Preview

Rheumatology Science and Practice

Advanced search

EULAR 2024 recommendations on the use of antirheumatic drugs in reproduction, pregnancy and lactation and comments on them

https://doi.org/10.47360/1995-4484-2025-559-575

Abstract

Systemic autoimmune rheumatic diseases (SARD) are clinical and immunological syndromes characterized by the development of both unique and common (partially overlapping) clinical and pathological manifestations, a variety of course and progression options, “response” to anti-inflammatory therapy and the severity of “comorbid” pathology. Intravenous immunoglobulin (IVIG) has held a prominent position in the spectrum of drugs used to treat SARD for over 50 years. Another equally important indication for its use is replacement therapy for primary (inborn errors of immunity) and secondary immunodeficiencies. In fact, IVIG is a prototype of “biological agents”, preceding the development of monoclonal antibodies (mAbs), which began to be used in clinical practice for the treatment of SARDs. This narrative review examines new data regarding the efficacy and safety of IVIG in SARDs and the role of IVIG in replacement therapy in patients with hypogammaglobulinemia, primarily associated with anti-B cell therapy. Draft clinical guidelines regarding the use of IVIG for the treatment of SARDs are presented.

About the Authors

E. L. Nasonov
V.A. Nasonova Research Institute of Rheumatology
Russian Federation

Evgeny L. Nasonov

115522, Moscow, Kashirskoye Highway, 34A


Competing Interests:

none



T. M. Reshetnyak
V.A. Nasonova Research Institute of Rheumatology
Russian Federation

Tatiana M. Reshetnyak

115522, Moscow, Kashirskoye Highway, 34A

 


Competing Interests:

none



T. V. Beketova
V.A. Nasonova Research Institute of Rheumatology; Central State Medical Academy of the Administrative Directorate of the President of the Russian Federation; Moscow Polytechnic University
Russian Federation

Tatyana V. Beketova

115522, Moscow, Kashirskoye Highway, 34A; 121359, Moscow, Marshala Timoshenko str., 19, building 1A; 107023, Moscow, Bolshaya Semyonovskaya str., 38


Competing Interests:

none



Z. N. Sukmarova
V.A. Nasonova Research Institute of Rheumatology
Russian Federation

Competing Interests:

none



A. S. Starkova
V.A. Nasonova Research Institute of Rheumatology
Russian Federation

115522, Moscow, Kashirskoye Highway, 34A


Competing Interests:

none



References

1. Wang L, Wang FS, Gershwin ME. Human autoimmune diseases: A comprehensive update. J Intern Med. 2015;278(4):369-395. doi: 10.1111/joim.12395

2. Pisetsky DS. Pathogenesis of autoimmune disease. Nat Rev Nephrol. 202;19(8):509-524. doi: 10.1038/s41581-023-00720-1

3. Nasonov EL. Modern concept of autoimmunity in rheumatology. Nauchno-Prakticheskaya Revmatologia = Rheumatology Science and Practice. 2023;61(4):397-420 (In Russ.). doi: 10.47360/1995-4484-2023-397-420

4. Nasonov EL, Rumyantsev AG, Samsonov MYu. Pharmacotherapy of autoimmune rheumatic diseases – from monoclonal antibodies to CAR T cells: 20 years later. Nauchno-Prakticheskaya Revmatologia = Rheumatology Science and Practice. 2024;62(3):262-279 (In Russ.). doi: 10.47360/1995-4484-2024-262-279

5. Nasonov EL. Advances in pharmacotherapy for immunoinflammatory rheumatic diseases in the 21st century. Terapevticheskii arkhiv. 2025;97(5):401-411 (In Russ.). doi: 10.26442/00403660.2025.05.203213

6. Ramírez-Valle F, Maranville JC, Roy S, Plenge RM. Sequential immunotherapy: Towards cures for autoimmunity. Nat Rev Drug Discov. 2024;23(7):501-524. doi: 10.1038/s41573-024-00959-8

7. Danieli MG, Antonelli E, Gammeri L, Longhi E, Cozzi MF, Palmeri D, et al. Intravenous immunoglobulin as a therapy for autoimmune conditions. Autoimmun Rev. 2025;24(1):103710. doi: 10.1016/j.autrev.2024.103710

8. Bayry J, Ahmed EA, Toscano-Rivero D, Vonniessen N, Genest G, Cohen CG, et al. Intravenous immunoglobulin: Mechanism of action in autoimmune and inflammatory conditions. J Allergy Clin Immunol Pract. 2023;11(6):1688-1697. doi: 10.1016/j.jaip.2023.04.002

9. Seredavkina NV, Reshetnyak TM, Nasonov EL. The place of intravenous immunoglobulin in rheumatic diseases. Modern Rheumatology Journal. 2015;9(4):59-67 (In Russ.). doi: 10.14412/1996-7012-2015-4-59-67

10. Egorova ON, Tarasova GM, Datsina AV, Sazhina EG. Peculiar features of intravenous immunoglobulins application in rheumatic diseases. Modern Rheumatology Journal. 2024;18(3):78-84 (In Russ.). doi: 10.14412/1996-7012-2024-3-78-84

11. Arumugham VB, Rayi A. Intravenous immunoglobulin (IVIG). Treasure Island (FL):StatPearls Publishing;2025.

12. Nagy G, Gunkl-Tóth L, Dorgó AM, McInnes IB. The concept of difficult-to-treat disease in rheumatology: Where next? Lancet Rheumatol. 2025;7(4):e274-e289. doi: 10.1016/S26659913(24)00340-0

13. Roccatello D, Sciascia S, Rossi D, Fenoglio R. Refractory systemic lupus erythematosus: Identification and pharmacological management. Drugs. 2023;83(2):117-134. doi: 10.1007/s40265-02201824-x

14. Kandane-Rathnayake R, Louthrenoo W, Lau CS, Hamijoyo L, Cho J, Lateef A, et al. Prevalence and outcomes of a pilot definition of severe refractory systemic lupus erythematosus: Observations from a multinational Asia-Pacific cohort. Arthritis Res Ther. 2025;27(1):155. doi: 10.1186/s13075-025-03622-8

15. Parodis I, Wincup C, Touma Z, Andersen J, Strand V, Sjöwall C. Holistic approaches in systemic lupus erythematosus: Do physicians avoid addressing difficult-to-treat but highly relevant symptoms? RMD Open. 2025;11(1):e005400. doi: 10.1136/rmdopen-2024-005400

16. Barmettler S, Ong MS, Farmer JR, Choi H, Walter J. Association of immunoglobulin levels, infectious risk, and mortality with rituximab and hypogammaglobulinemia. JAMA Netw Open. 2018;1(7):e184169. doi: 10.1001/jamanetworkopen.2018.4169

