis in RA. There is limited evidence for the use of CD20 inhibitors (rituximab) and interleukin (IL) 6 inhibitors in the lymphoid pathotype, and IL-6 and tumour necrosis factor α inhibitors in the myeloid pathotype. Currently, active development of drugs to target FLS is underway. The data of some studies indicate higher efficacy of IL-6 inhibitors in pauci-immune pathotype.
About the Authors
A. Е. KarateevRussian Federation
Andrey E. Karateev
115522, Moscow, Kashirskoye Highway, 34A
E. Yu. Polishchuk
Russian Federation
Elena Yu. Polishchuk
115522, Moscow, Kashirskoye Highway, 34A
References
1. Nasonov EL, Olyunin YuA, Lila AM. Rheumatoid arthritis: The problems of remission and therapy resistance. Nauchno-Prakticheskaya Revmatologia = Rheumatology Science and Practice. 2018;56(3):363- 271 (In Russ.). doi: 10.14412/1995-4484-2018-263-271
2. Smolen JS. Insights into the treatment of rheumatoid arthritis: A paradigm in medicine. J Autoimmun. 2020;110:102425. doi: 10.1016/j.jaut.2020.102425
3. Hofman ZLM, Roodenrijs NMT, Nikiphorou E, Kent AL, Nagy G, Welsing PMJ, et al. Difficult-to-treat rheumatoid arthritis: What have we learned and what do we still need to learn? Rheumatology (Oxford). 2025;64(1):65-73. doi: 10.1093/rheumatology/keae544
4. Rutter-Locher Z, Kirkham BW, Bannister K, Bennett DL, Buckley CD, Taams LS, et al. An interdisciplinary perspective on peripheral drivers of pain in rheumatoid arthritis. Nat Rev Rheumatol. 2024;20(11):671-682. doi: 10.1038/s41584-024-01155-z
5. Alciati A, Di Carlo M, Siragusano C, Palumbo A, Masala IF, Atzeni F. Effect of biological DMARDs and JAK inhibitors in pain of chronic inflammatory arthritis. Expert Opin Biol Ther. 2022;22(10):1311-1322. doi: 10.1080/14712598.2022.2130243
6. Mathias K, Amarnani A, Pal N, Karri J, Arkfeld D, Hagedorn JM, et al. Chronic pain in patients with rheumatoid arthritis. Curr Pain Headache Rep. 2021 ;25(9):59. doi: 10.1007/s11916-021-00973-0
7. Mease PJ, Liu M, Rebello S, Kang H, Yi E, Park Y, et al. Comparative disease burden in patients with rheumatoid arthritis, psoriatic arthritis, or axial spondyloarthritis: Data from two Corrona registries. Rheumatol Ther. 2019;6(4):529-542. doi: 10.1007/s40744-019-00172-9
8. Albrecht K, Marschall U, Callhoff J. Verordnung von Schmerzmitteln bei Patienten mit rheumatischen Erkrankungen in Deutschland: Eine Analyse von Abrechnungsdaten [Prescription of analgesics in patients with rheumatic diseases in Germany: A claims data analysis]. Z Rheumatol. 2021;80(3):243-250 (In German). doi: 10.1007/s00393-021-00962-z
9. Khot S, Tackley G, Choy E. How to distinguish non-inflammatory from inflammatory pain in RA? Curr Rheumatol Rep. 2024;26(12):403-413. doi: 10.1007/s11926-024-01159-4
10. Sunzini F, Schrepf A, Clauw DJ, Basu N. The biology of pain: Through the rheumatology lens. Arthritis Rheumatol. 2023;75(5):650-660. doi: 10.1002/art.42429
11. Azizoddin DR, Olmstead R, Anderson KA, Hirz AE, Irwin MR, Gholizadeh S, et al. Socioeconomic status, reserve capacity, and depressive symptoms predict pain in rheumatoid arthritis: An examination of the reserve capacity model. BMC Rheumatol. 2024;8(1):46. doi: 10.1186/s41927-024-00416-4
12. Sarzi-Puttini P, Zen M, Arru F, Giorgi V, Choy EA. Residual pain in rheumatoid arthritis: Is it a real problem? Autoimmun Rev. 2023;22(11):103423. doi: 10.1016/j.autrev.2023.103423
13. Motyl G, Krupka WM, Maślińska M. The problem of residual pain in the assessment of rheumatoid arthritis activity. Reumatologia. 2024;62(3):176-186. doi: 10.5114/reum/189779
