Preview

Научно-практическая ревматология

Расширенный поиск

ПРОБЛЕМЫ ЭПИГЕНОМА ПРИ РЕВМАТОИДНОМ АРТРИТЕ

https://doi.org/10.14412/1995-4484-2011-566

Аннотация

Ревматоидный артрит (РА), будучи ярким представителем большого семейства аутоиммунных заболеваний, во многом остается еще далеко не до конца изученным заболеванием. Это касается этиологии и патогенеза, а также эффективных подходов к его лечению. В обзоре представлены литературные данные о роли эпигеномных механизмов регуляции функционирования генов как в иммунокомпетентных клетках, так в синовиальных фибробластах - основных мишенях действия аутоиммунных клеток. Наличие у больных РА нескольких источников гипометилированной ДНК дает возможность говорить о значительном вкладе этих молекул в патогенез заболевания. Кроме того, обнаруженное гиперметилирование отдельных генов, помимо патогенетического значения данного феномена, может быть использовано при разработке новых подходов к лечению РА, основанных на процессах деметилирования этих генов.

Об авторе

V A Kozlov



Список литературы

1. <div><p>Davis L.S. The synovial fibroblast in rheumatoid arthritis. Am J Pathol 2003; 162(5): 1399-402.</p><p>Taniguchi K., Kohsaka H., Inoue N. et al. Induction of the p16INK4a senescence gene as new therapeutic strategy for the treatment of rheumatoid arthritis. Nat Med 1999; 5: 760-8.</p><p>Pap T., Franz J.K., Hummel K.M. et al. Activation of synovial fibroblasts in rheumatoid arthritis: lack of Expression of the tumor suppressor PTEN at sites of invasive growth and destruction. Arthr Res 2000; 2: 59-65.</p><p>Franz J.K., Pap T., Hummel K.M. et al. Expression of sentrin, a novel anti-apoptotic molecule at sites of Synovial invasion in rheumatoid arthritis. Arthr Rheum 2000; 43; 599-607.</p><p>Meinecke I., Cinski A., Baier A. et al. Modification of nuclear PML protein by SUMO-1 regulates Fas-in-Duced apoptosis in rheumatoid arthritis synovial fibroblasts. Proc Natl Acad Sci 2007; 104: 5073-8</p><p>Scott B.B., Weisbrot L.M., Greenwood J.D. et al. Rheumatoid arthritis synovial fibriblast and U937 macrophage/monocyte cell line interaction in cartilage degradation. Arthr Rheum 1997; 40: 490-8.</p><p>Maciejewska Rodrigues H., Jungel A., Gay R.E., Gay S. Innate immunity, epigenetics and autoimmunity in rheumatoid arthritis. Mol Immunol 2009; 47(1): 12-8.</p><p>Karousakis E., Gay R.E., Michel B.A. et al. DNA hypomethylation in rheumatoid arthritis synovial fibroblasts. Arthr Rheum 2009; 60(12): 3612-22.</p><p>Huber L.C., Stanczyk J., Jungel A., Gay S. Epigenetics in inflammatory rheumatic diseases. Arthr Rheum 2007; 56(11): 3523-31.</p><p>Takami N., Osawa K., Miura Y. et al. Hypermethylation promoter region of DR3, the death receptor gene, in rheumatoid arthritis synovial cells. Arthr Rheum 2006; 54(3): 779-87.</p><p>Karouzakis E., Gay R.E., Gay S., Neidhart M. Epigenetic control in rheumatoid arthritis synovial fibroblasts. Nat Rev Rheumatol 2009; 5: 266-72.</p><p>Jungel A., Baresova V., Ospelt C. et al. Trichostatin A sensitizes rheumatoid arthritis synovial fibroblasts for TRAIL-induced apoptosis. Ann Rheum Dis 2006; 65: 910-2.</p><p>Ito K., Yamamura S., Essilfie-Quaye S. et al. Histone deacetylase 2-mediated deacetylation of the glucocorticoid receptor enables NF-kB suppression. J Exp Med 2006; 203(1): 7-13.