17. Athni TS, Barmettler S. Hypogammaglobulinemia, late-onset neutropenia, and infections following rituximab. Ann Allergy Asthma Immunol. 2023;130(6):699-712. doi: 10.1016/j.anai.2023.01.018

18. Sacco KA, Abraham RS. Consequences of B-cell-depleting therapy: Hypogammaglobulinemia and impaired B-cell reconstitution. Immunotherapy. 2018;10(8):713-728. doi: 10.2217/imt-20170178151

19. Tieu J, Smith RM, Gopaluni S, Kumararatne DS, McClure M, Manson A, et al. Rituximab associated hypogammaglobulinemia in autoimmune disease. Front Immunol. 2021;12:671503. doi: 10.3389/fimmu.2021.671503

20. Blincoe A, Labrosse R, Abraham RS. Acquired B-cell deficiency secondary to B-cell-depleting therapies. J Immunol Methods. 2022;511:113385. doi: 10.1016/j.jim.2022.113385

21. Wat J, Barmettler S. Hypogammaglobulinemia after chimeric antigen receptor (CAR) T-cell therapy: Characteristics, management, and future directions. J Allergy Clin Immunol Pract. 2022;10(2):460-466. doi: 10.1016/j.jaip.2021.10.037

22. Sutherland NM, Zhou B, Zhang L, Ong MS, Hong JS, Pak A, et al. Association of CD19+-targeted chimeric antigen receptor (CAR) T-cell therapy with hypogammaglobulinemia, infection, and mortality. J Allergy Clin Immunol. 2025;155(2):605-615. doi: 10.1016/j.jaci.2024.10.021

23. Schwab I, Nimmerjahn F. Intravenous immunoglobulin therapy: How does IgG modulate the immune system? Nat Rev Immunol. 2013;13(3):176-189. doi: 10.1038/nri3401

24. Lünemann JD, Nimmerjahn F, Dalakas MC. Intravenous immunoglobulin in neurology – mode of action and clinical efficacy. Nat Rev Neurol. 2015;11(2):80-89. doi: 10.1038/nrneurol.2014.253

25. Segú-Vergés C, Caño S, Calderón-Gómez E, Bartra H, Sardon T, Kaveri S, et al. Systems biology and artificial intelligence analysis highlights the pleiotropic effect of IVIg therapy in autoimmune diseases with a predominant role on B cells and complement system. Front Immunol. 2022;13:901872. doi: 10.3389/fimmu.2022.901872

26. Hematianlarki M, Nimmerjahn F. Immunomodulatory and antiinflammatory properties of immunoglobulin G antibodies. Immunol Rev. 2024;328(1):372-386. doi: 10.1111/imr.13404

27. Danieli MG, Claudi I, Buti E, Gammeri L, Gangemi S, Shoenfeld YJ. Natural autoantibodies and their functional therapeutic roles in intravenous immunoglobulin. Front Aging. 2025;6:1682457. doi: 10.3389/fragi.2025.1682457

28. Rambabu N, Alzaid F, Anđelković BD, Retnakumar SV, Karnam A, Bonam SR, et al. Regulation of immune cell metabolism by therapeutic normal IgG intravenous immunoglobulin. J Allergy Clin Immunol. 2025;156(2):418-432. doi: 10.1016/j.jaci.2025.05.003

29. Kaufman GN, Massoud AH, Dembele M, Yona M, Piccirillo CA, Mazer BD. Induction of regulatory T cells by intravenous immunoglobulin: A bridge between adaptive and innate immunity. Front Immunol. 2015;6:469. doi: 10.3389/fimmu.2015.00469

30. Nasonov EL, Aleksandrova EN, Avdeeva AS, Rubtsov YuP. T-regulatory cells in rheumatoid arthritis. Nauchno-Prakticheskaya Revmatologia = Rheumatology Science and Practice. 2014;52(4):430-437 (In Russ.). doi: 10.14412/1995-4484-2014-430-437

31. Dominguez-Villar M, Hafler DA. Regulatory T cells in autoimmune disease. Nat Immunol. 2018;19(7):665-673. doi: 10.1038/s41590-018-0120-4

32. Sakthiswary R, D’Cruz D. Intravenous immunoglobulin in the therapeutic armamentarium of systemic lupus erythematosus:A systematic review and meta-analysis. Medicine (Baltimore). 2014;93(16):e86. doi: 10.1097/MD.0000000000000086

33. Goodfield M, Davison K, Bowden K. Intravenous immunoglobulin (IVIg) for therapy-resistant cutaneous lupus erythematosus (LE). J Dermatolog Treat. 2004;15(1):46-50. doi: 10.1080/09541440042000269

34. Kaya MN, Kılıç Ö, Canbaş M, Özgünen MS, Güneş EÇ, Yılmaz S. Role of intravenous immunoglobulins in the management of systemic lupus erythematosus: A single-centre experience. Lupus Sci Med. 2024;11(2):e001402. doi: 10.1136/lupus-2024-001402

35. Primo-Gabriel C, García-Gómez C, Calvo-Alén J. Systematic literature review of intravenous immunoglobulin use in non-renal and non-hematologic systemic lupus erytehmatosus. Lupus. 2025;34(3):261-269. doi: 10.1177/09612033251319402

36. Nieto-Aristizábal I, Martínez T, Urbano MA, Posso-Osorio I, Plata IF, Garcia-Robledo JE, et al. Treatment with intravenous immunoglobulins in systemic lupus erythematosus: A single-center experience with 63 patients. Lupus. 2019;28(13):1566-1570. doi: 10.1177/0961203319883680

37. Camara I, Sciascia S, Simoes J, Pazzola G, Salas V, Karim Y, et al. Treatment with intravenous immunoglobulins in systemic lupus erythematosus: A series of 52 patients from a single centre. Clin Exp Rheumatol. 2014;32(1):41-47.

38. Cajamarca-Barón J, Buitrago-Bohórquez J, Mendoza Orozco JE, Segura O, Guavita-Navarro D, Gallego-Cardona L, et al. Efficacy and safety of intravenous immunoglobulin in patients with lupus nephritis: A systematic review of the literature. Autoimmun Rev. 2022;21(11):103182. doi: 10.1016/j.autrev.2022.103182

39. Koczanowski S, Morrisroe K, Fairley J, Nikpour M, Oon S, Brown Z. Role of intravenous immunoglobulins in systemic sclerosis (SSc): A systematic literature review. Semin Arthritis Rheum. 2024;68:152471. doi: 10.1016/j.semarthrit.2024.152471

40. Neto M, Albuquerque F, Oliveira J, Cadório MJ, Salvador MJ, Santiago T. Efficacy assessment of intravenous immunoglobulin for gastrointestinal involvement in systemic sclerosis using UCLA SCTC GIT: Case-based review. J Scleroderma Relat Disord. 2024 Oct 1:23971983241273852. doi: 10.1177/23971983241273852