14. Duffield SJ, Miller N, Zhao S, Goodson NJ. Concomitant fibromyalgia complicating chronic inflammatory arthritis: A systematic review and meta-analysis. Rheumatology (Oxford). 2018;57(8):1453-1460. doi: 10.1093/rheumatology/key112
15. Sharma SD, Bluett J. Towards personalized medicine in rheumatoid arthritis. Open Access Rheumatol. 2024;16:89-114. doi: 10.2147/OARRR.S372610
16. Bykerk VP. Clinical implications of synovial tissue phenotypes in rheumatoid arthritis. Front Med (Lausanne). 2024;10:1093348. doi: 10.3389/fmed.2023.1093348
17. Humby F, Lewis M, Ramamoorthi N, Hackney JA, Barnes MR, Bombardieri M, et al. Synovial cellular and molecular signatures stratify clinical response to csDMARD therapy and predict radiographic progression in early rheumatoid arthritis patients. Ann Rheum Dis. 2019;78(6):761-772. doi: 10.1136/annrheumdis-2018-214539
18. Alivernini S, Firestein GS, McInnes IB. The pathogenesis of rheumatoid arthritis. Immunity. 2022;55(12):2255-2270. doi: 10.1016/j.immuni.2022.11.009
19. Wang Z, Zhang J, An F, Zhang J, Meng X, Liu S, et al. The mechanism of dendritic cell-T cell crosstalk in rheumatoid arthritis. Arthritis Res Ther. 2023;25(1):193. doi: 10.1186/s13075-023-03159-8
20. Gao A, Zhao W, Wu R, Su R, Jin R, Luo J, et al. Tissue-resident memory T cells: The key frontier in local synovitis memory of rheumatoid arthritis. J Autoimmun. 2022;133:102950. doi: 10.1016/j.jaut.2022.102950
21. Harris KM, Clements MA, Kwilasz AJ, Watkins LR. T cell transgressions: Tales of T cell form and function in diverse disease states. Int Rev Immunol. 2022;41(5):475-516. doi: 10.1080/08830185.2021.1921764
22. Wu F, Gao J, Kang J, Wang X, Niu Q, Liu J, et al. B cells in rheumatoid arthritis: Pathogenic mechanisms and treatment prospects. Front Immunol. 2021;12:750753. doi: 10.3389/fimmu.2021.750753
23. Singh A, Behl T, Sehgal A, Singh S, Sharma N, Naved T, et al. Mechanistic insights into the role of B cells in rheumatoid arthritis. Int Immunopharmacol. 2021;99:108078. doi: 10.1016/j.intimp.2021.108078
24. Asif Amin M, Fox DA, Ruth JH. Synovial cellular and molecular markers in rheumatoid arthritis. Semin Immunopathol. 2017;39(4): 385-393. doi: 10.1007/s00281-017-0631-3
25. Iyer P, Lee YC. Why it hurts: The mechanisms of pain in rheumatoid arthritis. Rheum Dis Clin North Am. 2021;47(2):229-244. doi: 10.1016/j.rdc.2020.12.008
26. McWilliams DF, Walsh DA. Pain mechanisms in rheumatoid arthritis. Clin Exp Rheumatol. 2017;35(Suppl 107(5)):94-101.
27. De Stefano L, Bugatti S, Mazzucchelli I, Rossi S, Xoxi B, Bozzalla Cassione E, et al. Synovial and serum B cell signature of autoantibody-negative rheumatoid arthritis vs autoantibody-positive rheumatoid arthritis and psoriatic arthritis. Rheumatology (Oxford). 2024;63(5):1322-1331. doi: 10.1093/rheumatology/kead378
28. Buch MH, Eyre S, McGonagle D. Persistent inflammatory and non-inflammatory mechanisms in refractory rheumatoid arthritis. Nat Rev Rheumatol. 2021;17(1):17-33. doi: 10.1038/s41584-020-00541-7
29. Mahroum N, Shoenfeld Y. Autoimmune autonomic dysfunction syndromes: Potential involvement and pathophysiology related to complex regional pain syndrome, fibromyalgia, chronic fatigue syndrome, silicone breast implant-related symptoms and postCOVID syndrome. Pathophysiology. 2022;29(3):414-425. doi: 10.3390/pathophysiology29030033
30. Balint B, Vincent A, Meinck HM, Irani SR, Bhatia KP. Movement disorders with neuronal antibodies: Syndromic approach, genetic parallels and pathophysiology. Brain. 2018;141(1):13-36. doi: 10.1093/brain/awx189