</p><p>Boquest A.C., Noer A., Collas P. Epigenetic programming of mesenchymal stem cells from human adipose tissue. Stem Cell Rev 2006; 2: 319-29.</p><p>Wen Z.K., Xu W., Xu L. et al. DNA hypomethylation is crucial for apoptotic DNA to induce systemic lupus erythematosus-like auimmune disease in SLE-non-susceptible mice. Rheumatology 2007; 46: 1796-80</p><p>Harmon C.E., Portanova J. Drug-induced lupus: clinical and serological studies. Clin Rheum Dis 1982; 8: 121-35.</p><p>Schwab J., Illges H. Silensing of CD21 expression in synovial lymphocytes is independent of methylation of the CD21 promoter CpG island. Rheumatology 2001; 20(1): 133-7.</p><p>Annunziata F., Cosmi L., Liotta F. et al. Type 17 helper cells - origin, features and possible role in rheumatic disease. Nat Rev Rheumatol 2009; 5: 325-31.</p><p>Hmadcha A., Bedoya F.J., Sobrino F., Pintabo E. Methylation-dependent gene silencing induced by interleukin lb via nitric oxide production. J Exp Med 1999; 190(11): 1595-603.</p><p>Hashimoto K., Oreffo R.O.C., Gibson M.B. et al. DNA demethylation at specific CpG sites in the IL1B promoter in response to inflammatory cytokines in human articular chondrocytes. Arthr Rheum 2009; 60(11): 3303-13.</p><p>Nile C.J., Read R.C., Akil M. et al. Methylation status of a single CpG site in the IL-6 promoter to IL-6 messenger RNA levels and rheumatoid arthritis. Arthr Rheum 2008; 58(9): 2686-93.</p><p>Fu L.H., Cong В., Zhen Y.F. et al. Methylation status of the IL-10 gene promoter in the peripheral blood mononuclear cells of rheumatoid arthritis patients. Yi Chuan 2007; 29(11): 1357-61.</p><p>Hodge D.R., Peng В., Cherry J.C. et al. Interleukin 6 support the maintenance of p53 tumor suppressor gene promoter methylation. Cancer Res 2005; 65(11): 4673-82.</p><p>Meng F., Wehbe-Janek H., Smith H., Patel T. Epigenetic regulation of microRNA-370 by interleukin-6 in malignant human cholangiocytes. Oncogene 2008; 27(3): 378-86.</p><p>Wilson A.G. Epigenetic regulation of gene expression in the inflammatory response in the inflammatory response and relevance to common diseases. J Periodontal 2008; 79(8): 1514-9.</p><p>A.M., Yang X.O., Dong C. Chromatin remodeling of interleukin-17 (IL-17)-IL17F cytokine gene locus during inflammatory helper T cell differentiation. J Biol Chem 2007; 282(9): 5969-72.</p><p>Han G.M., O'Neil-Andersen N., Zurier R.B., Lawrence D.A. CD4 CD25 high T cell numbers are enriched in the peripheral blood of patients with rheumatoid arthritis. Cell Immunol 2008; 253(1-2): 92-101</p><p>Oh S., Rankin A.L., Caton A.J. CD4+CD25+ regulatory T cells in autoimmune arthritis. Immunol Rev 2010; 233: 97-111.</p><p>Zheng Q., Xu Y., Liu Y. et al. Induction of Foxp3 demethylation increases regulatory CD4+CD25+ T cells and prevents the occurrence of diabetes in mice. J Mol Med 2009; 87; 1191-205.</p><p>Zanin-Zhorov A., Ding Y., Kumari S. et al. Protein kinase С-theta mediates nega- tive feedback on regulatory T cell function. Science 2010; 328: 372-6.</p><p>Floess S., Freyer J., Siewert C. et al. Epigenetic control of the foxp3 locus in regulatory T cells. PLoS Biology. 2007; 5(2): 169-78.</p><p>Lee C.-G., Sahoo A., Im S.-H. Epigenetic regulation of cytokine gene expression in T lymphocytes. Yonsei Med 2009; 50(3): 322-30.