41. Tandaipan J, Guillén-Del-Castillo A, Simeón-Aznar CP, Carreira PE, De la Puente C, Narváez J, et al. Immunoglobulins in systemic sclerosis management. A large multicenter experience. Autoimmun Rev. 2023;22(11):103441. doi: 10.1016/j.autrev.2023.103441

42. Crickx E, Machelart I, Lazaro E, Kahn JE, Cohen-Aubart F, Martin T, et al.; French Vasculitis Study Group. Intravenous immunoglobulin as an immunomodulating agent in antineutrophil cytoplasmic antibody-associated vasculitides: A French nationwide study of ninety-two patients. Arthritis Rheumatol. 2016;68(3):702-712. doi: 10.1002/art.39472

43. Benavides-Villanueva F, Loricera J, Calvo-Río V, CorralesSelaya C, Castañeda S, Blanco R. Intravenous immunoglobulin therapy in antineutrophil cytoplasmic antibody-associated vasculitis. Eur J Intern Med. 2023;117:78-84. doi: 10.1016/j.ejim.2023.06.021

44. Shimizu T, Morita T, Kumanogoh A. The therapeutic efficacy of intravenous immunoglobulin in anti-neutrophilic cytoplasmic antibody-associated vasculitis: A meta-analysis. Rheumatology (Oxford). 2020;59:959-967. doi: 10.1093/RHEUMATOLOGY/ KEZ311

45. Danieli MG, Cappelli M, Malcangi G, Logullo F, Salvi A, Danieli G. Long term effectiveness of intravenous immunoglobulin in Churg-Strauss syndrome. Ann Rheum Dis. 2004;63(12):1649-1654. doi: 10.1136/ard.2003.015453

46. Koike H, Akiyama K, Saito T, Sobue G; Research Group for IVIg for EGPA/CSS in Japan. Intravenous immunoglobulin for chronic residual peripheral neuropathy in eosinophilic granulomatosis with polyangiitis (Churg-Strauss syndrome): a multicenter, doubleblind trial. J Neurol. 2015;262(3):752-9. doi: 10.1007/s00415-0147618-y.

47. Gao Y, Jin H. Efficacy and safety of intravenous immunoglobulin for treating refractory livedoid vasculopathy: A systematic review. Ther Adv Chronic Dis. 2022;13:20406223221097331. doi: 10.1177/20406223221097331

48. Kim EJ, Yoon SY, Park HS, Yoon HS, Cho S. Pulsed intravenous immunoglobulin therapy in refractory ulcerated livedoid vasculopathy: Seven cases and a literature review. Dermatol Ther. 2015;28(5):287-290. doi: 10.1111/dth.12233

49. Goswami RP, Haldar SN, Chatterjee M, Vij P, van der Kooi AJ, Lim J, et al. Efficacy and safety of intravenous and subcutaneous immunoglobulin therapy in idiopathic inflammatory myopathy: A systematic review and meta-analysis. Autoimmun Rev. 2022;21(2):102997. doi: 10.1016/j.autrev.2021.102997

50. Galimberti F, Kooistra L, Li Y, Chatterjee S, Fernandez AP. Intravenous immunoglobulin is an effective treatment for refractory cutaneous dermatomyositis. Clin Exp Dermatol. 2018;43(8):906-912. doi: 10.1111/ced.13607

51. Marie I, Menard JF, Hatron PY, Hachulla E, Mouthon L, Tiev K, et al. Intravenous immunoglobulins for steroid-refractory esophageal involvement related to polymyositis and dermatomyositis: A series of 73 patients. Arthritis Care Res (Hoboken). 2010;62(12):1748-1755. doi: 10.1002/acr.20325

52. Bounfour T, Bouaziz JD, Bézier M, Cordoliani F, Saussine A, Petit A, et al. Clinical efficacy of intravenous immunoglobulins for the treatment of dermatomyositis skin lesions without muscle disease. J Eur Acad Dermatol Venereol. 2014;28(9):1150-1157. doi: 10.1111/jdv.12223

53. Raaphorst J, Gullick NJ, Shokraneh F, Brassington R, Min M, Ali SS, et al. Non-targeted immunosuppressive and immunomodulatory therapies for idiopathic inflammatory myopathies. Cochrane Database Syst Rev. 2025;8(8):CD015855. doi: 10.1002/14651858.CD015855

54. Lim J, Eftimov F, Verhamme C, Brusse E, Hoogendijk JE, Saris CGJ, et al. Intravenous immunoglobulins as first-line treatment in idiopathic inflammatory myopathies: A pilot study. Rheumatology (Oxford). 2021;60(4):1784-1792. doi: 10.1093/rheumatology/keaa459

55. Aggarwal R, Charles-Schoeman C, Schessl J, Bata-Csörgő Z, Dimachkie MM, Griger Z, et al.; ProDERM Trial Group. Trial of intravenous immune globulin in dermatomyositis. N Engl J Med. 2022;387(14):1264-1278. doi: 10.1056/NEJMoa2117912

56. Aggarwal R, Schessl J, Bata-Csörgő Z, Dimachkie MM, Griger Z, Moiseev S, et al.; ProDERM investigators. Efficacy of intravenous immunoglobulin for systemic manifestations of dermatomyositis beyond muscular and cutaneous: Sub-analysis of the ProDERM study. Rheumatol Ther. 2025;12(5):855-871. doi: 10.1007/s40744025-00775-5

57. Aggarwal R, Schessl J, Charles-Schoeman C, Bata-Csörgő Z, Dimachkie MM, Griger Z, et al.; ProDERM investigators. Safety and tolerability of intravenous immunoglobulin in patients with active dermatomyositis: Results from the randomised, placebo-controlled ProDERM study. Arthritis Res Ther. 2024;26(1):27. doi: 10.1186/s13075-023-03232-2

58. Werth VP, Aggarwal R, Charles-Schoeman C, Schessl J, Levine T, Kopasz N, et al. Efficacy of intravenous immunoglobulins (IVIg) in improving skin symptoms in patients with dermatomyositis: A post-hoc analysis of the ProDERM study. EClinicalMedicine. 2023;64:102234. doi: 10.1016/j.eclinm.2023.102234

59. Ronicke M, Sollfrank L, Vitus MV, Walter LJ, Krieter M, Moelleken M, et al. Intravenous immunoglobulin therapy for pyoderma gangrenosum: A multicenter retrospective analysis in 81 patients. Am J Clin Dermatol. 2025;26(1):139-146. doi: 10.1007/s40257-02400904-w

60. Kaul A, Gordon C, Crow MK, Touma Z, Urowitz MB, van Vollenhoven R, et al. Systemic lupus erythematosus. Nat Rev Dis Primers. 2016;2:16039. doi: 10.1038/nrdp.2016.39

61. Nasonov EL, Soloviev SK, Arshinov AV. Systemic lupus erythematosus: History and modernity. Nauchno-Prakticheskaya Revmatologia = Rheumatology Science and Practice. 2022;60(4):397-412 (In Russ.). doi: 10.47360/19954484-2022-397-412