31. Noh ASM, Ismail CAN. A review on chronic pain in rheumatoid arthritis: A focus on activation of NR2B subunit of N-methyl-Daspartate receptors. Malays J Med Sci. 2020;27(1):6-21. doi: 10.21315/mjms2020.27.1.2
32. Di Carlo M, Di Battista J, Cipolletta E, Okano T, Chiorrini R, Smerilli G, et al. Is active synovitis of metacarpophalangeal joints a neuropathic condition in rheumatoid arthritis patients? Results from an ultrasound study of palmar digital nerves. J Clin Med. 2024;13(6):1599. doi: 10.3390/jcm13061599
33. Naum R, Gwathmey KG. Autoimmune polyneuropathies. Handb Clin Neurol. 2023;195:587-608. doi: 10.1016/B978-0-323-98818-6.00004-2
34. Chaganti S, Hannaford A, Vucic S. Rituximab in chronic immune mediated neuropathies: A systematic review. Neuromuscul Disord. 2022;32(8):621-627. doi: 10.1016/j.nmd.2022.05.013
35. Salnikova DI, Nikiforov NG, Postnov AY, Orekhov AN. Target role of monocytes as key cells of innate immunity in rheumatoid arthritis. Diseases. 2024;12(5):81. doi: 10.3390/diseases12050081
36. Cutolo M, Campitiello R, Gotelli E, Soldano S. The role of M1/ M2 macrophage polarization in rheumatoid arthritis synovitis. Front Immunol. 2022;13:867260. doi: 10.3389/fimmu.2022.867260
37. Vasconcelos DP, Jabangwe C, Lamghari M, Alves CJ. The neuroimmune interplay in joint pain: The role of macrophages. Front Immunol. 2022;13:812962. doi: 10.3389/fimmu.2022.812962
38. Zhao K, Ruan J, Nie L, Ye X, Li J. Effects of synovial macrophages in osteoarthritis. Front Immunol. 2023;14:1164137. doi: 10.3389/fimmu.2023.1164137
39. Luo H, Li L, Han S, Liu T. The role of monocyte/macrophage chemokines in pathogenesis of osteoarthritis: A review. Int J Immunogenet. 2024;51(3):130-142. doi: 10.1111/iji.12664
40. Yuan Z, Jiang D, Yang M, Tao J, Hu X, Yang X, et al. Emerging roles of macrophage polarization in osteoarthritis: Mechanisms and therapeutic strategies. Orthop Surg. 2024;16(3):532-550. doi: 10.1111/os.13993
41. Maglaviceanu A, Wu B, Kapoor M. Fibroblast-like synoviocytes: Role in synovial fibrosis associated with osteoarthritis. Wound Repair Regen. 2021;29(4):642-649. doi: 10.1111/wrr.12939
42. Damerau A, Rosenow E, Alkhoury D, Buttgereit F, Gaber T. Fibrotic pathways and fibroblast-like synoviocyte phenotypes in osteoarthritis. Front Immunol. 2024;15:1385006. doi: 10.3389/fimmu.2024.1385006
43. Bartok B, Firestein GS. Fibroblast-like synoviocytes: Key effector cells in rheumatoid arthritis. Immunol Rev. 2010;233(1):233-255. doi: 10.1111/j.0105-2896.2009.00859.x
44. Nygaard G, Firestein GS. Restoring synovial homeostasis in rheumatoid arthritis by targeting fibroblast-like synoviocytes. Nat Rev Rheumatol. 2020;16(6):316-333. doi: 10.1038/s41584-020-0413-5
45. Wu Z, Ma D, Yang H, Gao J, Zhang G, Xu K, et al. Fibroblastlike synoviocytes in rheumatoid arthritis: Surface markers and phenotypes. Int Immunopharmacol. 2021;93:107392. doi: 10.1016/j.intimp.2021.107392
46. Mousavi MJ, Karami J, Aslani S, Tahmasebi MN, Vaziri AS, Jamshidi A, et al. Transformation of fibroblast-like synoviocytes in rheumatoid arthritis; from a friend to foe. Auto Immun Highlights. 2021;12(1):3. doi: 10.1186/s13317-020-00145-x
47. Dong F, Liu Y, Yan W, Meng Q, Song X, Cheng B, et al. Netrin-4: Focus on its role in axon guidance, tissue stability, angiogenesis and tumors. Cell Mol Neurobiol. 2023;43(5):1663-1683. doi: 10.1007/s10571-022-01279-4
48. Bai Z, Bartelo N, Aslam M, Murphy EA, Hale CR, Blachere NE, et al. Synovial fibroblast gene expression is associated with sensory nerve growth and pain in rheumatoid arthritis. Sci Transl Med. 2024;16(742):eadk3506. doi: 10.1126/scitranslmed.adk3506