</p><p>Su R.C., Becker A.B., Kozyrskyi A.L., Hayglass K.T. Epigenetic regulation of established human type 1 versus type 2 cytokine responses. J Allergy Clin Immunol 2008; 121(1): 57-63.</p><p>Tao R., de Zoeten E.F., Ozkaynak E. et al. Deacethlase inhibition promotes the the generation and function of regulatory T cells. Nat Med 2007; 13(11): 1299-307.</p><p>Bowen H., Kelly A., Lee T., Lavender P. Control of cytokine gene transcription in Thl and Th2 cells. Clin Exper Allergy 2008; 38: 1422-31.</p><p>Kim E.-G., Shin H.-J., Lee C.G. et al. DNA methylation and not allelic variation regulates STAT6 expression in human T cells. Clin Exp Med 2009; 10.1007/sl0238- 009-0083-8.</p><p>Krieg A.M. The role of CpG motifs in innate immunity. Curr Opin Immunol 2000; 12(1): 35-43. Collins L.V., Hajizadeh S., Holme E. et al. Endogenously oxidized mitochondrial DNA induce in vivo and in vitro inflammatory responses. J Leukoc Biol 2004; 75(6): 995-1000.</p><p>Zhang Q., Raoof M., Chen Y. et al. Circulating mitochondrial DAMPs cause inflammatory responses to Injury. Nature 2019; 464: 104-8.</p><p>Вейко H.H., Шубаева H.O., Иванова C.M. и др. ДНК сыворотки крови больных ревматоидным артритом значительно обогащена фрагментами рибосомных повторов, содержащих иммуностимулирующие CpG-мотивы. Бюл. экспер. биол. мед. 2006; 142(9): 282-5.</p><p>Не В., Qiao X., Cerutti A. CpG DNA induces IgG class switch DNA recombination by activating human В cells through an innate pathway that requires TLR9 and cooperates with IL-10. J Immunol 2004; 173: 4479-91.</p><p>Deng G.M., Tarkowski A. The role of bacterial DNA in septic arthritis. Int J Mol Med 2000; 6(1): 29-33.</p><p>Zeuner R.A., Ishii К.J., Lizak M.J. et al. Reduction of CpG-induced arthritis by suppressive oligodeoxynucleotides. Arthr Rheum 2002; 46(8): 2219-24.</p><p>Krieg A.M. CPG motifs in bacterial DNA and their immune effects. Ann Rev Immunol 2002; 20: 709-60.</p><p>Gaipl U.S., Kuhn A., Sheriff A. et al. Clearance of apoptotic cells in human SLE. Curr Dir Autoimmune 2006; 9: 173-87.</p><p>Dieker J.W., Fransen J.H., van Bavel C.C. et al. Apoptosis-induced acetylation of histones is pathogenic in systemic lupus erythematosis. Arthr Rheum 2007; 56(6): 1921-33.</p><p>Balada E., Ordi-Ros J., Vilardell-Tarres M. Molecular mechanisms mediated by human endogenous retroviruses (HERVs) in autoimmunity. Rev Med Virol 2009; 19(5): 273-86.</p><p>Kokkonen H., Soderstrom I., Rocklov J. et al. Up-regulation of cytokines and chemokines predates the onset of rheumatoid arthritis. Arthr Rheum 2010; 62(2): 383-91</p><p>Ma X., Ezzeldin H.H., Diasio R.B. Histone deacetylase inhibitors: current status and overview of Recent clinical trials. Drug 2009; 69(14): 1911-34.</p><p>Wiech N.L., Fisher J.F., Helquist P. et al. Inhibition of histone deacetylases: a pharmacological approach to the treatment of non-cancer disorders. Curr Top Med Chem 2009; 9(3): 257-71.</p></div><br />


Рецензия

Для цитирования:


Kozlov V.A. ПРОБЛЕМЫ ЭПИГЕНОМА ПРИ РЕВМАТОИДНОМ АРТРИТЕ. Научно-практическая ревматология. 2011;49(3):9-13. https://doi.org/10.14412/1995-4484-2011-566

For citation:


Kozlov V.A. PROBLEMS OF EPIGENOME IN RHEUMATOID ARTHRITIS. Rheumatology Science and Practice. 2011;49(3):9-13. (In Russ.) https://doi.org/10.14412/1995-4484-2011-566

Просмотров: 814


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1995-4484 (Print)
ISSN 1995-4492 (Online)