62. Scherlinger M, Kolios AGA, Kyttaris VC, Tsokos GC. Advances in the treatment of systemic lupus erythematosus. Nat Rev Drug Discov. 2025 Jul 17. doi: 10.1038/s41573-025-01242-0

63. Namas R, Abdulla FA, Elarabi M. Intravenous immunoglobulin in the management of refractory lupus profundus. Lupus. 2022;31(8):1012-1016. doi: 10.1177/09612033221099873

64. Espírito Santo J, Gomes MF, Gomes MJ, Peixoto L, C Pereira S, Acabado A, et al. Intravenous immunoglobulin in lupus panniculitis. Clin Rev Allergy Immunol. 2010;38(2-3):307-318. doi: 10.1007/s12016-009-8162-x

65. Al Qadri NG, Al Nooh B, Al Tewerki MM, Almotairi A, Alajlan S. Intravenous immunoglobulin in the management of lupus erythematosus panniculitis. Cureus. 2020;12(1):e6790. doi: 10.7759/cureus.6790

66. Meridor K, Shoenfeld Y, Tayer-Shifman O, Levy Y. Lupus acute cardiomyopathy is highly responsive to intravenous immunoglobulin treatment: Case series and literature review. Medicine (Baltimore). 2021;100(18):e25591. doi: 10.1097/MD.0000000000025591

67. Sherer Y, Levy Y, Shoenfeld Y. Marked improvement of severe cardiac dysfunction after one course of intravenous immunoglobulin in a patient with systemic lupus erythematosus. Clin Rheumatol. 1999;18(3):238-240. doi: 10.1007/s100670050091

68. Sherer Y, Levy Y, Shoenfeld Y. Intravenous immunoglobulin therapy of antiphospholipid syndrome. Rheumatology (Oxford). 2000 Apr;39(4):421-6. doi: 10.1093/rheumatology/39.4.421.

69. Tenti S, Cheleschi S, Guidelli GM, Galeazzi M, Fioravanti A. Intravenous immunoglobulins and antiphospholipid syndrome: How, when and why? A review of the literature. Autoimmun Rev. 2016;15(3):226-235. doi: 10.1016/j.autrev.2015.11.009

70. Lalmahomed TA, Walter IJ, Lely AT, Bloemenkamp KWM, Kooiman J, Limper M. On the use of intravenous immunoglobulins for the treatment of the antiphospholipid syndrome – A systematic review and meta-analysis. Autoimmun Rev. 2021;20(6):102828. doi: 10.1016/j.autrev.2021.102828

71. Rodriguez-Pintó I, Espinosa G, Cervera R. What we know and what we don’t know about catastrophic antiphospholipid syndrome. Rheumatology (Oxford). 2024;63(SI):SI46-SI53. doi: 10.1093/rheumatology/kead556

72. Urban ML, Bettiol A, Serena C, Comito C, Turrini I, Fruttuoso S, et al. Intravenous immunoglobulin for the secondary prevention of stillbirth in obstetric antiphospholipid syndrome: A case series and systematic review of literature. Autoimmun Rev. 2020;19(9):102620. doi: 10.1016/j.autrev.2020.102620

73. Kaneko K, Tsutsumi S, Fujita D, Sugiura-Ogasawara M, Mitsuda N, Matsubara K, et al. Intravenous immunoglobulin treatment for obstetric antiphospholipid syndrome refractory to conventional therapy: A single-arm, open-labelled multicentre clinical trial. Mod Rheumatol. 2024;34(3):515-522. doi: 10.1093/mr/road062

74. Yuan X, Zhang W, Wang T, Jiang P, Wang ZK, Li CQ. Use of intravenous immunoglobulin in antiphospholipid antibody positive patients with high risk of miscarriage: A systematic review and metaanalysis. Peer J. 2024;12:e18419. doi: 10.7717/peerj.18419

75. Nagata M, Kaneko K, Kohno C, Mishima S, Okazaki Y, Murashima A. A case of successful pregnancy following multidrug treatment including rituximab and intravenous immunoglobulin for primary antiphospholipid antibody syndrome refractory to conventional treatment. Mod Rheumatol Case Rep. 2020;4(1):47-50. doi: 10.1080/24725625.2019.1648633

76. Dombernowsky NW, Nielsen EN, Law I, Nielsen JE. Beneficial effect of intravenous immunoglobulin treatment in a patient with antiphospholipid syndrome associated chorea. J Neurol Sci. 2018;390:52-53. doi: 10.1016/j.jns.2018.04.011

77. Santos G, João A, Sousa L. Leg ulcers in antiphospholipid syndrome secondary to systemic lupus erythematosus treated with intravenous immunoglobulin. J Dermatol Case Rep. 2014;8(2):38-41. doi: 10.3315/jdcr.2014.1169

78. Gouda W, Alsaqabi F, Moshrif A, Abbas AS, Abdel-Aziz TM, Islam MA. Macrophage activation syndrome triggered by systemic lupus erythematosus flare: Successful treatment with a combination of dexamethasone sodium phosphate, intravenous immuno-globulin, and cyclosporine: A case report. J Med Case Rep. 2021;15(1):497. doi: 10.1186/s13256-021-03072-1

79. Volkmann ER, Andréasson K, Smith V. Systemic sclerosis. Lancet. 2023;401(10373):304-318. doi: 10.1016/S0140-6736(22)01692-0

80. Blank M, Levy Y, Amital H, Shoenfeld Y, Pines M, Genina O. The role of intravenous immunoglobulin therapy in mediating skin fibrosis in tight skin mice. Arthritis Rheum. 2002;46(6):1689-1690. doi: 10.1002/art.10363

81. Speca S, Farhat MM, Jendoubi M, Guerrier T, Sanges S, Staumont-Sallé D, et al. Intravenous immunoglobulins improve skin fibrosis in experimental models of systemic sclerosis. Sci Rep. 2023;13(1):15102. doi: 10.1038/s41598-023-42464-9

82. Raja J, Nihtyanova SI, Murray CD, Denton CP, Ong VH. Sustained benefit from intravenous immunoglobulin therapy for gastrointestinal involvement in systemic sclerosis. Rheumatology (Oxford). 2016;55:115-119. doi: 10.1093/ RHEUMATOLOGY/KEV318

83. Matsuda KM, Yoshizaki A, Kuzumi A, Toyama S, Awaji K, Miyake T, et al. Rapid improvement of systemic sclerosis-associated intestinal pseudo-obstruction with intravenous immunoglobulin administration. Rheumatology (Oxford). 2023;62(9):3139-3145. doi: 10.1093/rheumatology/kead093