49. Han D, Fang Y, Tan X, Jiang H, Gong X, Wang X, et al. The emerging role of fibroblast-like synoviocytes-mediated synovitis in osteoarthritis: An update. J Cell Mol Med. 2020;24(17):9518- 9532. doi: 10.1111/jcmm.15669
50. Zhang L, Xing R, Huang Z, Ding L, Zhang L, Li M, et al. Synovial fibrosis involvement in osteoarthritis. Front Med (Lausanne). 2021;8:684389. doi: 10.3389/fmed.2021.684389
51. Wijesinghe SN, Ditchfield C, Flynn S, Agrawal J, Davis ET, Dajas-Bailador F, et al. Immunomodulation and fibroblast dynamics driving nociceptive joint pain within inflammatory synovium: Unravelling mechanisms for therapeutic advancements in osteoarthritis. Osteoarthritis Cartilage. 2024;32(11):1358-1370. doi: 10.1016/j.joca.2024.06.011
52. Boutet MA, Nerviani A, Fossati-Jimack L, Hands-Greenwood R, Ahmed M, Rivellese F, et al. Comparative analysis of late-stage rheumatoid arthritis and osteoarthritis reveals shared histopathological features. Osteoarthritis Cartilage. 2024;32(2):166-176. doi: 10.1016/j.joca.2023.10.009
53. Humby F, Durez P, Buch MH, Lewis MJ, Rizvi H, Rivellese F, et al.; R4RA collaborative group. Rituximab versus tocilizumab in anti-TNF inadequate responder patients with rheumatoid arthritis (R4RA): 16-week outcomes of a stratified, biopsy-driven, multicentre, open-label, phase 4 randomised controlled trial. Lancet. 2021;397(10271):305-317. doi: 10.1016/S0140-6736(20)32341-2
54. Rivellese F, Nerviani A, Giorli G, Warren L, Jaworska E, Bombardieri M, et al.; STRAP collaborative group. Stratification of biological therapies by pathobiology in biologic-naive patients with rheumatoid arthritis (STRAP and STRAP-EU): Two parallel, open-label, biopsy-driven, randomised trials. Lancet Rheumatol. 2023;5(11):e648-e659. doi: 10.1016/S2665-9913(23)00241-2
55. Nerviani A, Di Cicco M, Mahto A, Lliso-Ribera G, Rivellese F, Thorborn G, et al. A pauci-immune synovial pathotype predicts inadequate response to TNFα-blockade in rheumatoid arthritis patients. Front Immunol. 2020;11:845. doi: 10.3389/fimmu.2020.00845
56. Lisitsyna TA, Abramkin AA, Veltishchev DYu, Seravina OF, Kovalevskaya OB, Borisova AB, et al. Efficacy of olokizumab against comorbid depressive disorder in patients with rheumatoid arthritis: Preliminary results of the study. Nauchno-Prakticheskaya Revmatologia = Rheumatology Science and Practice. 2023;61(2):188- 198 (In Russ.). doi: 10.47360/1995-4484-2023-188-198
57. Siddiq MAB, Clegg D, Jansen TL, Rasker JJ. Emerging and new treatment options for knee osteoarthritis. Curr Rheumatol Rev. 2022;18(1):20-32. doi: 10.2174/1573397117666211116111738
58. Tsaltskan V, Firestein GS. Targeting fibroblast-like synoviocytes in rheumatoid arthritis. Curr Opin Pharmacol. 2022;67:102304. doi: 10.1016/j.coph.2022.102304
59. Qian H, Deng C, Chen S, Zhang X, He Y, Lan J, et al. Targeting pathogenic fibroblast-like synoviocyte subsets in rheumatoid arthritis. Arthritis Res Ther. 2024;26(1):103. doi: 10.1186/s13075-024-03343-4
60. Mueller AA, Zou AE, Marsh LJ, Kemble S, Nayar S, Watts GFM, et al. Wnt signaling drives stromal inflammation in inflammatory arthritis. bioRxiv. 2025 Jan 8:2025.01.06.631510. doi: 10.1101/2025.01.06.631510
Review
For citations:
Karateev A.Е., Polishchuk E.Yu. Cytological taxonomy of chronic pain in rheumatoid arthritis: A brief descriptive review. Rheumatology Science and Practice. 2025;63(2):138-145. (In Russ.) https://doi.org/10.47360/1995-4484-2025-138-145