84. Kumar S, Singh J, Kedika R, Mendoza F, Jimenez SA, Blomain ES, et al. Role of muscarinic-3 receptor antibody in systemic sclerosis: Correlation with disease duration and effects of IVIG. Am J Physiol Gastrointest Liver Physiol. 2016;310(11):G1052-G1060. doi: 10.1152/ajpgi.00034.2016

85. Kronbichler A, Bajema IM, Bruchfeld A, Mastroianni Kirsztajn G, Stone JH. Diagnosis and management of ANCA-associated vasculitis. Lancet. 2024;403(10427):683-698. doi: 10.1016/S01406736(23)01736-1

86. Kierzkowska B, Lipińska J, Barańska D, Niewiadomska-Jarosik K, Biernacka-Zielińska M, et al. Takayasu’s arteritis mimicking Kawasaki disease in 7-month-old infant, successfully treated with glucocorticosteroids and intravenous immunoglobulins. Rheumatol Int. 2012;32(11):3655-3659. doi: 10.1007/s00296-010-1518-y

87. Asano Y, Ihn H, Maekawa T, Kadono T, Tamaki K. High-dose intravenous immunoglobulin infusion in polyarteritis nodosa: Report on one case and review of the literature. Clin Rheumatol. 2006;25:396-398. doi: 10.1007/S10067-005-0015-2

88. Uziel Y, Silverman ED. Intravenous immunoglobulin therapy in a child with cutaneous polyarteritis nodosa. Clin Exp Rheumatol. 1998;16:187-189.

89. Marie I, Miranda S, Girszyn N, Soubrane JC, Vandhuick T, Levesque H. Intravenous immunoglobulins as treatment of severe cutaneous polyarteritis nodosa. Intern Med J. 2012;42:459-462. doi: 10.1111/J.1445-5994.2012.02739.X

90. Balbir-Gurman A, Nahir AM, Braun-Moscovici Y. Intravenous immunoglobulins in polyarteritis nodosa restricted to the limbs: Case reports and review of the literature. Clin Exp Rheumatol. 2007;25:S28-S30.

91. Öner N, Çelikel E, Tekin ZE, Güngörer V, Kurt T, Tekgöz PN, et al. Intravenous immunoglobulin therapy in immunoglobulin A vasculitis with gastrointestinal tract involvement. Clin Exp Med. 2023;23(5):1773-1782. doi: 10.1007/s10238-022-00950-w

92. Mauro A, Mauro S, Rega R, Martemucci L, Sottile R. Successful treatment of hemorrhagic bullous Henoch-Schonlein purpura with intravenous immunoglobulins. Pediatr Dermatol. 2019;36:e34-e36. doi: 10.1111/PDE.13715

93. Cantarini L, Stromillo ML, Vitale A, Lopalco G, Emmi G, Silvestri E, et al. Efficacy and safety of intravenous immunoglobulin treatment in refractory Behcet’s disease with different organ involvement: A case series. Isr Med Assoc J. 2016;18(3-4):238-242.

94. Seider N, Beiran I, Scharf J, Miller B. Intravenous immunoglobulin therapy for resistant ocular Behçet’s disease. Br J Ophthalmol. 2001;85(11):1287-1288. doi: 10.1136/bjo.85.11.1287

95. Lundberg IE, Fujimoto M, Vencovsky J, Aggarwal R, Holmqvist M, Christopher-Stine L, et al. Idiopathic inflammatory myopathies. Nat Rev Dis Primers. 2021;7(1):86. doi: 10.1038/s41572-021-00321-x

96. Dalakas MC, Illa I, Dambrosia JM, Soueidan SA, Stein DP, Otero C, et al. A controlled trial of high-dose intravenous immune globulin infusions as treatment for dermatomyositis. N Engl J Med. 1993;329(27):1993-2000. doi: 10.1056/NEJM199312303292704

97. Patwardhan A. The value of intravenous immunoglobulin therapy in idiopathic inflammatory myositis in the current transformed era of biologics. Cureus. 2020;12(2):e7049. doi: 10.7759/cureus.7049

98. Gandiga PC, Ghetie D, Anderson E, Aggrawal R. Intravenous immunoglobulin in idiopathic inflammatory myopathies: A practical guide for clinical use. Curr Rheumatol Rep. 2023;25(8):152-168. doi: 10.1007/s11926-023-01105-w

99. Charles-Schoeman C, Schessl J, Bata-Csörgő Z, Dimachkie MM, Griger Z, Moiseev S, et al. Predictors of response to intravenous immunoglobulin in patients with dermatomyositis: The ProDERM study. Rheumatology (Oxford). 2025;64(6):3767-3776. doi: 10.1093/rheumatology/keaf070

100. Danieli MG, Tonacci A, Paladini A, Longhi E, Moroncini G, Allegra A, et al. A machine learning analysis to predict the response to intravenous and subcutaneous immunoglobulin in inflammatory myopathies. A proposal for a future multi-omics approach in autoimmune diseases. Autoimmun Rev. 2022;21(6):103105. doi: 10.1016/j.autrev.2022.103105

101. Sunderkötter C, Nast A, Worm M, Dengler R, Dörner T, Ganter H, et al. Guidelines on dermatomyositis – excerpt from the interdisciplinary S2k guidelines on myositis syndromes by the German Society of Neurology. J Dtsch Dermatol Ges. 2016;14(3):321-338. doi: 10.1111/ddg.12909

102. Allenbach Y, Mammen AL, Benveniste O, Stenzel W; ImmuneMediated Necrotizing Myopathies Working Group. 224th ENMC International Workshop: Clinico-sero-pathological classification of immune-mediated necrotizing myopathies Zandvoort, The Netherlands, 14–16 October 2016. Neuromuscul Disord. 2018;28(1):87-99. doi: 10.1016/j.nmd.2017.09.016

103. De Souza FHC, de Araújo DB, Vilela VS, Simões RS, Bernardo WM, Frank TA, et al. The Brazilian Society of Rheumatology recommendations on investigation and diagnosis of systemic autoimmune myopathies. Adv Rheumatol. 2019;59(1):42. doi: 10.1186/s42358-019-0085-5

104. Kohsaka H, Mimori T, Kanda T, Shimizu J, Sunada Y, Fujimoto M, et al. Treatment consensus for management of polymyositis and dermatomyositis among rheumatologists, neurologists and dermatologists. J Dermatol. 2019;46(1):e1-e18. doi: 10.1111/1346-8138.14604

105. Oldroyd AGS, Lilleker JB, Amin T, Aragon O, Bechman K, Cuthbert V, et al.; British Society for Rheumatology Standards, Audit and Guidelines Working Group. British Society for Rheumatology guideline on management of paediatric, adolescent and adult patients with idiopathic inflammatory myopathy. Rheumatology (Oxford). 2022;61(5):1760-1768. doi: 10.1093/rheumatology/keac115

106. Basta M, Dalakas MC. High-dose intravenous immunoglobulin exerts its beneficial effect in patients with dermatomyositis by blocking endomysial deposition of activated complement fragments. J Clin Invest. 1994;94(5):1729-1735. doi: 10.1172/jCI117520

107. Pinal-Fernandez I, Casal-Dominguez M, Derfoul A, Pak K, Plotz P, Miller FW, et al. Identification of distinctive interferon gene signatures in different types of myositis. Neurology. 2019;93(12):e1193-e1204. doi: 10.1212/WNL.0000000000008128

108. Kamperman RG, Veldkamp SR, Evers SW, Lim J, van Schaik I, van Royen-Kerkhof A, et al. Type I interferon biomarker in idiopathic inflammatory myopathies: Associations of Siglec-1 with disease activity and treatment response. Rheumatology (Oxford). 2025;64(5):2979-2986. doi: 10.1093/rheumatology/keae630

109. Crow MK, Olferiev M, Kirou KA. Type I interferons in autoimmune disease. Annu Rev Pathol. 2019;14:369-393. doi: 10.1146/annurev-pathol-020117-043952

110. Nasonov EL, Avdeeva AS. Immunoinflammatory rheumatic diseases associated with type I interferon: New evidence. Nauchno-Prakticheskaya Revmatologia = Rheumatology Science and Practice. 2019;57(4):452-461 (In Russ.)]. doi: 10.14412/1995-4484-2019-452-461

111. Lerkvaleekul B, Veldkamp SR, van der Wal MM, Schatorjé EJH, Kamphuis SSM, van den Berg JM, et al. Siglec-1 expression on monocytes is associated with the interferon signature in juvenile dermatomyositis and can predict treatment response. Rheumatology (Oxford). 2022;61(5):2144-2155. doi: 10.1093/rheumatology/keab601

112. Graf M, von Stuckrad SL, Uruha A, Klotsche J, Zorn-Pauly L, Unterwalder N, et al. SIGLEC1 enables straightforward assessment of type I interferon activity in idiopathic inflammatory myopathies. RMD Open. 2022;8(1):e001934. doi: 10.1136/rmdopen-2021-001934

113. Nasonov EL. Coronavirus disease 2019 (COVID-19): A rheumatologist’s thoughts. Nauchno-Prakticheskaya Revmatologia = Rheumatology Science and Practice. 2020; 58(2):123-132 (In Russ.). doi: 10.14412/1995-4484-2020-123-132

114. Nasonov EL, Samsonov MY, Lila AM. Coronavirus infection 2019 (COVID-19) and autoimmunity. Her Russ Acad Sci. 2022;92(4):398-403. doi: 10.1134/S1019331622040062

115. Ramos-Casals M, Brito-Zerón P, Mariette X. Systemic and organspecific immune-related manifestations of COVID-19. Nat Rev Rheumatol. 2021;17(6):315-332. doi:10.1038/s41584-021-00608-z

116. van de Veerdonk FL, Giamarellos-Bourboulis E, Pickkers P, Derde L, Leavis H, van Crevel R, et al. A guide to immunotherapy for COVID-19. Nat Med. 2022;28(1):39-50. doi: 10.1038/s41591021-01643-9

117. Morse BA, Motovilov K, Michael Brode W, Michael Tee F, Melamed E. A review of intravenous immunoglobulin in the treatment of neuroimmune conditions, acute COVID-19 infection, and post-acute sequelae of COVID-19 syndrome. Brain Behav Immun. 2025;123:725-738. doi: 10.1016/j.bbi.2024.10.006

118. Liu X, Zhang Y, Lu L, Li X, Wu Y, Yang Y, et al. Benefits of high-dose intravenous immunoglobulin on mortality in patients with severe COVID-19: An updated systematic review and meta-analysis. Front Immunol. 2023;14:1116738. doi: 10.3389/fimmu.2023.1116738

119. Manganotti P, Garascia G, Furlanis G, Buoite Stella A. Efficacy of intravenous immunoglobulin (IVIg) on COVID-19-related neurological disorders over the last 2 years: An up-to-date narrative review. Front Neurosci. 2023;17:1159929. doi: 10.3389/fnins.2023.1159929

120. Davis HE, McCorkell L, Vogel JM, Topol EJ. Long COVID: Major findings, mechanisms and recommendations. Nat Rev Microbiol. 2023;21(3):133-146. doi: 10.1038/s41579-022-00846-2

121. Thompson JS, Thornton AC, Ainger T, Garvy BA. Long-term high-dose immunoglobulin successfully treats long COVID patients with pulmonary, neurologic, and cardiologic symptoms. Front Immunol. 2023 2;13:1033651. doi: 10.3389/ fimmu.2022.1033651

122. Naeem S, Oros SM, Adams CS, Rakesh G. Treatment of cognitive deficits and behavioral symptoms following COVID-19-associated autoimmune encephalitis with intravenous immunoglobulin: A case report and review of the literature. Cureus. 2023;15(12):e51071. doi: 10.7759/cureus.51071

123. Adler Y, Charron P, Imazio M, Badano L, Barón-Esquivias G, Bogaert J, et al.; ESC Scientific Document Group. 2015 ESC Guidelines for the diagnosis and management of pericardial diseases: The Task Force for the diagnosis and management of pericardial diseases of the European Society of Cardiology (ESC) endorsed by the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J. 2015;36(42):2921-2964. doi: 10.1093/eurheartj/ehv318

124. Ceriani E, Agozzino F, Berra S, Gidaro A, Bindi P, Pavarani A, et al. Duration of disease and long-term outcomes in patients with difficult-to-treat recurrent pericarditis: A chronic condition treated with nonsteroidal anti-inflammatory drugs, colchicine, corticosteroids, and anti-interleukin-1 agents. ACR Open Rheumatol. 2025;7(1):e11776. doi: 10.1002/acr2.11776

125. Nasonov EL, Sukmarova ZN, Popkova TV, Belov BS. Problems of immunopathology and prospects for pharmacotherapy of idiopathic recurrent pericarditis: Using an interleukin 1 inhibitor (Anakinra). Nauchno-Prakticheskaya Revmatologia = Rheumatology Science and Practice. 2023;61(1):47-61 (In Russ.). doi: 10.47360/19954484-2023-47-61

126. Imazio M, Lazaros G, Picardi E, Vasileiou P, Carraro M, Tousoulis D, et al. Intravenous human immunoglobulins for refractory recurrent pericarditis: A systematic review of all published cases. J Cardiovasc Med (Hagerstown). 2016;17(4):263-269. doi: 10.2459/JCM.0000000000000260

127. Collini V, Venturelli F, Berghi R, Andreis A, De Biasio M, Merlo M, et al. Human intravenous immunoglobulins for recurrent pericarditis: A multicentre cohort study. Eur J Prev Cardiol. 2025 Apr 28:zwaf250. doi: 10.1093/eurjpc/zwaf250

128. Collet A, Guerrier T, Sanges S, Chépy A, Sobanski V, Launay D, et al. Autoreactive B cells in autoimmune diseases: Mechanisms, functions and clinical implications. Autoimmun Rev. 2025;24(8):103851. doi: 10.1016/j.autrev.2025.103851

129. Nasonov EL. Prospects for anti-B-cell therapy in rheumatology. Nauchno-Prakticheskaya Revmatologia = Rheumatology Science and Practice. 2018;56(5):539-548 (In Russ.). doi: 10.14412/1995-4484-2018-539-548

130. Lee DSW, Rojas OL, Gommerman JL. B cell depletion therapies in autoimmune disease: Advances and mechanistic insights. Nat Rev Drug Discov. 2021;20(3):179-199. doi: 10.1038/s41573-02000092-2

131. Scherlinger M, Nocturne G, Radic M, Launay D, Richez C, Bousso P, et al.; Club for Innovative Immunotherapies in Immune-mediated Inflammatory diseases (C3I). CAR T-cell therapy in autoimmune diseases: Where are we and where are we going? Lancet Rheumatol. 2025;7(6):e434-e447. doi: 10.1016/s2665-9913(24)00377-1

132. Ahmed AR, Kaveri S. Reversing autoimmunity combination of rituximab and intravenous immunoglobulin. Front Immunol. 2018;9:1189. doi: 10.3389/fimmu.2018.01189

133. de Carvalho JF, Skare TL. Rituximab combined with intravenous immunoglobulin in autoimmune diseases: A systematic review. Adv Rheumatol. 2025;65(1):19. doi: 10.1186/s42358-025-00450-x

134. Mitrevski M, Marrapodi R, Camponeschi A, Cavaliere FM, Lazzeri C, Todi L, et al. Intravenous immunoglobulin and immunomodulation of B-Cell – in vitro and in vivo effects. Front Immunol. 2015;6:4. doi: 10.3389/fimmu.2015.00004

135. Hori A, Fujimura T, Kawamoto S. Anti-inflammatory intravenous immunoglobulin (IVIg) suppresses homeostatic proliferation of B cells. Cytotechnology. 2018;70(3):921-927. doi: 10.1007/s10616-017-0176-2

136. Nasonov EL, Popkova TV, Lila AM. Belimumab in the treatment of systemic lupus erythematosus: 20 years of basic research, 10 years of clinical practice. Nauchno-Prakticheskaya Revmatologia = Rheumatology Science and Practice. 2021;59(4):367-383 (In Russ.). doi: 10.47360/1995-4484-2021-367-383

137. Van Schaik M, Arends EJ, Wetzels MJAL, Kraaij T, Verbruggen SH, van der Kooij SW, et al. Long-term safety and efficacy of the combination of belimumab and rituximab in the treatment of severe and refractory SLE: A preliminary report. Lupus Sci Med. 2025;12(1):e001424. doi: 10.1136/lupus-2024-001424

138. Bick S, Tschernatsch M, Karg A, Fuehlhuber V, Trenczek TE, Faltermeier K, et al. Intravenous immunoglobulin inhibits BAFF production in chronic inflammatory demyelinating polyneuropathy – a new mechanism of action? J Neuroimmunol. 2013;256(1-2):84-90. doi: 10.1016/j.jneuroim.2013.01.001

139. Ritter C, Förster D, Albrecht P, Hartung HP, Kieseier BC, Lehmann HC. IVIG regulates BAFF expression in patients with chronic inflammatory demyelinating polyneuropathy (CIDP). J Neuroimmunol. 2014;274(1-2):225-229. doi: 10.1016/j.jneuroim.2014.06.007

140. Le Pottier L, Sapir T, Bendaoud B, Youinou P, Shoenfeld Y, Pers JO. Intravenous immunoglobulin and cytokines: Focus on tumor necrosis factor family members BAFF and APRIL. Ann N Y Acad Sci. 2007;1110:426-432. doi: 10.1196/annals.1423.044

141. Watson E, Minehan S, White R. It’s never Lupus… until it is; Primary neuropsychiatric systemic lupus erythematosus presenting as psychosis treated with intravenous immunoglobulin and rituximab: A case study. Neurology. 2017;88(S16):6-191. doi: 10.1212/WNL.88.16_supplement.P6.191

142. Cheikh MM, Bahakim AK, Aljabri MK, Alharthi SM, Alharthi SM, Alsaeedi AK, et al. Neuropsychiatric lupus and lupus nephritis successfully treated with combined IVIG and rituximab: An alternative to standard of care. Case Rep Rheumatol. 2022;2022:5899188. doi: 10.1155/2022/5899188

143. Birnbaum J, Lalji A, Piccione EA, Izbudak I. Magnetic resonance imaging of the spinal cord in the evaluation of 3 patients with sensory neuronopathies: Diagnostic assessment, indications of treatment response, and impact of autoimmunity: A case report. Medicine (Baltimore). 2017;96(49):e8483. doi: 10.1097/MD.0000000000008483

144. Lima K, Tavee J, Dua A. Combination rituximab and intravenous immunoglobulin for treatment of refractory vasculitic neuropathy: A case series. Rheumatology (Oxford). 2021;60(10):4884-4887. doi: 10.1093/rheumatology/keab069

145. Cannon L, Pan A, Kovalick L, Sarkissian A, Wu EY. Secondary immunodeficiencies and infectious considerations of biologic immunomodulatory therapies. Ann Allergy Asthma Immunol. 2023;130(6):718-726. doi: 10.1016/j.anai.2023.02.010

146. Regina J, Doms J, Kampouri E, Gerber C, Manuel O, Bart PA, et al. Immunodeficiencies in adults: Key considerations for diagnosis and management. Clin Rev Allergy Immunol. 2025;68(1):92. doi: 10.1007/s12016-025-09103-9

147. Martinson ML, Lapham J. Prevalence of immunosuppression among US adults. JAMA. 2024;331(10):880-882. doi: 10.1001/jama.2023.28019

148. Tobin JM, Cooper MA. Rheumatologic and autoimmune features of inborn errors of immunity: Implications for diagnosis and management. J Hum Immun. 2025;1(3):e20250034. doi: 10.70962/jhi.20250034

149. Roberts DM, Jones RB, Smith RM, Alberici F, Kumaratne DS, Burns S, et al. Rituximab-associated hypogammaglobulinemia: Incidence, predictors and outcomes in patients with multi-system autoimmune disease. J Autoimmun. 2015;57:60-65. doi: 10.1016/j.jaut.2014.11.009

150. Wijetilleka S, Mukhtyar C, Jayne D, Ala A, Bright P, Chinoy H, et al. Immunoglobulin replacement for secondary immunodeficiency after B-cell targeted therapies in autoimmune rheumatic disease: Systematic literature review. Autoimmun Rev. 2019;18(5):535-541. doi: 10.1016/j.autrev.2019.03.010

151. Cortazar FB, Pendergraft WF 3rd, Wenger J, Owens CT, Laliberte K, Niles JL. Effect of continuous B cell depletion with rituximab on pathogenic autoantibodies and total IgG levels in antineutrophil cytoplasmic antibody-associated vasculitis. Arthritis Rheumatol. 2017;69(5):1045-1053. doi: 10.1002/art.40032

152. Besada E. Low immunoglobulin levels increase the risk of severe hypogammaglobulinemia in granulomatosis with polyangiitis patients receiving rituximab. BMC Musculoskelet Disord. 2016;17:6. doi: 10.1186/s12891-015-0860-3

153. Md Yusof MY, Vital EM, McElvenny DM, Hensor EMA, Das S, Dass S, et al. Predicting severe infection and effects of hypogammaglobulinemia during therapy with rituximab in rheumatic and musculoskeletal diseases. Arthritis Rheumatol. 2019;71(11):1812-1823. doi: 10.1002/art.40937

154. Reddy V, Martinez L, Isenberg DA, Leandro MJ, Cambridge G. Pragmatic treatment of patients with systemic lupus erythematosus with rituximab: long-term effects on serum immunoglobulins. Arthritis Care Res (Hoboken). 2017;69(6):857-866. doi: 10.1002/ acr.22993

155. Alvarez E, Longbrake EE, Rammohan KW, Stankiewicz J, Hersh CM. Secondary hypogammaglobulinemia in patients with multiple sclerosis on anti-CD20 therapy: Pathogenesis, risk of infection, and disease management. Mult Scler Relat Disord. 2023;79:105009. doi: 10.1016/j.msard.2023.105009

156. Hill JA, Giralt S, Torgerson TR, Lazarus HM. CAR-T – and a side order of IgG, to go? – Immunoglobulin replacement in patients receiving CAR-T cell therapy. Blood Rev. 2019;38:100596. doi: 10.1016/j.blre.2019.100596

157. Nasonov EL, Avdeeva AS. B cell depletion in immune-mediated rheumatic diseases and coronavirus disease 2019 (COVID-19). Nauchno-Prakticheskaya Revmatologia = Rheumatology Science and Practice. 2021;59(4):384-393 (In Russ.). doi: 10.47360/1995-4484-2021-384-393

158. Billi B, Cholley P, Grobost V, Clément M, Rieu V, Le Guenno G, et al. Intravenous immunoglobulins for the treatment of prolonged COVID-19 in immunocompromised patients: A brief report. Front Immunol. 2024;15:1399180. doi: 10.3389/fimmu.2024.1399180

159. Vasconcelos J, Portugal R, Torres R, Falcão S. Intravenous immunoglobulin as a therapeutic option for patients with worsening COVID-19 under rituximab. BMJ Case Rep. 2021;14(6):e243338. doi: 10.1136/bcr-2021-243338

160. Upasani V, Townsend K, Wu MY, Carr EJ, Hobbs A, Dowgier G, et al. Commercial immunoglobulin products contain neutralizing antibodies against severe acute respiratory syndrome coronavirus 2 spike protein. Clin Infect Dis. 2023;77(7):950-960. doi: 10.1093/cid/ciad368

161. Gröning R, Walde J, Ahlm C, Forsell MNE, Normark J, Rasmuson J. Intravenous immunoglobulin therapy for COVID-19 in immunocompromised patients: A retrospective cohort study. Int J Infect Dis. 2024;144:107046. doi: 10.1016/j.ijid.2024.107046

162. Osaka T, Yamamoto Y, Soma T, Yanagisawa N, Nagata S. Crossreactivity of antibodies in intravenous immunoglobulin preparation for protection against SARS-CoV-2. Microorganisms. 2023;11(2):471. doi: 10.3390/microorganisms11020471

163. Cousins K, Sano K, Lam B, Röltgen K, Bhavsar D, Singh G, et al. Detection of SARS-CoV-2 antibodies in immunoglobulin products. J Allergy Clin Immunol Pract. 2023;11(8):2534-2541.e2. doi: 10.1016/j.jaip.2023.05.005

164. Casadevall A, Focosi D. Lessons from the use of monoclonal antibodies to SARS-CoV-2 spike protein during the COVID19 pandemic. Annu Rev Med. 2025;76(1):1-12. doi: 10.1146/annurev-med-061323-073837

165. Guo Y, Tian X, Wang X, Xiao Z. Adverse effects of immunoglobulin therapy. Front Immunol. 2018;9:1299. doi: 10.3389/ fimmu.2018.01299

166. Ahmed J, Choi Y, Ko T, Lim J, Hajjar J. Use of immunoglobulin replacement therapy in clinical practice: A review. J Immunother Precis Oncol. 2025;8(1):34-46. doi: 10.36401/JIPO-24-7

167. Dalakas MC. Update on intravenous immunoglobulin in neurology: Modulating neuro-autoimmunity, evolving factors on efficacy and dosing and challenges on stopping chronic IVIg therapy. Neurotherapeutics. 2021;18(4):2397-2418. doi: 10.1007/s13311021-01108-4

168. Emre S. Intravenous immunoglobulin treatment: Where do dermatologists stand? Dermatol Ther. 2019;32(3):e12854. doi: 10.1111/dth.12854

169. Velikova T, Sekulovski M, Bogdanova S, Vasilev G, Peshevska-Sekulovska M, Miteva D, et al. Intravenous immunoglobulins as immunomodulators in autoimmune diseases and reproductive medicine. Antibodies (Basel). 2023;12(1):20. doi: 10.3390/antib12010020

170. Wong PH, White KM. Impact of immunoglobulin therapy in pediatric disease: A review of immune mechanisms. Clin Rev Allergy Immunol. 2016;51(3):303-314. doi: 10.1007/s12016-015-8499-2

171. Zhu L, Li L, Wu J. FcRn inhibitors: Transformative advances and significant impacts on IgG-mediated autoimmune diseases. Autoimmun Rev. 2025;24(3):103719. doi: 10.1016/j.autrev.2024.103719

172. Yang CW, Xia T, Tan Q, Jie LG, Lou AJ, Li XX, et al. From promise to practice: Evaluating the clinical impact of FcRn inhibition in IgG-mediated autoimmune rheumatic diseases. Front Immunol. 2025;16:1656937. doi: 10.3389/fimmu.2025.1656937


Review

For citations:


Nasonov E.L., Reshetnyak T.M., Beketova T.V., Sukmarova Z.N., Starkova A.S. EULAR 2024 recommendations on the use of antirheumatic drugs in reproduction, pregnancy and lactation and comments on them. Rheumatology Science and Practice. 2025;63(6):559-575. (In Russ.) https://doi.org/10.47360/1995-4484-2025-559-575

Views: 25


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1995-4484 (Print)
ISSN 1995-4492 (Online)